Fluid-Flow Approximation in the Analysis of Vast Energy-Aware Networks
Abstract
:1. Introduction
- (i)
- we develop a queuing model of an extensive computer network. The model captures the dynamics of flows changing due to the nature of transmitted traffic and the network’s control algorithms. We consider the TCP Reno algorithm cooperating with the RED algorithm on IP level, but they may be easily replaced by other algorithms. The model is based on the well-known fluid-flow approximation. Its original part is the implementation of the whole structure inside the database system. This is the way to overcome the limitations of storing and using large amounts of data resulting from the size of the model and the analysis of transients. This unconventional solution allows us to model previously inaccessible topologies related to the Internet.
- (ii)
- we apply this model in the quantitative analysis of the impact of an energy-saving algorithm used in routers on the network’s performance. We discover that it reduces network congestion and save energy but significantly lowers network throughput. The studied network has a realistic hierarchical, nonhomogenous structure with routers and links of various throughputs and buffer sizes and is a copy of an existing part of the Internet; it was taken from a map developed in the Opte project in [29].
2. Related Works
3. Fluid-Flow Approximation
3.1. Basic Model
- -
- is the size of congestion window for connection i, i.e., the number of packets (or more precisely blocks) the sender is allowed to dispatch without waiting for acknowledgment of reception from the receiver;
- -
- is the round trip time for a flow i, i.e, the mean time after which such acknowledgment is received.
- -
- is the set of mean queues in connection i,
- -
- is the set of nodes belonging to the connection i,
- -
- is the propagation time between two nodes j, ,
- -
- is the set of links between the nodes belonging to connection i.
3.2. Fluid-Flow Approximation of an Energy-Efficient Node
- When the actual queue length q decreases and reaches the lower threshold of , the router service is switched off. This results in the growth of the router queue.
- When the actual queue q increases and reaches the upper threshold of , the router service is switched on. It is the moment when we assume that the router has a long enough queue to start transmitting.
- In other cases, the state of the router does not change.
4. Implementation and Numerical Results
Algorithm 1: Fluid-flow approximation written as a database procedure |
Algorithm 2: Energy-saving modification of fluid-flow approximation |
- 0% (red)—the router is always transmitting,
- 50% (yellow)—the router is transmitting for at least 50% of the time,
- 100% (green)—the router is never transmitting,
- between the above values, there are intermediate colors.
- (a)
- circa 0.0048% of nodes,
- (b)
- circa 0.054% of nodes,
- (c)
- circa 0.38% of nodes,
- (d)
- circa 4.9% of nodes,
- (e)
- circa 93.33% of nodes,
- (f)
- circa 1.33% of nodes.
- 0.558—violet,
- 14,110.012—white,
- 28,219.465—green,
- between the above values, there are intermediate colors.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Internet Growth Statistics. Available online: https://www.internetworldstats.com/emarketing.htm (accessed on 4 December 2021).
- Data Centres and Data Transmission Networks, International Energy Agency Tracking Report, November 2021. Available online: https://www.iea.org/reports/data-centres-and-data-transmission-networks (accessed on 4 January 2021).
- Berkeley Lab: It Takes 70 Billion Kilowatt Hours a Year to Run the Internet. Available online: https://www.forbes.com/sites/christopherhelman/2016/06/28/how-much-electricity-does-it-take-to-run-the-internet/?sh=7f7b4a261fff (accessed on 5 December 2021).
- Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling; Wiley: New York, NY, USA, 1991. [Google Scholar]
- ns-2 Manual. Available online: http://nsnam.sourceforge.net/wiki/index.php/User_Information (accessed on 5 December 2021).
- ns-3 Webpage. Available online: https://www.nsnam.org/ (accessed on 5 December 2021).
- OPNeT++ Webpage. Available online: https://omnetpp.org/ (accessed on 5 December 2021).
