A Novel Integrated Interval Rough MCDM Model for Ranking and Selection of Asphalt Production Plants
Abstract
:1. Introduction
2. Preliminaries
3. Novel Interval Rough MCDM Models
3.1. A Novel Interval Rough PIPRECIA Method
3.2. A novel Interval Rough EDAS
4. Evaluating the Efficiency of Plants for the Production of Asphalt Bases in Vojvodina
4.1. Determining Criteria Weights Using the Novel IRN PIPRECIA Method
4.2. Evaluation of Alternatives Using the Novel IRN EDAS Method
5. Sensitivity Analysis and Discussion
5.1. Checking the Robustness of the Solution in Comparison to Other IRN MCDM Methods
5.2. Adequacy to Supporting Group Decision-Making
5.3. The Number of Alternatives and Criteria
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
Abbreviation | Definition |
IRN | Interval Rough Number |
MCDM | Multi-Criteria Decision-Making |
PIPRECIA | PIvot Pairwise RElative Criteria Importance Assessment |
EDAS | Evaluation based on Distance from Average Solution |
IRNDWGA | Interval Rough Number Dombi Weighted Geometric averaging Aggregator |
DEMATEL | Decision-Making Trial And Evaluation Laboratory |
ANP | Analytical Network Process |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
WASPAS | Weighted Aggregate Sum Product Assessment |
AHP | Analytic Hierarchy Process |
VIKOR | VIšeKriterijumska Optimizacija i Kompromisno Rešenje |
HMAR | Hot Mix Asphalt with Reclaimed asphalt pavement |
HMAW | Hot Mix Asphalt with Warm mix Additive sasobit |
AE | Almost equal value |
SM | Slightly more significant |
MMS | Moderately more significant |
M | More significant |
MM | Much more significant |
DM | Dominantly more significant |
AM | Absolutely more significant |
WL | Weakly less significant |
MLS | Moderately less significant |
L | Less significant |
RL | Really less significant |
ML | Much less significant |
DL | Dominantly less significant |
AL | Absolutely less significant |
DM | Decision-Maker |
SAW | Simple Additive Weighting method |
CoCoSo | Combined Compromise Solution |
COPRAS | COmplex PRoportional ASsessment |
SCC | Spearman Correlation Coefficient |
References
- Sollazzo, G.; Longo, S.; Cellura, M.; Celauro, C. Impact Analysis Using Life Cycle Assessment of Asphalt Production from Primary Data. Sustainability 2020, 12, 10171. [Google Scholar] [CrossRef]
- Pasha, A.; Mansourian, A.; Ravanshadnia, M. A hybrid fuzzy multi-attribute decision making model to select road pavement type. Soft Comput. 2020, 24, 16135–16148. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Pascual-Muñoz, P.; Lastra-González, P.; Castro-Fresno, D. A multi-criteria decision-making analysis for the selection of fibres aimed at reinforcing asphalt concrete mixtures. Int. J. Pavement Eng. 2019, 1–17. [Google Scholar] [CrossRef]
- Cao, W.; Wang, A.; Yu, D.; Liu, S.; Hou, W. Establishment and implementation of an asphalt pavement recycling decision system based on the analytic hierarchy process. Resour. Conserv. Recycl. 2019, 149, 738–749. [Google Scholar] [CrossRef]
