Biophysics and Modeling of Mechanotransduction in Neurons: A Review
Abstract
:1. Introduction
2. Ion Channels in Neurons Mechanosensing
- Temporal and spatial expression in mechanosensory cells. The channel must be expressed in specialized mechanosensory cells, and should not be necessary for cell maturation or integrity [1].
- Direct involvement in the mechanical response. The channel must be critical for mechanosensitivity, in the sense that its loss abolishes the ability of the cell to respond to mechanical stimulations. The fulfillment of this criterion is a necessary but not sufficient condition to establish the mechanosensitive nature of a candidate channel. Indeed, its participation in mechanosensation could be indirect, as in the case of channels involved in cell development or in the signaling downstream of the stimulus [1]. Furthermore, a cell can compensate for the loss of a subunit by forming heteromers with other members of the same family of channels [2].
- Channel alterations alter the mechanical response. Alterations of the channel biophysical properties, such as ion selectivity, activation, or inactivation, result in alterations of the physiological response to mechanical stimuli. In addition, in this case, the satisfaction of the criterion does not guarantee that the considered channel is mechanosensitive; indeed, multiple auxiliary subunits could modify the biophysical properties of the channel [2].
- Heterologous expression induces mechanical responses in the host cell. This condition is one of the most difficult to meet. Various pore-forming subunits do not show mechanosensitive properties when heterologously expressed, as their ability to sense mechanical forces could be determined by the specific lipid composition of the bilayer [2] or by auxiliary subunits that anchor the channel to the intracellular matrix [2].
2.1. DEG/ENaC/ASIC
2.2. K2P
2.3. PIEZO
2.4. Anoctamin Superfamily
2.5. TRP Superfamily
2.6. Other Mechano-Gated Proteins and Channels
3. Modeling
- Atomistic modeling. Suitable for simulating single channels embedded in the membrane lipid bilayer and short timescales processes (tens of microseconds). These models have the potential to describe at the finest detail the molecular mechanisms at the basis of mechanosensing and to analyze channel kinetics in controlled environments from a mechanical and chemical point of view. The principal drawback is the high computational cost inherent in many-body dynamics.
- Mechanosensing continuum modeling. Appropriate to describe single channel as well as channel pools kinetics. Two approaches can be pursued in this context. The first is the continuum-version of channel-membrane systems, designed to overcome computational limitations of atomistic modeling and span different length scales. The second is the detailed modeling of channels kinetics describing states and transitions and their dependency on mechanical strains and stresses, disregarding the spatiality of the system.
- Multiscale mechano-electrical modeling. Fundamental to simulate the macro and microscale mechanical problem in soft biological tissues and couple the mechanical state to the electrical neuronal response. These models can take advantage of the information derived from atomistic and continuum modeling of channels’ dynamic, defining suitable phenomenological and biophysical coupling laws.
