A Robust Share-of-Choice Model
Abstract
:1. Introduction
2. The Deterministic Model
3. The Robust Model
4. Numerical Illustration
4.1. The Case Study
4.2. The Model in AMPL
4.3. Numerical Results
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PLD | product line design |
SOC | share-of-choice |
References
- Debreu, G. Representation of a Preference Ordering by a Numerical Function. In Decision Processes; Thrall, R.M., Coombs, C.H., Davis, R.L., Eds.; John Wiley & Sons: New York, NY, USA, 1954; pp. 159–165. [Google Scholar]
- Debreu, G. Topological Methods in Cardinal Utility Theory. In Mathematical Methods in the Social Sciences, 1959; Arrow, K.J., Karlin, S., Suppes, P., Eds.; Stanford University Press: Stanford, CA, USA, 1960; pp. 16–26. [Google Scholar]
- Luce, R.; Tukey, J.W. Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. J. Math. Psychol. 1964, 1, 1–27. [Google Scholar] [CrossRef]
- Green, P.E.; Rao, V.R. Conjoint Measurement for Quantifying Judgmental Data. J. Mark. Res. 1971, 8, 355–363. [Google Scholar]
- Louviere, J.J. Conjoint Analysis Modelling of Stated Preferences: A Review of Theory, Methods, Recent Developments and External Validity. J. Transp. Econ. Policy 1988, 22, 93–119. [Google Scholar]
- Wittink, D.R.; Cattin, P. Commercial Use of Conjoint Analysis: An Update. J. Mark. 1989, 53, 91–96. [Google Scholar] [CrossRef]
- Green, P.E.; Srinivasan, V. Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice. J. Mark. 1990, 54, 3–19. [Google Scholar] [CrossRef]
- Carroll, D.J.; Green, P.E. Psychometric Methods in Marketing Research: Part I, Conjoint Analysis. J. Mark. Res. 1995, 32, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Hauser, J.R.; Rao, V.R. Conjoint Analysis, Related Modeling, and Applications. In Marketing Research and Modeling: Progress and Prospects: A Tribute to Paul E. Green; Wind, Y., Green, P.E., Eds.; Kluwer Academic Publishers: New York, NY, USA, 2004; pp. 141–168. [Google Scholar]
- Rao, V.R. Developments in Conjoint Analysis. In Handbook of Marketing Decision Models; Wierenga, B., Ed.; Springer: New York, NY, USA, 2008; pp. 23–55. [Google Scholar]
- Agarwal, J.; Desarbo, W.S.; Malhotra, N.K.; Rao, V.R. An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research. Cust. Needs Solut. 2015, 2, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Carmone, F.J.; Green, P.E.; Jain, A.K. Robustness of Conjoint Analysis: Some Monté Carlo Results. J. Mark. Res. 1978, 15, 300–303. [Google Scholar]
- Wittink, D.R.; Cattin, P. Alternative Estimation Methods for Conjoint Analysis: A Monté Carlo Study. J. Mark. Res. 1981, 18, 101–106. [Google Scholar] [CrossRef]
- Vriens, M.; Wedel, M.; Wilms, T. Metric Conjoint Segmentation Methods: A Monte Carlo Comparison. J. Mark. Res. 1996, 33, 73–85. [Google Scholar] [CrossRef]
- Hein, M.; Kurz, P.; Steiner, W.J. Analyzing the capabilities of the HB logit model for choice-based conjoint analysis: A simulation study. J. Bus. Econ. 2019. [Google Scholar] [CrossRef]
- Soyste, A.L. Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. Oper. Res. 1973, 21, 1154–1157. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Nemirovski, A. Robust Convex Optimization. Math. Oper. Res. 1998, 23, 769–805. [Google Scholar] [CrossRef] [Green Version]
- Ben-Tal, A.; Nemirovski, A. Robust solutions of Linear Programming problems contaminated with uncertain data. Math. Program. 2000, 88, 411–424. [Google Scholar] [CrossRef] [Green Version]
- El Ghaoui, L.M.; Oustry, F.; Lebret, H. Robust Solutions to Uncertain Semidefinite Programs. SIAM J. Optim. 1998, 9, 33–52. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. The Price of Robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Zufryden, F.S. A Conjoint Measurement-Based Approach for Optimal New Product Design and Market Segmentation. In Analytic Approaches to Product and Marketing Planning: Proceedings of Workshop; Shocker, A., Ed.; Marketing Science Institute: Cambridge, MA, USA, 1977; pp. 100–114. [Google Scholar]