- Zheng, X.; Easa, S.M.; Yang, Z.; Ji, T.; Jiang, Z. Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. J. Clean. Prod. 2019, 213, 659–672. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Opudo, J.; Nyambenya, S. Comparison of fuzzy AHP and fuzzy TOPSIS for road pavement maintenance prioritization: Methodological exposition and case study. Adv. Civ. Eng. 2015, 2015, 140189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liao, H.; Al-Barakati, A.; Zavadskas, E.K.; Antuchevičienė, J. Supplier selection for housing development by an integrated method with interval rough boundaries. Int. J. Strateg. Prop. Manag. 2020, 24, 269–284. [Google Scholar]
- Matić, B.; Jovanović, S.; Das, D.K.; Zavadskas, E.K.; Stević, Ž.; Sremac, S.; Marinković, M. A new hybrid MCDM model: Sustainable supplier selection in a construction company. Symmetry 2019, 11, 353. [Google Scholar] [CrossRef] [Green Version]
- Durmić, E.; Stević, Ž.; Chatterjee, P.; Vasiljević, M.; Tomašević, M. Sustainable supplier selection using combined FUCOM–Rough SAW model. Rep. Mech. Eng. 2020, 1, 34–43. [Google Scholar] [CrossRef]
- Pamučar, D.; Janković, A. The application of the hybrid interval rough weighted Power-Heronian operator in multi-criteria decision making. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 54–73. [Google Scholar] [CrossRef]
- Stanujkic, D.; Zavadskas, E.K.; Karabasevic, D.; Smarandache, F.; Turskis, Z. The use of the pivot pairwise relative criteria importance assessment method for determining the weights of criteria. Rom. J. Econ. Forecast. 2017, 20, 116–133. [Google Scholar]
- Jaukovic Jocic, K.; Jocic, G.; Karabasevic, D.; Popovic, G.; Stanujkic, D.; Zavadskas, E.K.; Thanh Nguyen, P. A Novel Integrated PIPRECIA–Interval-Valued Triangular Fuzzy ARAS Model: E-Learning Course Selection. Symmetry 2020, 12, 928. [Google Scholar] [CrossRef]
- Biswas, S. Measuring performance of healthcare supply chains in India: A comparative analysis of multi-criteria decision making methods. Decis. Mak. Appl. Manag. Eng. 2020, 3, 162–189. [Google Scholar] [CrossRef]
- Stević, Ž.; Stjepanović, Ž.; Božičković, Z.; Das, D.K.; Stanujkić, D. Assessment of conditions for implementing information technology in a warehouse system: A novel fuzzy piprecia method. Symmetry 2018, 10, 586. [Google Scholar] [CrossRef] [Green Version]
- Memiş, S.; Demir, E.; Karamaşa, Ç.; Korucuk, S. Prioritization of road transportation risks: An application in Giresun province. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 111–126. [Google Scholar] [CrossRef]
- Đalić, I.; Ateljević, J.; Stević, Ž.; Terzić, S. An Integrated SWOT–Fuzzy PIPRECIA model for analysis of competitiveness in order to improve logistics performances. Mech. Eng. 2020, 18, 439–451. [Google Scholar]
- Vesković, S.; Milinković, S.; Abramović, B.; Ljubaj, I. Determining criteria significance in selecting reach stackers by applying the fuzzy PIPRECIA method. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 72–88. [Google Scholar] [CrossRef]
- Stanković, M.; Stević, Ž.; Das, D.K.; Subotić, M.; Pamučar, D. A new fuzzy MARCOS method for road traffic risk analysis. Mathematics 2020, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Ulutaş, A.; Popovic, G.; Stanujkic, D.; Karabasevic, D.; Zavadskas, E.K.; Turskis, Z. A New Hybrid MCDM Model for Personnel Selection Based on a Novel Grey PIPRECIA and Grey OCRA Methods. Mathematics 2020, 8, 1698. [Google Scholar] [CrossRef]
