Cooperative Stochastic Games with Mean-Variance Preferences
Abstract
:1. Introduction
2. Stochastic Games with Mean-Variance Preferences
2.1. Stochastic Game
2.2. Mean-Variance Payoff Functions
- For all : .
- For all : if and only if .
- For all : .
- For all : .
- For all and all d, with : .
2.3. Stochastic Games with Mean-Variance Preferences
3. Expectation and Variance of Random Payoffs in Stochastic Games
4. Cooperative Stochastic Games with Mean-Variance Preferences
- ,
- (superadditivity) For any disjoint coalitions , , inequality holds.
- 1.
- ,
- 2.
- and for any .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Proposition 1
- for all ;
- for all ;
- for all ;
- for all and for any matrix , .
Appendix A.2. Proof of Proposition 2
References
- Shapley, L.S. Stochastic games. Proc. Natl. Acad. Sci. USA 1953, 39, 1095–1100. [Google Scholar] [CrossRef]
- Fink, A.M. Equilibrium in a stochastic n-person game. J. Sci. Hiroshima Univ. 1964, 28, 89–93. [Google Scholar] [CrossRef]
- Takahashi, M. Equilibrium points of stochastic, noncooperative n-person games. J. Sci. Hiroshima Univ. 1964, 28, 95–99. [Google Scholar] [CrossRef]
- Sobel, M.J. Non-cooperative stochastic games. Ann. Math. Statist. 1971, 42, 1930–1935. [Google Scholar] [CrossRef]
- Neyman, A.; Sorin, S. Stochastic Games and Applications; Nato Science Series C; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; Volume 570. [Google Scholar]
- Solan, E. Stochastic games. In Encyclopedia of Database Systems; Springer: Berlin, Germany, 2009. [Google Scholar]
- Solan, E.; Vieille, N. Stochastic games. Proc. Natl. Acad. Sci. USA 2015, 112, 13743–13746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, H.M. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Csóka, P.; Herings, P.J.-J.; Kóczy, L.A. Stable allocations of risk. Games Econ. Behav. 2009, 67, 266–276. [Google Scholar] [CrossRef] [Green Version]
- Suijs, J.; Borm, P. Stochastic cooperative games: Superadditivity, convexity, and certainty equivalents. Games Econ. Behav. 1999, 27, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Suijs, J.; Borm, P.; De Waegenaere, A.; Tijs, S. Cooperative Games with Stochastic Payoffs. Eur. J. Oper. Res. 1999, 113, 193–205. [Google Scholar] [CrossRef] [Green Version]
- von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944. [Google Scholar]
- Gromova, E.V.; Petrosyan, L.A. On an approach to constructing a characteristic function in cooperative differential games. Automat. Remote Control 2017, 78, 1680–1692. [Google Scholar] [CrossRef]
- Petrosjan, L.; Zaccour, G. Time-consistent Shapley value allocation of pollution cost reduction. J. Econ. Dyn. Control 2003, 27, 381–398. [Google Scholar] [CrossRef]
- Reddy, P.V.; Zaccour, G. A friendly computable characteristic function. Math. Soc. Sci. 2016, 82, 18–25. [Google Scholar] [CrossRef]
- Petrosjan, L.A. Cooperative Stochastic Games. In Advances in Dynamic Games: Application to Economics, Engineering and Environmental Management; Annals of the International Society of Dynamic Games; Haurie, A., Muto, S., Petrosjan, L.A., Raghavan, T.E.S., Eds.; Birkhäuser: Basel, Switzerland, 2006; pp. 139–146. [Google Scholar]
- Petrosjan, L.A.; Baranova, E.M. Cooperative Stochastic Games in Stationary Strategies. Game Theory Appl. 2006, 11, 7–17. [Google Scholar]
- Parilina, E.M. Stable cooperation in stochastic games. Automat. Remote Control 2015, 76, 1111–1122. [Google Scholar] [CrossRef]
- Parilina, E.M.; Tampieri, A. Stability and cooperative solution in stochastic games. Theory Decision 2018, 80, 601–625. [Google Scholar] [CrossRef] [Green Version]
- Parilina, E.; Zaccour, G. Node-consistent core for games played over event trees. Automatica 2015, 53, 304–311. [Google Scholar] [CrossRef]
- Parilina, E.; Petrosyan, L. On a Simplified Method of Defining Characteristic Function in Stochastic Games. Mathematics 2020, 8, 1135. [Google Scholar] [CrossRef]
- Timmer, J.; Borm, P.; Tijs, S. On three Shapley-like solutions for cooperative games with random payoffs. Int. J. Game Theory 2003, 32, 595–613. [Google Scholar]
- Habis, H.; Herings, P.J.-J. Transferable utility games with uncertainty. J. Econ. Theory 2011, 146, 2126–2139. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q. Nonzero-sum risk-sensitive finite-horizon continuous-time stochastic games. Stat. Probabil. Lett. 2019, 147, 96–104. [Google Scholar] [CrossRef]
- Bäuerle, N.; Rieder, U. Zero-sum risk-sensitive stochastic games. Stoch. Process. Appl. 2017, 127, 622–642. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Chen, X. Risk-Sensitive Average Equilibria for Discrete-Time Stochastic Games. Dyn. Games Appl. 2019, 9, 521–549. [Google Scholar] [CrossRef]
- Nowak, A.S. Notes on Risk-Sensitive Nash Equilibria. In Advances in Dynamic Games. Annals of the International Society of Dynamic Games; Nowak, A.S., Szajowski, K., Eds.; Birkhäuser: Boston, MA, USA, 2005; Volume 7. [Google Scholar]
- Jaśkiewicz, A.; Nowak, A.S. Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models. J. Econ. Theory 2014, 151, 411–447. [Google Scholar] [CrossRef]
- Asienkiewicz, H.; Balbus, Ł. Existence of Nash equilibria in stochastic games of resource extraction with risk-sensitive players. TOP 2019, 27, 502–518. [Google Scholar] [CrossRef] [Green Version]
- Saldi, N.; Basar, T.; Raginsky, M. Approximate markov-nash equilibria for discrete-time risk-sensitive mean-field games. Math. Oper. Res. 2020, 45, 1596–1620. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parilina, E.; Akimochkin, S. Cooperative Stochastic Games with Mean-Variance Preferences. Mathematics 2021, 9, 230. https://doi.org/10.3390/math9030230
Parilina E, Akimochkin S. Cooperative Stochastic Games with Mean-Variance Preferences. Mathematics. 2021; 9(3):230. https://doi.org/10.3390/math9030230
Chicago/Turabian StyleParilina, Elena, and Stepan Akimochkin. 2021. "Cooperative Stochastic Games with Mean-Variance Preferences" Mathematics 9, no. 3: 230. https://doi.org/10.3390/math9030230
APA StyleParilina, E., & Akimochkin, S. (2021). Cooperative Stochastic Games with Mean-Variance Preferences. Mathematics, 9(3), 230. https://doi.org/10.3390/math9030230