3.1. Particle Dynamics Modeling of Ion Channel Mechanosensing—Lagrangian Description
3.2. Continuum Modeling of Ion Channel Mechanosensing—Eulerian Description
3.3. Multiscale Mechano-Electrical Modeling
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Árnadóttir, J.; Chalfie, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 2010, 39, 111–137. [Google Scholar] [CrossRef] [PubMed]
- Martinac, B.; Cox, C. Mechanosensory transduction: Focus on ion channels. In Reference Module in Life Sciences. Edition: Comprehensive Biophysics; Elsevier BV: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ranade, S.S.; Syeda, R.; Patapoutian, A. Mechanically activated ion channels. Neuron 2015, 87, 1162–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcovich, I.; Holt, J.R. Evolution and Function of Tmc Genes in Mammalian Hearing. Curr. Opin. Physiol. 2020, 18, 11–19. [Google Scholar] [CrossRef]
- Zhao, B.; Wu, Z.; Grillet, N.; Yan, L.; Xiong, W.; Harkins-Perry, S.; Müller, U. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 2014, 84, 954–967. [Google Scholar] [CrossRef] [Green Version]
- Maeda, R.; Kindt, K.S.; Mo, W.; Morgan, C.P.; Erickson, T.; Zhao, H.; Clemens-Grisham, R.; Barr-Gillespie, P.G.; Nicolson, T. Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc. Natl. Acad. Sci. USA 2014, 111, 12907–12912. [Google Scholar] [CrossRef] [Green Version]
- Beurg, M.; Xiong, W.; Zhao, B.; Müller, U.; Fettiplace, R. Subunit determination of the conductance of hair-cell mechanotransducer channels. Proc. Natl. Acad. Sci. USA 2015, 112, 1589–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, T.; Morgan, C.P.; Olt, J.; Hardy, K.; Busch-Nentwich, E.; Maeda, R.; Clemens, R.; Krey, J.F.; Nechiporuk, A.; Barr-Gillespie, P.G.; et al. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife 2017, 6, e28474. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.Q.; Lee, S.A.; Rahman, M.; Vanapalli, S.A.; Lu, H.; Schafer, W.R. Ankyrin Is An Intracellular Tether for TMC Mechanotransduction Channels. Neuron 2020, 107, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, A.; Fenollar-Ferrer, C.; Swartz, K.J. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. Elife 2018, 7, e38433. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Grillet, N.; Elledge, H.M.; Wagner, T.F.; Zhao, B.; Johnson, K.R.; Kazmierczak, P.; Müller, U. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 2012, 151, 1283–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giese, A.P.; Tang, Y.Q.; Sinha, G.P.; Bowl, M.R.; Goldring, A.C.; Parker, A.; Freeman, M.J.; Brown, S.D.; Riazuddin, S.; Fettiplace, R.; et al. CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nat. Commun. 2017, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Mauthner, S.E.; Hwang, R.Y.; Lewis, A.H.; Xiao, Q.; Tsubouchi, A.; Wang, Y.; Honjo, K.; Skene, J.P.; Grandl, J.; Tracey, W.D., Jr. Balboa binds to pickpocket in vivo and is required for mechanical nociception in Drosophila larvae. Curr. Biol. 2014, 24, 2920–2925. [Google Scholar] [CrossRef] [Green Version]
- Noreng, S.; Bharadwaj, A.; Posert, R.; Yoshioka, C.; Baconguis, I. Structure of the human epithelial sodium channel by cryo-electron microscopy. Elife 2018, 7, e39340. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, A.L.; Goodman, M.B. Insight into DEG/ENaC channel gating from genetics and structure. Physiology 2012, 27, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Jasti, J.; Furukawa, H.; Gonzales, E.B.; Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 2007, 449, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Zelle, K.M.; Lu, B.; Pyfrom, S.C.; Ben-Shahar, Y. The genetic architecture of degenerin/epithelial sodium channels in Drosophila. G3 Genes Genomes Genet. 2013, 3, 441–450. [Google Scholar]