- Erceg, Ž.; Starčević, V.; Pamučar, D.; Mitrović, G.; Stević, Ž.; Žikić, S. A New Model for Stock Management in Order to Rationalize Costs: ABC-FUCOM-Interval Rough CoCoSo Model. Symmetry 2019, 11, 1527. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Ghorabaee, M.K.; Zavadskas, E.K.; Amiri, M.; Turskis, Z. Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. Int. J. Comput. Commun. Control 2016, 11, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Stanujkic, D.; Zavadskas, E.K.; Ghorabaee, M.K.; Turskis, Z. An extension of the EDAS method based on the use of interval grey numbers. Stud. Inform. Control 2017, 26, 5–12. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, G.; Gao, H.; Wei, C.; Wei, Y. EDAS method for multiple criteria group decision making with picture fuzzy information and its application to green suppliers selections. Technol. Econ. Dev. Econ. 2019, 25, 1123–1138. [Google Scholar] [CrossRef] [Green Version]
- Stević, Ž.; Pamučar, D.; Vasiljević, M.; Stojić, G.; Korica, S. Novel integrated multi-criteria model for supplier selection: Case study construction company. Symmetry 2017, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Yanmaz, O.; Turgut, Y.; Can, E.N.; Kahraman, C. Interval-valued Pythagorean Fuzzy EDAS method: An Application to Car Selection Problem. J. Intell. Fuzzy Syst. 2020, in press. [Google Scholar] [CrossRef]
- Dos Santos, M.B.; Candido, J.; de Souza Baulé, S.; de Oliveira, Y.M.M.; Thives, L.P. Greenhouse gas emissions and energy consumption in asphalt plants. Rev. Eletrônica Em GestãoEduc. E Tecnol. Ambient. 2020, 24, 7. [Google Scholar]
- Androjić, I.; Alduk, Z.D. Analysis of energy consumption in the production of hot mix asphalt (batch mix plant). Can. J. Civ. Eng. 2016, 43, 1044–1051. [Google Scholar] [CrossRef]
- Stević, Ž.; Durmić, E.; Gajić, M.; Pamučar, D.; Puška, A. A Novel Multi-Criteria Decision-Making Model: Interval Rough SAW Method for Sustainable Supplier Selection. Information 2019, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Pamučar, D.; Božanić, D.; Lukovac, V.; Komazec, N. Normalized weighted geometric bonferroni mean operator of interval rough numbers–application in interval rough dematel-copras model. Facta Univ. Ser. Mech. Eng. 2018, 16, 171–191. [Google Scholar]
- Duntsch, I.; Gediga, G. The rough set engine GROBIAN. In Proceedings of the 15th IMACS World Congress, Berlin, Germany, 24–29 August 1997; pp. 613–618. [Google Scholar]
- Dimic, S.; Pamucar, D.; Ljubojevic, S.; Djorovic, B. Strategic Transport Management Models—The Case Study of an Oil Industry. Sustainability 2016, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, Z. An Integrated Sustainable Supplier Selection Approach Based on Hybrid Information Aggregation. Sustainability 2018, 10, 2543. [Google Scholar] [CrossRef] [Green Version]
Linguistic Term | Abbr. | Scale 1-2 | Interval Rough Number | ||
Almost equal value | AE | 1 | [1.00, 1.05] | [1.10, 1.10] | |
Slightly more significant | SM | 2 | [1.10, 1.20] | [1.20, 1.25] | |
Moderately more significant | MMS | 3 | [1.20, 1.35] | [1.30, 1.40] | |
More significant | M | 4 | [1.30, 1.50] | [1.40, 1.55] | |
Much more significant | MM | 5 | [1.40, 1.65] | [1.50, 1.70] | |