- Liu, Y.; Lo Presti, F.; Misra, V.; Towsley, D.; Gu, Y. Fluid Models and Solutions for Large-Scale IP Networks. In Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Association for Computing Machinery, SIGMETRICS ’03, San Diego, CA, USA, 9–14 June 2003; pp. 91–101. [Google Scholar] [CrossRef]
- Misra, V.; Gong, W.B.; Towsley, D. Fluid-Based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. Association for Computing Machinery, SIGCOMM ’00, Stockholm, Sweden, 28 August–1 September 2000; pp. 151–160. [Google Scholar] [CrossRef]
- Sakumoto, Y.; Ohsaki, H.; Imase, M. Design and Implementation of Flow-Level Simulator FSIM for Performance Evaluation of Large Scale Networks. Int. J. Comput. Sci. Telecommun. 2013, 4, 1–10. [Google Scholar]
- Czachórski, T. Queuing models for performance evaluation of computer networks: Transient state analysis. In Analytic Methods in Interdisciplinary Applications; Mityushev, M.R.V., Ed.; Springer: Berlin, Germany, 2014; Volume 116, pp. 51–80. [Google Scholar] [CrossRef]
- Erlang, A.K. The Theory of Probabilities and Telephone Conversations. Nyt Tidsskr. Mat. 1909, B20, 33–39. [Google Scholar]
- Engset, T.O. Die Wahrscheinlichkeitsrechnung zur Bestimmung der Wahlerzahl in automatischen Fernsprechamtern. Elektrotechnische Z. 1918, 31, 304–306. [Google Scholar]
- Domański, A.; Domańska, J.; Filus, K.; Szyguła, J.; Czachórski, T. Self-Similar Markovian Sources. Appl. Sci. 2020, 10, 3727. [Google Scholar] [CrossRef]
- Czachórski, T.; Domańska, A.; Domańska, J.; Rataj, A. A Study of IP Router Queues with the Use of Markov Models. In International Conference on Computer Networks (CN2016); Springer: Cham, Switzerland, 2016; pp. 294–305. [Google Scholar] [CrossRef]
- Stewart, W.J. An Introduction to the Numerical Solution of Markov Chains; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Kwiatkowska, M.; Norman, G.; Parker, D. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11), Snowbird, UT, USA, 14–20 July 2011; pp. 585–591. [Google Scholar]
- PRISM–Probabilistic Model Checker. Available online: http://www.prismmodelchecker.org (accessed on 4 December 2021).
- Gelenbe, E. On Approximate Computer Systems Models. J. ACM 1975, 22, 261–269. [Google Scholar] [CrossRef]
- Kobayashi, H. Modeling and Analysis: An Introduction to System Performance Evaluation Methodology; Addison-Wesley: Reading, MA, USA, 1978. [Google Scholar]
- Czachórski, T. A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bull. Pol. Acad. Sci. Tech. Sci. 1993, 41, 417–451. [Google Scholar]
- Nycz, T.; Czachórski, T. Scalability study of computer network models using a diffusion approximation with an increase in the size of the modeled network. Stud. Inform. 2012, 33, 63–78. [Google Scholar]
- Moran, P.A.P. A probability theory of dams and storage systems. Aust. J. Appl. Sci. 1954, 5, 116–124. [Google Scholar]
- Nycz, T.; Nycz, M.; Czachórski, T. A numerical comparison of diffusion and fluid-flow approximations used in modelling transient states of TCP/IP networks. Computer Network. In Communications in Computer and Information Science; Springer: Berlin, Germnay, 2014; Volume 431, pp. 213–222. [Google Scholar]
- Nycz, M.; Nycz, T.; Czachórski, T. Modelling Dynamics of TCP Flows in Very Large Network Topologies. In Information Sciences and Systems 2015; Lecture Notes in Electrical Engineering; Springer: Cham, Swizerland, 2016; Volume 363. [Google Scholar] [CrossRef]
- Nycz, M.; Nycz, T.; Czachórski, T. Performance modelling of transmissions in very large network topologies. In International Conference on Distributed Computer and Communication Networks; Distributed Computer and Communication Networks; Springer: Moscow, Russia, 2017; Volume 700, pp. 49–62. [Google Scholar]
- Czachórski, T.; Nycz, M.; Nycz, T. Fluid-Flow Approximation using ETL Process and SAP HANA Platform. In HPI Future SOC Lab: Proceedings 2016; Universität Potsdam: Potsdam, Germany, 2018; pp. 63–66. [Google Scholar]
- Nycz, M. Modeling of Computer Networks Using SAP HANA Smart Data Streaming. In International Conference on Computer Networks; Communications in Computer and Information Science; Springer: Berlin, Germany, 2019; Volume 1039, pp. 48–61. [Google Scholar]
- Lyon, B. The Opte Project. Available online: http://www.opte.org/ (accessed on 5 December 2021).