- Chen, Y.; Bharill, S.; Isacoff, E.Y.; Chalfie, M. Subunit composition of a DEG/ENaC mechanosensory channel of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2015, 112, 11690–11695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hagan, R.; Chalfie, M.; Goodman, M.B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 2005, 8, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.B.; Ernstrom, G.G.; Chelur, D.S.; O’Hagan, R.; Yao, C.A.; Chalfie, M. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 2002, 415, 1039–1042. [Google Scholar] [CrossRef]
- Tao, L.; Porto, D.; Li, Z.; Fechner, S.; Lee, S.A.; Goodman, M.B.; Xu, X.S.; Lu, H.; Shen, K. Parallel processing of two mechanosensory modalities by a single neuron in C. elegans. Dev. Cell 2019, 51, 617–631. [Google Scholar] [CrossRef]
- Chatzigeorgiou, M.; Yoo, S.; Watson, J.D.; Lee, W.H.; Spencer, W.C.; Kindt, K.S.; Hwang, S.W.; Miller, D.M., III; Treinin, M.; Driscoll, M.; et al. Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat. Neurosci. 2010, 13, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Kubanek, J.; Shukla, P.; Das, A.; Baccus, S.A.; Goodman, M.B. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J. Neurosci. 2018, 38, 3081–3091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Mutchler, S.M.; Blobner, B.M.; Kashlan, O.B.; Kleyman, T.R. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel’s response to shear stress. J. Biol. Chem. 2018, 293, 10757–10766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Luke, C.J.; Miedel, M.T.; Silverman, G.A.; Kleyman, T.R. Activation of the Caenorhabditis elegans degenerin channel by shear stress requires the MEC-10 subunit. J. Biol. Chem. 2016, 291, 14012–14022. [Google Scholar] [CrossRef] [Green Version]
- Tsubouchi, A.; Caldwell, J.C.; Tracey, W.D. Dendritic filopodia, Ripped Pocket, NOMPC, and NMDARs contribute to the sense of touch in Drosophila larvae. Curr. Biol. 2012, 22, 2124–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsley, J.A.; Pettus, J.M.; Bosenko, D.; Gerstein, C.E.; Zinkevich, N.; Anderson, M.G.; Adams, C.M.; Welsh, M.J.; Johnson, W.A. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr. Biol. 2003, 13, 1557–1563. [Google Scholar] [CrossRef] [Green Version]
- Cabo, R.; Galvez, M.; San Jose, I.; Laurà, R.; López-Muñiz, A.; García-Suárez, O.; Cobo, T.; Insausti, R.; Vega, J. Immunohistochemical localization of acid-sensing ion channel 2 (ASIC2) in cutaneous Meissner and Pacinian corpuscles of Macaca fascicularis. Neurosci. Lett. 2012, 516, 197–201. [Google Scholar] [CrossRef]
- Chen, C.C.; Wong, C.W. Neurosensory mechanotransduction through acid-sensing ion channels. J. Cell. Mol. Med. 2013, 17, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Price, M.P.; McIlwrath, S.L.; Xie, J.; Cheng, C.; Qiao, J.; Tarr, D.E.; Sluka, K.A.; Brennan, T.J.; Lewin, G.R.; Welsh, M.J. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001, 32, 1071–1083. [Google Scholar] [CrossRef] [Green Version]
- Montaño, J.; Calavia, M.; García-Suárez, O.; Suarez-Quintanilla, J.A.; Gálvez, A.; Pérez-Piñera, P.; Cobo, J.; Vega, J. The expression of ENa+ C and ASIC2 proteins in Pacinian corpuscles is differently regulated by TrkB and its ligands BDNF and NT-4. Neurosci. Lett. 2009, 463, 114–118. [Google Scholar] [CrossRef]
- Rahman, F.; Harada, F.; Saito, I.; Suzuki, A.; Kawano, Y.; Izumi, K.; Nozawa-Inoue, K.; Maeda, T. Detection of acid-sensing ion channel 3 (ASIC3) in periodontal Ruffini endings of mouse incisors. Neurosci. Lett. 2011, 488, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ma, X.; Sabharwal, R.; Snitsarev, V.; Morgan, D.; Rahmouni, K.; Drummond, H.A.; Whiteis, C.A.; Costa, V.; Price, M.; et al. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 2009, 64, 885–897. [Google Scholar] [CrossRef] [Green Version]
- Page, A.J.; Brierley, S.M.; Martin, C.M.; Martinez-Salgado, C.; Wemmie, J.A.; Brennan, T.J.; Symonds, E.; Omari, T.; Lewin, G.R.; Welsh, M.J.; et al. The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 2004, 127, 1739–1747. [Google Scholar] [CrossRef]