Dominantly more significant | DM | 6 | [1.50, 1.80] | [1.60, 1.85] | |
Absolutely more significant | AM | 7 | [1.60, 1.90] | [1.70, 1.95] |
Linguistic Term | Abbr. | Scale 0-1 | Interval Rough Number | ||
Weakly less significant | WL | 1 | [0.80, 0.90] | [0.85, 0.95] | |
Moderately less significant | MLS | 1/2 | [0.70, 0.80] | [0.75, 0.85] | |
Less significant | L | 1/3 | [0.60, 0.70] | [0.65, 0.75] | |
Really less significant | RL | 1/4 | [0.50, 0.60] | [0.55, 0.65] | |
Much less significant | ML | 1/5 | [0.40, 0.50] | [0.45, 0.55] | |
Dominantly less significant | DL | 1/6 | [0.30, 0.40] | [0.35, 0.45] | |
Absolutely less significant | AL | 1/7 | [0.20, 0.30] | [0.25, 0.35] |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
A1 | 28 | 160 | Ib-class state r., IIa-class state r. | AB11 | satisfactory | 20 | limestone | NIS Petrol |
A2 | 23 | 160 | Ib-class state r., IIa-class state r. | AB16 | satisfactory | 20 | limestone | NIS Petrol |
A3 | 16 | 160 | Ib-class state r., IIa-class state r. | BNHS16 | satisfactory | 10 | limestone | NIS Petrol |
A4 | 50 | 150 | IIa-class state r. | BNS 22 | bad | 25 | limestone | OMW |
Kovilovača | ||||||||
A5 | 50 | 150 | IIa-class state r. | AB 11 | bad | 25 | limestone | OMW |
Kovilovača | ||||||||
A6 | 22 | 150 | IIa-class state r. | BNS 22 | good | 25 | limestone | OMW |
Kovilovača | ||||||||
A7 | 30 | 200 | Ib-class state r. | AB 11s | good | 25 | eruptive stone, Velika Bisina Raška | Pančevo |
A8 | 60 | 200 | Ib-class state r., IIa-class state r. | AB 11s | good | 25 | eruptive stone, Velika Bisina Raška | Pančevo |
A9 | 35 | 200 | IIa-class state r. | BNS22sA | good | 25 | linestone Kovilovača Despotovac | Refinery Pančevo |
A10 | 61 | 100 | Ib-class state r. | BNS 22s | good | 25 | crushed gravel | Pančevo |
A11 | 26 | 100 | Ib-class state r., IIb-class state r. | BNHS 16 | good | 25 | crushed gravel | Pančevo |
A12 | 81 | 100 | Ia-class state r., IIa-class state r. | BNS 32s | good | 25 | crushed gravel | Pančevo |
A13 | 55 | 120t | Ib-class state r., IIa-class state r. | AB 16s(PmB) | satisfactory | 30 | eruptive stone | NIS-Pančevo |
A14 | 15 | 120 | Ib-class state r., Ia-class state r. | AB 11s(PmB) | good | 30 | eruptive stone | NIS-Pančevo |
A15 | 25 | 120 | Ib-class state r., Ia-class state r. | BNS 32sA | good | 30 | limestone | NIS-Pančevo |
A16 | 20 | 200 | Ia-class state r., Ib-class state r., IIa-class state r. | AB 11s | good | 25 | eruptive stone, Velika Bisina Raška | Pančevo |
A17 | 10 | 200 | Ia-class state r., Ib-class state r., IIa-class state r. | AB 11s | good | 25 | eruptive stone, Velika Bisina Raška | Pančevo |
A18 | 25 | 200 | Ib-class state r., IIa-class state r. | BNS22sA | good | 25 | limestone Kovilovača Despotovac | Refinery Pačevo |
A19 | 44 | 160 | Ib 10 state r. | BNS 22sA, AB 11s | satisfactory | 30 | limestone | NIS |
A20 | 54 | 160 | Ib 10 state r. | BNS 22sA, AB 11, AB 11s, BNHS 16 | satisfactory | 30 | limestone | NIS |
A21 | 76 | 160 | Ib 14 state r. | BNS 22sA, BNS 32sA, PMB 11 | satisfactory | 30 | limestone | NIS |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
DM1 | [0.80, 0.90] [0.85, 0.95] | [0.3, 0.4] [0.35, 0.45] | [1.3, 1.5] [1.4, 1.55] | [0.2, 0.3] [0.25, 0.35] | [1.1, 1.2] [1.2, 1.25] | [0.6, 0.7] [0.65, 0.75] | [1.1, 1.2] [1.2, 1.25] | |