- Alam, T. A Reliable Communication Framework and Its Use in Internet of Things (IoT). Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2018, 3, 450–456. [Google Scholar]
- Kanoun, O.; Bradai, S.; Khriji, S.; Bouattour, G.; El Houssaini, D.; Ben Ammar, M.; Naifar, S.; Bouhamed, A.; Derbel, F.; Viehweger, C. Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review. Sensors 2021, 21, 548. [Google Scholar] [CrossRef] [PubMed]
- Panda, N.; Sahu, P.K.; Parhi, M.; Pattanayak, B.K. A Survey on Energy Awareness Mechanisms in ACO-Based Routing Protocols for MANETs. In Intelligent and Cloud Computing. Smart Innovation, Systems and Technologie; Springer: Berlin, Germany, 2021; Volume 194. [Google Scholar] [CrossRef]
- Barker, A.; Swany, M. Energy Aware Routing with Computational Offloading for Wireless Sensor Networks. arXiv 2020, arXiv:2011.14795. [Google Scholar]
- Chaurasia, N.; Kumar, M.; Chaudhry, R.; Verma, O.P. Comprehensive survey on energy-aware server consolidation techniques in cloud computing. J. Supercomput. 2021, 50, 1–56. [Google Scholar] [CrossRef]
- Fonseca, A.; Kazman, R.; Lago, P. A Manifesto for Energy-Aware Software. IEEE Softw. 2019, 36, 79–82. [Google Scholar] [CrossRef]
- Beyer, D.; Wendler, P. CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering. In Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2020; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2020; Volume 12079, pp. 126–133. [Google Scholar] [CrossRef] [Green Version]
- Gallersdörfer, U.; Klaaßen, L.; Stoll, C. Energy Consumption of Cryptocurrencies Beyond Bitcoin. Joule 2020, 4, 1843–1846. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, X.; Hao, Y.; Cao, J. Energy-Aware Scheduling in Edge Computing Based on Energy Internet. IEEE Access 2020, 8, 229052–229065. [Google Scholar] [CrossRef]
- Hao, Y.; Cao, J.; Wang, Q.; Du, J. Energy-aware scheduling in edge computing with a clustering method. Future Gener. Comput. Syst. 2021, 117, 259–272. [Google Scholar] [CrossRef]
- Mao, J.; Cao, T.; Peng, X.; Bhattacharya, T.; Ku, W.S.; Qin, X. Security-Aware Energy Management in Clouds. In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020; pp. 284–293. [Google Scholar] [CrossRef]
- Mishra, S.K.; Mishra, S.; Alsayat, A.; Jhanjhi, N.Z.; Humayun, M.; Sahoo, K.S.; Luhach, A.K. Energy-Aware Task Allocation for Multi-Cloud Networks. IEEE Access 2020, 8, 178825–178834. [Google Scholar] [CrossRef]
- Chen, X.; Tan, T.; Cao, G.; La Porta, T.F. Energy-Aware and Context-Aware Video Streaming on Smartphones. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019. [Google Scholar] [CrossRef]
- Wheatman, K.; Mehmeti, F.; Mahon, M.; La Porta, T.; Cao, G. Multi-User Competitive Energy-Aware and QoE-Aware Video Streaming on Mobile Devices. In Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Q2SWinet ’20, Alicante, Spain, 16–20 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 47–55. [Google Scholar] [CrossRef]
- Alhasan, A.; Audah, L.; Alwan, M.H.; Alobaidi, O.R. AN Energy Aware QoS Trust Model for Energy Consumption Enhancement Based on Cluster for IoT Networks. J. Eng. Sci. Technol. 2021, 16, 957–976. [Google Scholar]