- Papalampropoulou-Tsiridou, M.; Labrecque, S.; Godin, A.G.; De Koninck, Y.; Wang, F. Differential Expression of Acid—Sensing Ion Channels in Mouse Primary Afferents in Native and Injured Conditions. Front. Cell. Neurosci. 2020, 14, 103. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Cheng, Y.R.; Banks, R.W.; Min, M.Y.; Bewick, G.S.; Chen, C.C. Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nat. Commun. 2016, 7, 11460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcísa-Añoveros, J.; Samad, T.A.; Žuvela-Jelaska, L.; Woolf, C.J.; Corey, D.P. Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 2001, 21, 2678–2686. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.R.; Jiang, B.Y.; Chen, C.C. Acid-sensing ion channels: Dual function proteins for chemo-sensing and mechano-sensing. J. Biomed. Sci. 2018, 25, 46. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.C.W.; Xu, L.; Gebhart, G. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 2005, 25, 10981–10989. [Google Scholar] [CrossRef] [PubMed]
- Bielefeldt, K.; Davis, B.M. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2008, 294, G130–G138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, D.; Fronius, M. Shear force modulates the activity of acid-sensing ion channels at low pH or in the presence of non-proton ligands. Sci. Rep. 2019, 9, 6781. [Google Scholar] [CrossRef] [PubMed]
- Chalfie, M. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 2009, 10, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Emtage, L.; Gu, G.; Hartwieg, E.; Chalfie, M. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 2004, 44, 795–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounoutas, A.; O’Hagan, R.; Chalfie, M. The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation. Curr. Biol. 2009, 19, 1362–1367. [Google Scholar] [CrossRef] [Green Version]
- Cueva, J.G.; Mulholland, A.; Goodman, M.B. Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J. Neurosci. 2007, 27, 14089–14098. [Google Scholar] [CrossRef] [PubMed]
- Chelur, D.S.; Ernstrom, G.G.; Goodman, M.B.; Yao, C.A.; Chen, L.; O’Hagan, R.; Chalfie, M. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 2002, 420, 669–673. [Google Scholar] [CrossRef]
- Zhang, S.; Arnadottir, J.; Keller, C.; Caldwell, G.A.; Yao, C.A.; Chalfie, M. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr. Biol. 2004, 14, 1888–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.L.; Liao, Z.; Goodman, M.B. MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: Auxiliary subunits that enable channel activity. J. Gen. Physiol. 2008, 131, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Omerbašić, D.; Schuhmacher, L.N.; Sierra, Y.A.B.; Smith, E.S.J.; Lewin, G.R. ASICs and mammalian mechanoreceptor function. Neuropharmacology 2015, 94, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, C.; Hu, J.; Riethmacher, D.; Benckendorff, A.; Harder, L.; Eilers, A.; Moshourab, R.; Kozlenkov, A.; Labuz, D.; Caspani, O.; et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 2007, 445, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Brand, J.; Smith, E.S.J.; Schwefel, D.; Lapatsina, L.; Poole, K.; Omerbašić, D.; Kozlenkov, A.; Behlke, J.; Lewin, G.R.; Daumke, O. A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J. 2012, 31, 3635–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapatsina, L.; Jira, J.A.; Smith, E.S.J.; Poole, K.; Kozlenkov, A.; Bilbao, D.; Lewin, G.R.; Heppenstall, P.A. Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biol. 2012, 2, 120096. [Google Scholar] [CrossRef] [Green Version]