- Zufryden, F.S. Product Line Optimization by Integer Programming. In Proceedings of the Annual Meeting of ORSA/TIMS, San Diego, CA, USA, 25–27 October 1982. [Google Scholar]
- Kohli, R.; Sukumar, R. Heuristics for Product-Line Design Using Conjoint Analysis. Manag. Sci. 1990, 36, 1464–1478. [Google Scholar] [CrossRef] [Green Version]
- Fragnière, E.; Heitz, C.; Moresino, F. The concept of shadow price to monetarize the intangible value of expertise. In Proceedings of the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, Beijing, China, 12–15 October 2008; Volume 2, pp. 1736–1741. [Google Scholar]
- Fragnière, E.; Kanal, R.; Moresino, F.; Reveiu, A.; Smeureanu, I. Coupling Techno-Economic Energy Models with Behavioral Approaches. Oper. Res. 2017, 17, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Moresino, F.; Fragnière, E. Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue. Energies 2018, 11, 1787. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Curry, D.J. A robust approach to the share-of-choice product design problem. Omega 2012, 40, 818–826. [Google Scholar] [CrossRef]
- Bertsimas, D.; Mišić, V.V. Robust Product Line Design. Oper. Res. 2017, 65, 19–37. [Google Scholar] [CrossRef]
- Camm, J.D.; Cochran, J.J.; Curry, D.J.; Kannan, S. Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem. Manag. Sci. 2006, 52, 435–447. [Google Scholar] [CrossRef]
- Wang, X.J.; Camm, J.D.; Curry, D.J. A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem. Manag. Sci. 2009, 55, 1718–1728. [Google Scholar] [CrossRef]
- Orme, B.K. Getting Started With Conjoint Analysis: Strategies for Product Design and Pricing Research; Research Publishers LLC: Manhattan Beach, CA, USA, 2014. [Google Scholar]
- Fourer, R.; Gay, D.M.; Kernighan, B.W. AMPL: A Modeling Language for Mathematical Programming; Duxbury-Thomson: Pacific Grove, CA, USA, 2003. [Google Scholar]
- Makhorin, A. Modeling Language GNU MathProg. Language Reference; Free Software Foundation, Inc.: Boston, MA, USA, 2016. [Google Scholar]
Attribute | Level |
---|---|
room | standard |
superior | |
suite | |
breakfast | none |
American | |
location | city |
sea | |
mountain | |
style | casual |
formal |
Attribute | Level | |
---|---|---|
Competitor 1 | Competitor 2 | |
room | superior | suite |
breakfast | American | without |
location | sea | city |
style | formal | formal |
Attribute | Level | Respondent | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
room | standard | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
superior | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | |
suite | 4 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 | 2 | |
breakfast | without | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
American | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | |
location | city | 2 | 4 | 1 | 0 | 0 | 5 | 4 | 2 | 0 | 1 |
mountain | 1 | 0 | 2 | 3 | 2 | 0 | 4 | 2 | 2 | 4 | |
sea | 1 | 3 | 2 | 3 | 2 | 0 | 0 | 3 | 1 | 2 | |
style | casual | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
formal | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
Market Share | 60% | 30% | 10% | 0% |
breakfast | American | American | American | |
location | sea | mountain | mountain | |
room | suite | suite | superior | |
style | formal | casual | casual |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moresino, F. A Robust Share-of-Choice Model. Mathematics 2021, 9, 288. https://doi.org/10.3390/math9030288
Moresino F. A Robust Share-of-Choice Model. Mathematics. 2021; 9(3):288. https://doi.org/10.3390/math9030288
Chicago/Turabian StyleMoresino, Francesco. 2021. "A Robust Share-of-Choice Model" Mathematics 9, no. 3: 288. https://doi.org/10.3390/math9030288
APA StyleMoresino, F. (2021). A Robust Share-of-Choice Model. Mathematics, 9(3), 288. https://doi.org/10.3390/math9030288