- Mujeeb, S.M.; Sam, R.P.; Madhavi, K. Trust and energy aware routing algorithm for Internet of Things networks. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 34, e2858. [Google Scholar] [CrossRef]
- Khaleghnasab, R.; Bagherifard, K.; Ravaei, B.; Parvin, H.; Nejatian, S. An Energy and Load Aware Multipath Routing Protocol in the Internet of Things. Preprints 2020. [Google Scholar] [CrossRef]
- Bolla, R.; Bruschi, R.; Chiappero, M.; D’Agostino, L.; Lago, P.; Lombardo, C.; Mangialardi, S.; Podda, F. EE-DROP: An energy-aware router prototype. In Proceedings of the 2013 24th Tyrrhenian International Workshop on Digital Communications-Green ICT (TIWDC), Genoa, Italy, 23–25 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Bolla, R.; Bruschi, R.; Ortiz, O.M.J.; Lago, P. An Experimental Evaluation of the TCP Energy Consumption. IEEE J. Sel. Areas Commun. 2015, 33, 2761–2773. [Google Scholar] [CrossRef]
- Bruschi, R.; Lombardo, A.; Panarello, C.; Podda, F.; Santagati, E.; Schembra, G. Active window management: Reducing energy consumption of TCP congestion control. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 4154–4158. [Google Scholar] [CrossRef]
- Kim, T.; Lee, J.; Cha, H.; Ha, R. An energy-aware transmission mechanism for wifi-based mobile devices handling upload TCP traffic. Int. J. Commun. Syst. 2009, 22, 625–640. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Q.; Li, H.; Kwak, K.S.; Leung, V.C.M. Control-Aware Energy-Efficient Transmissions for Wireless Control Systems with Short Packets. IEEE Internet Things J. 2021, 8, 14920–14933. [Google Scholar] [CrossRef]
- Oulmahdi, M.; Chassot, C.; Exposito, E. An Energy-Aware TCP for Multimedia Streaming. In Proceedings of the 2013 International Conference on Smart Communications in Network Technologies (SaCoNeT), Paris, France, 17–19 June 2013; Volume 1, pp. 1–5. [Google Scholar] [CrossRef]
- Le, T.A.; Hong, C.S.; Razzaque, M.A.; Lee, S.; Jung, H. ecMTCP: An Energy-Aware Congestion Control Algorithm for Multipath TCP. IEEE Commun. Lett. 2012, 16, 275–277. [Google Scholar] [CrossRef]
- Lim, Y.S.; Chen, Y.C.; Nahum, E.M.; Towsley, D.; Gibbens, R.J.; Cecchet, E. Design, Implementation, and Evaluation of Energy-Aware Multi-Path TCP. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT ’15, Heidelberg, Germany, 1–4 December 2015; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Wang, H. On Energy-Efficient Congestion Control for Multipath TCP. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 351–360. [Google Scholar] [CrossRef]
- Sheeba, G.M. Energy Aware Router Placements Using Fuzzy Differential Evolution. In Wireless Mesh Networks-Security, Architectures and Protocols; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Das, A.; Qin, W.; Sivasubramaniam, A.; Wang, Q.; Gautam, N. Managing Server Energy and Operational Costs in Hosting Centers. In Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. Association for Computing Machinery, SIGMETRICS ’05, Coimbra, Portugal, 12–14 July 2005; pp. 303–314. [Google Scholar] [CrossRef] [Green Version]
- Maccio, V.J.; Down, D.G. Exact Analysis of Energy-Aware Multiserver Queueing Systems with Setup Times. In Proceedings of the 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), London, UK, 19–21 September 2016; pp. 11–20. [Google Scholar] [CrossRef]