DM2 | [1.00, 1.05] [1.10, 1.10] | [0.4, 0.5] [0.45, 0.55] | [1.3, 1.5] [1.4, 1.55] | [0.3, 0.4] [0.35, 0.45] | [1, 1.05] [1.1, 1.1] | [0.5, 0.6] [0.55, 0.65] | [1, 1.05] [1.1, 1.1] | |
DM3 | [0.80, 0.90] [0.85, 0.95] | [0.4, 0.5] [0.45, 0.55] | [1.3, 1.5] [1.4, 1.55] | [0.3, 0.4] [0.35, 0.45] | [1.1, 1.2] [1.2, 1.25] | [0.5, 0.6] [0.55, 0.65] | [1.1, 1.2] [1.2, 1.25] | |
C8 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | |
DM1 | [0.8, 0.9] [0.85, 0.95] | [1.1, 1.2] [1.2, 1.25] | [0.7, 0.8] [0.75, 0.85] | [1.1, 1.2] [1.2, 1.25] | [0.2, 0.3] [0.25, 0.35] | [1.3, 1.5] [1.4, 1.55] | [1, 1.05] [1.1, 1.1] | |
DM2 | [0.7, 0.8] [0.75, 0.85] | [1, 1.05] [1.1, 1.1] | [0.8, 0.9] [0.85, 0.95] | [1.1, 1.2] [1.2, 1.25] | [0.3, 0.4] [0.35, 0.45] | [1.2, 1.35] [1.3, 1.4] | [1.1, 1.2] [1.2, 1.25] | |
DM3 | [0.7, 0.8] [0.75, 0.85] | [1.2, 1.35] [1.3, 1.4] | [0.8, 0.9] [0.85, 0.95] | [1, 1.05] [1.1, 1.1] | [0.3, 0.4] [0.35, 0.45] | [1.1, 1.2] [1.2, 1.25] | [0.8, 0.9] [0.85, 0.95] |
IRN PIPRECIA | Inverse IRN PIPRECIA | Final wj | Rank | |
---|---|---|---|---|
C1 | [0.12, 0.17], [0.15, 0.21] | [0.06, 0.15], [0.12, 0.27] | [0.15, 0.25], [0.20, 0.35] | 2 |
C2 | [0.11, 0.16], [0.14, 0.21] | [0.06, 0.14], [0.11, 0.25] | [0.14, 0.23], [0.19, 0.33] | 3 |
C3 | [0.06, 0.11], [0.09, 0.14] | [0.05, 0.09], [0.08, 0.15] | [0.09, 0.15], [0.13, 0.22] | 8 |
C4 | [0.09, 0.21], [0.14, 0.31] | [0.08, 0.15], [0.13, 0.24] | [0.13, 0.29], [0.21, 0.43] | 1 |
C5 | [0.05, 0.13], [0.08, 0.20] | [0.08, 0.13], [0.11, 0.19] | [0.09, 0.19], [0.14, 0.29] | 6 |
C6 | [0.06, 0.15], [0.10, 0.25] | [0.09, 0.15], [0.13, 0.21] | [0.10, 0.23], [0.17, 0.35] | 4 |
C7 | [0.04, 0.11], [0.07, 0.19] | [0.09, 0.12], [0.11, 0.16] | [0.08, 0.17], [0.12, 0.27] | 7 |
C8 | [0.04, 0.13], [0.08, 0.23] | [0.11, 0.14], [0.13, 0.18] | [0.10, 0.20], [0.15, 0.32] | 5 |
C1 | C2 | C7 | C8 | ||
---|---|---|---|---|---|
A1 | [6.11, 6.54], [7.00, 7.00] | [5.21, 6.06], [5.47, 6.48] | [5.47, 6.48], [6.11, 6.54] | [4.47, 5.47], [5.43, 5.89] | |
A2 | [6.11, 6.54], [7.00, 7.00] | [5.21, 6.06], [6.11, 6.54] | [5.47, 6.48], [5.82, 6.77] | [4.47, 5.47], [4.79, 6.35] | |
A3 | [7.00, 7.00], [7.00, 7.00] | [5.21, 6.06], [5.47, 6.48] | [5.47, 6.48], [6.43, 6.89] | [4.47, 5.47], [5.21, 6.06] | |
A4 | [3.45, 4.47], [4.47, 5.47] | [4.55, 6.04], [4.55, 6.04] | [5.47, 6.48], [6.43, 6.89] | [5.47, 6.48], [6.11, 6.54] | |
A5 | [3.45, 4.47], [4.11, 4.54] | [4.55, 6.04], [5.47, 6.48] | [5.47, 6.48], [6.43, 6.89] | [5.47, 6.48], [6.11, 6.54] | |
A6 | [6.11, 6.54], [6.43, 6.89] | [4.55, 6.04], [5.21, 6.06] | [5.47, 6.48], [6.43, 6.89] | [5.47, 6.48], [5.47, 6.48] | |
A7 | [5.21, 6.06], [5.47, 6.48] | [6.43, 6.89], [6.43, 6.89] | [6.11, 6.54], [6.43, 6.89] | [4.47, 5.47], [5.21, 6.06] | |
A8 | [2.43, 3.45], [3.10, 3.53] | [6.43, 6.89], [7.00, 7.00] | [6.11, 6.54], [6.43, 6.89] | [4.47, 5.47], [4.80, 5.76] | |
A9 | [5.11, 5.54], [6.00, 6.00] | [6.43, 6.89], [7.00, 7.00] | [6.11, 6.54], [6.11, 6.54] | [4.47, 5.47], [4.47, 5.47] | |
A10 | [2.43, 3.45], [3.42, 3.89] | [1.67, 4.36], [2.56, 4.54] | [5.47, 6.48], [5.82, 6.77] | [4.47, 5.47], [4.79, 6.35] | |
A11 | [6.11, 6.54], [7.00, 7.00] | [1.67, 4.36], [2.82, 5.40] | [2.77, 4.87], [3.83, 5.89] | [4.47, 5.47], [5.21, 6.06] | |