- Moshourab, R.A.; Wetzel, C.; Martinez-Salgado, C.; Lewin, G.R. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J. Physiol. 2013, 591, 5555–5574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Chiang, L.Y.; Koch, M.; Lewin, G.R. Evidence for a protein tether involved in somatic touch. EMBO J. 2010, 29, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Jan, L.Y.; Jan, Y.N. Mechanosensitive ion channels: Structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 2020, 43, 207–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enyedi, P.; Czirják, G. Molecular background of leak K+ currents: Two-pore domain potassium channels. Physiol. Rev. 2010, 90, 559–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, H.; Kim, Y.; Kim, D. TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J. Biol. Chem. 2000, 275, 17412–17419. [Google Scholar] [CrossRef] [Green Version]
- Noël, J.; Zimmermann, K.; Busserolles, J.; Deval, E.; Alloui, A.; Diochot, S.; Guy, N.; Borsotto, M.; Reeh, P.; Eschalier, A.; et al. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 2009, 28, 1308–1318. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.; Busserolles, J.; Christin, M.; Devilliers, M.; Poupon, L.; Legha, W.; Alloui, A.; Aissouni, Y.; Bourinet, E.; Lesage, F.; et al. Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. PAIN 2014, 155, 2534–2544. [Google Scholar] [CrossRef]
- Brohawn, S.G.; Su, Z.; MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc. Natl. Acad. Sci. USA 2014, 111, 3614–3619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alloui, A.; Zimmermann, K.; Mamet, J.; Duprat, F.; Noel, J.; Chemin, J.; Guy, N.; Blondeau, N.; Voilley, N.; Rubat-Coudert, C.; et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 2006, 25, 2368–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brohawn, S.G.; del Mármol, J.; MacKinnon, R. Crystal structure of the human K2P TRAAK, a lipid-and mechano-sensitive K+ ion channel. Science 2012, 335, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brohawn, S.G.; Campbell, E.B.; MacKinnon, R. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 2014, 516, 126–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalevée, N.; Monier, B.; Sénatore, S.; Perrin, L.; Sémériva, M. Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr. Biol. 2006, 16, 1502–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zheng, Y.; Ren, Q.; Zhou, H. The involvement of potassium channel ORK1 in short-term memory and sleep in Drosophila. Medicine 2017, 96, e7299. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, F.; Rinné, S.; Donner, B.; Decher, N.; Katus, H.A.; Schmidt, C. Mechanosensitive TREK-1 two-pore-domain potassium (K2P) channels in the cardiovascular system. Prog. Biophys. Mol. Biol. 2020, 159, 126–135. [Google Scholar] [CrossRef]
- Dong, Y.Y.; Pike, A.C.; Mackenzie, A.; McClenaghan, C.; Aryal, P.; Dong, L.; Quigley, A.; Grieben, M.; Goubin, S.; Mukhopadhyay, S.; et al. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 2015, 347, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, H.; Zhang, M.; Liu, W.; Deng, T.; Zhao, Q.; Li, Y.; Lei, J.; Li, X.; Xiao, B. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 2019, 573, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Howard, J. Structural biology: Piezo senses tension through curvature. Curr. Biol. 2018, 28, R357–R359. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Liu, W.; Zhou, H.; Zhang, T.; Wang, L.; Zhang, M.; Li, Y.; Shen, B.; Li, X.; Xiao, B. A Plug-and-Latch Mechanism for Gating the Mechanosensitive Piezo Channel. Neuron 2020, 106, 438–451. [Google Scholar] [CrossRef]
- Ranade, S.S.; Woo, S.H.; Dubin, A.E.; Moshourab, R.A.; Wetzel, C.; Petrus, M.; Mathur, J.; Bégay, V.; Coste, B.; Mainquist, J.; et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014, 516, 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Grillet, N.; Zhao, B.; Cunningham, C.; Harkins-Perry, S.; Coste, B.; Ranade, S.; Zebarjadi, N.; Beurg, M.; Fettiplace, R.; et al. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat. Neurosci. 