- Deiana, E.; Latouche, G.; Remiche, M.A. Fluid Flow Model for Energy-Aware Server Performance Evaluation. SIGMETRICS Perform. Eval. Rev. 2018, 45, 204–209. [Google Scholar] [CrossRef]
- Lu, X. Energy-aware Performance Analysis of Queueing Systems. Master’s Thesis, School of Electrical Engineering, Aalto University, Espoo, Finland, 2013. [Google Scholar]
- Gebrehiwot, M.E.; Aalto, S.; Lassila, P. Optimal sleep-state control of energy-aware M/G/1 queues. EAI Endorsed Trans. Internet Things 2015, 1, e5. [Google Scholar] [CrossRef] [Green Version]
- Narman, H.S.; Atiquzzaman, M. Energy aware scheduling and queue management for next generation Wi-Fi routers. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015; pp. 148–152. [Google Scholar] [CrossRef]
- Barbera, M.; Lombardo, A.; Schembra, G. A fluid-based model of time-limited TCP flows. Comput. Netw. 2004, 44, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Abdeljaouad, I.; Rachidi, H.; Fernandes, S.; Karmouch, A. Performance analysis of modern TCP variants: A comparison of Cubic, Compound and New Reno. In Proceedings of the 2010 25th Biennial Symposium on Communications, Kingston, ON, Canada, 12–14 May 2010; pp. 80–83. [Google Scholar] [CrossRef]
- Alam, M.J.; Chowdhury, T. Performance Evaluation of TCP Vegas over TCP Reno and TCP New Reno over TCP Reno. Int. J. Inform. Vis. 2019, 3, 275–282. [Google Scholar]
- Saedi, T.; El-Ocla, H. TCP CERL+: Revisiting TCP congestion control in wireless networks with random loss. Wirel. Netw. 2021, 27, 423–440. [Google Scholar] [CrossRef]
- Mohamed, K.; Hussein, S.; Abdi, A.; Seddiq, A.E. Studying the TCP Flow and Congestion Control Mechanisms Impact on Internet Environment. Int. J. Comput. Sci. Inf. Secur. 2018, 16, 174–179. [Google Scholar]
- Kanagarathinam, M.R.; Singh, S.; Sandeep, I.; Kim, H.; Maheshwari, M.K.; Hwang, J.; Roy, A.; Saxena, N. NexGen D-TCP: Next Generation Dynamic TCP Congestion Control Algorithm. IEEE Access 2020, 8, 164482–164496. [Google Scholar] [CrossRef]
- Braden, B.; Clark, D.; Crowcroft, J.; Davie, B.; Deering, S.; Estrin, D.; Floyd, S.; Jacobson, V.; Minshall, G.; Partridge, C.; et al. Recommendations on Queue Management and Congestion Avoidance in the Internet. RFC 2309, IETF. 1998. Available online: https://datatracker.ietf.org/doc/html/rfc2309 (accessed on 13 December 2021).
- Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1993, 1, 397–413. [Google Scholar] [CrossRef]
- Nycz, M.; Czachórski, T. Modelowanie dynamiki natężenia przesyłów TCP/IP. In Zastosowania Internetu; Pikiewicz, P., Ed.; Wydawnictwo WSB w: Dąbrowie Górniczej, Poland, 2012. [Google Scholar]
- Fluid Flow Analysis of RED Algorithm with Modified Weighted Moving Average. In Modern Probabilistic Methods for Analysis of Telecommunication Networks. BWWQT 2013; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germnay, 2013; Volume 356, pp. 50–58. [CrossRef]
- SAP HANA Platform. Available online: https://www.sap.com/products/hana.html (accessed on 4 January 2021).
- Gnuplot-Graphing Utility. Available online: http://www.gnuplot.info/ (accessed on 5 December 2021).
- Gephi: The Open Graph Viz Platform. Available online: http://gephi.github.io/ (accessed on 5 December 2021).