A12 | [1.09, 1.50], [2.10, 2.52] | [1.67, 4.36], [2.61, 5.06] | [6.11, 6.54], [6.43, 6.89] | [4.47, 5.47], [4.79, 6.35] | |
A13 | [3.10, 3.53], [3.45, 4.47] | [2.56, 4.54], [3.53, 5.02] | [6.11, 6.54], [6.43, 6.89] | [4.43, 4.89], [5.11, 5.54] | |
A14 | [7.00, 7.00], [7.00, 7.00] | [2.56, 4.54], [3.53, 5.02] | [6.11, 6.54], [6.43, 6.89] | [4.43, 4.89], [4.80, 5.76] | |
A15 | [6.11, 6.54], [6.43, 6.89] | [3.23, 5.48], [4.04, 6.20] | [6.11, 6.54], [7.00, 7.00] | [4.47, 5.47], [4.47, 5.47] | |
A16 | [6.11, 6.54], [7.00, 7.00] | [6.43, 6.89], [7.00, 7.00] | [6.11, 6.54], [6.43, 6.89] | [4.11, 4.54], [4.20, 5.05] | |
A17 | [7.00, 7.00], [7.00, 7.00] | [6.43, 6.89], [7.00, 7.00] | [6.11, 6.54], [7.00, 7.00] | [4.11, 4.54], [5.00, 5.00] | |
A18 | [6.11, 6.54], [6.11, 6.54] | [6.43, 6.89], [6.43, 6.89] | [6.11, 6.54], [6.43, 6.89] | [4.47, 5.47], [5.21, 6.06] | |
A19 | [4.47, 5.47], [4.79, 6.35] | [5.21, 6.06], [6.11, 6.54] | [6.43, 6.89], [7.00, 7.00] | [4.47, 5.47], [5.43, 5.89] | |
A20 | [3.10, 3.53], [4.11, 4.54] | [5.21, 6.06], [6.11, 6.54] | [6.43, 6.89], [6.43, 6.89] | [4.47, 5.47], [5.47, 6.48] | |
A21 | [1.37, 1.88], [2.40, 2.88] | [5.21, 6.06], [5.21, 6.06] | [6.43, 6.89], [7.00, 7.00] | [4.47, 5.47], [5.47, 6.48] |
Rank | ||
---|---|---|
A1 | [−4.61, 0.57], [0.68, 8.13] | 15 |
A2 | [−4.58, 0.54], [0.84, 9.48] | 10 |
A3 | [−6.32, 0.55], [0.58, 9.07] | 17 |
A4 | [−5.13, 0.39], [0.43, 6.71] | 19 |
A5 | [−6.10, 0.41], [0.35, 7.62] | 20 |
A6 | [−2.11, 0.92], [0.69, 9.48] | 2 |
A7 | [−3.61, 0.95], [0.45, 9.16] | 6 |
A8 | [−4.62, 0.69], [0.43, 7.31] | 18 |
A9 | [−4.05, 0.65], [0.46, 7.90] | 13 |
A10 | [−5.47, 0.75], [0.26, 9.27] | 14 |
A11 | [−4.92, 1.00], [0.36, 9.99] | 8 |
A12 | [−6.09, 0.71], [0.13, 9.52] | 16 |
A13 | [−6.28, 0.37], [0.17, 6.26] | 21 |
A14 | [−3.88, 0.89], [0.55, 8.33] | 12 |
A15 | [−2.32, 1.18], [0.63, 9.61] | 1 |
A16 | [−3.18, 1.04], [0.56, 8.48] | 7 |
A17 | [−3.16, 1.12], [0.81, 8.54] | 4 |
A18 | [−3.53, 1.04], [0.43, 9.15] | 5 |
A19 | [−3.00, 0.49], [0.68, 10.72] | 3 |
A20 | [−3.93, 0.38], [0.44, 9.44] | 9 |
A21 | [−4.43, 0.65], [0.40, 9.51] | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matić, B.; Jovanović, S.; Marinković, M.; Sremac, S.; Kumar Das, D.; Stević, Ž. A Novel Integrated Interval Rough MCDM Model for Ranking and Selection of Asphalt Production Plants. Mathematics 2021, 9, 269. https://doi.org/10.3390/math9030269
Matić B, Jovanović S, Marinković M, Sremac S, Kumar Das D, Stević Ž. A Novel Integrated Interval Rough MCDM Model for Ranking and Selection of Asphalt Production Plants. Mathematics. 2021; 9(3):269. https://doi.org/10.3390/math9030269
Chicago/Turabian StyleMatić, Bojan, Stanislav Jovanović, Milan Marinković, Siniša Sremac, Dillip Kumar Das, and Željko Stević. 2021. "A Novel Integrated Interval Rough MCDM Model for Ranking and Selection of Asphalt Production Plants" Mathematics 9, no. 3: 269. https://doi.org/10.3390/math9030269
APA StyleMatić, B., Jovanović, S., Marinković, M., Sremac, S., Kumar Das, D., & Stević, Ž. (2021). A Novel Integrated Interval Rough MCDM Model for Ranking and Selection of Asphalt Production Plants. Mathematics, 9(3), 269. https://doi.org/10.3390/math9030269