- Nycz, M.; Nycz, T.; Czachórski, T. An Analysis of the Extracted Parts of Opte Internet Topology. In Computer Networks, CN 2015; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2015; Volume 522. [Google Scholar] [CrossRef]
- Czachórski, T.; Gelenbe, E.; Kuaban, G.S.; Marek, D. Time-Dependent Performance of a Multi-Hop Software Defined Network. Appl. Sci. 2021, 11, 2469. [Google Scholar] [CrossRef]
- Nycz, T.; Czachórski, T.; Nycz, M. Diffusion Model of Preemptive-Resume Priority Systems and Its Application to Performance Evaluation of SDN Switches. Sensors 2021, 21, 5024. [Google Scholar] [CrossRef] [PubMed]
Element | Parameter | Meaning |
---|---|---|
Node | N | Total number of nodes |
Current queue size at j-th node | ||
Output flow of j-th node | ||
Loss probability at j-th node for i-th flow | ||
Weighted average queue length at j-th node | ||
Lower threshold for queue | ||
Upper threshold for queue | ||
Maximum loss probability at upper threshold for queue | ||
Weight for queue | ||
Lower threshold that switch off router’s service | ||
Upper threshold that switch on router’s service | ||
Flow | K | Total number of flows |
Set of flows crossing node j | ||
Throughput of input stream of j-th node | ||
Congestion window size of i-th flow | ||
Round trip time of i-th flow | ||
Set of current queues at i-th connection | ||
Set of nodes for i-th connection | ||
Propagation time between i-th and -th nodes | ||
Set of links for i-th connection | ||
Number of identical flows at j-th node | ||
Time | t | t-th time step |
Time length of a time step | ||
Time when the loss occurred | ||
Mode | Normal mode | |
Energy-saving mode |
Table | No of Entries | Memory Size (KB) | Disk Size (KB) |
---|---|---|---|
FLOWS_B | 50,000 | 4201 | 4460 |
FLOWS_E | 50,000 | 4217 | 4468 |
FLOWS_HISTORY_B | 50,050,000 | 3,939,782 | 3,863,984 |
FLOWS_HISTORY_E | 50,050,000 | 3,997,634 | 3,832,560 |
ROUTERS_B | 134,023 | 4706 | 4800 |
ROUTERS_E | 134,023 | 4806 | 4944 |
ROUTERS_HISTORY_B | 134,157,023 | 3,698,226 | 3,567,340 |
ROUTERS_HISTORY_E | 134,157,023 | 3,967,444 | 3,788,272 |
LOSSES_B | 44,559,219 | 1,905,595 | 1900 128 |
LOSSES_E | 45,721,414 | 2,020,755 | 1,936,288 |
State | Idle Time (%) | Nodes in N-Mode (%) | Nodes in ES-Mode (%) |
---|---|---|---|
Highly active | 0–25 | 3.52 | 0.0024 |
Active | 25–50 | 94.17 | 0.84 |
Mostly idle | 50–75 | 2.31 | 99.15 |
Idle | 75–100 | 0 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nycz, M.; Nycz, T.; Czachórski, T. Fluid-Flow Approximation in the Analysis of Vast Energy-Aware Networks. Mathematics 2021, 9, 3279. https://doi.org/10.3390/math9243279
Nycz M, Nycz T, Czachórski T. Fluid-Flow Approximation in the Analysis of Vast Energy-Aware Networks. Mathematics. 2021; 9(24):3279. https://doi.org/10.3390/math9243279
Chicago/Turabian StyleNycz, Monika, Tomasz Nycz, and Tadeusz Czachórski. 2021. "Fluid-Flow Approximation in the Analysis of Vast Energy-Aware Networks" Mathematics 9, no. 24: 3279. https://doi.org/10.3390/math9243279
APA StyleNycz, M., Nycz, T., & Czachórski, T. (2021). Fluid-Flow Approximation in the Analysis of Vast Energy-Aware Networks. Mathematics, 9(24), 3279. https://doi.org/10.3390/math9243279