2017, 20, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, S.H.; Ranade, S.; Weyer, A.D.; Dubin, A.E.; Baba, Y.; Qiu, Z.; Petrus, M.; Miyamoto, T.; Reddy, K.; Lumpkin, E.A.; et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014, 509, 622–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coste, B.; Mathur, J.; Schmidt, M.; Earley, T.J.; Ranade, S.; Petrus, M.J.; Dubin, A.E.; Patapoutian, A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010, 330, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.E.; Coste, B.; Chadha, A.; Cook, B.; Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature 2012, 483, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Bouffard, J.; Lord, A.; Brugman, K.; Sternberg, P.W.; Cram, E.J.; Golden, A. Caenorhabditis elegans PIEZO channel coordinates multiple reproductive tissues to govern ovulation. Elife 2020, 9, e53603. [Google Scholar] [CrossRef]
- Coste, B.; Xiao, B.; Santos, J.S.; Syeda, R.; Grandl, J.; Spencer, K.S.; Kim, S.E.; Schmidt, M.; Mathur, J.; Dubin, A.E.; et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 2012, 483, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellefsen, K.L.; Holt, J.R.; Chang, A.C.; Nourse, J.L.; Arulmoli, J.; Mekhdjian, A.H.; Abuwarda, H.; Tombola, F.; Flanagan, L.A.; Dunn, A.R.; et al. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. Commun. Biol. 2019, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Falleroni, F.; Torre, V.; Cojoc, D. Cell mechanotransduction with piconewton forces applied by optical tweezers. Front. Cell. Neurosci. 2018, 12, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Goyal, R.; Grandl, J. Localized force application reveals mechanically sensitive domains of Piezo1. Nat. Commun. 2016, 7, 12939. [Google Scholar] [CrossRef]
- Jetta, D.; Gottlieb, P.A.; Verma, D.; Sachs, F.; Hua, S.Z. Shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells. J. Cell Sci. 2019, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Chennupati, R.; Kaur, H.; Iring, A.; Wettschureck, N.; Offermanns, S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Investig. 2016, 126, 4527–4536. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Andolfi, L.; Frattini, F.; Mayer, F.; Lazzarino, M.; Hu, J. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat. Commun. 2015, 6, 8512. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wu, K.; Geng, J.; Chi, S.; Wang, Y.; Zhi, P.; Zhang, M.; Xiao, B. Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron 2016, 89, 1248–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Nikolaev, Y.A.; Gracheva, E.O.; Bagriantsev, S.N. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. Proc. Natl. Acad. Sci. USA 2019, 116, 17547–17555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, C.D.; Bae, C.; Ziegler, L.; Hartley, S.; Nikolova-Krstevski, V.; Rohde, P.R.; Ng, C.A.; Sachs, F.; Gottlieb, P.A.; Martinac, B. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun. 2016, 7, 10366. [Google Scholar] [CrossRef]
- Retailleau, K.; Duprat, F.; Arhatte, M.; Ranade, S.S.; Peyronnet, R.; Martins, J.R.; Jodar, M.; Moro, C.; Offermanns, S.; Feng, Y.; et al. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep. 2015, 13, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Haselwandter, C.A.; MacKinnon, R. Piezo’s membrane footprint and its contribution to mechanosensitivity. Elife 2018, 7, e41968. [Google Scholar] [CrossRef]
- Medrano-Soto, A.; Moreno-Hagelsieb, G.; McLaughlin, D.; Ye, Z.S.; Hendargo, K.J.; Saier, M.H., Jr. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS ONE 2018, 13, e0192851. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhao, Y.; Kusakizako, T.; Wang, Y.; Pan, C.; Zhang, Y.; Nureki, O.; Hattori, M.; Yan, Z. TMC1 and TMC2 proteins are pore-forming subunits of mechanosensitive ion channels. Neuron 2020, 105, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, A.; Maqsood, A.; Rehman, A.U.; Morell, R.J.; Holt, J.R.; Friedman, T.B.; Naz, S. Recessive mutations of TMC1 associated with moderate to severe hearing loss. Neurogenetics 2016, 17, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawashima, Y.; Géléoc, G.S.; Kurima, K.; Labay, V.; Lelli, A.; Asai, Y.; Makishima, T.; Wu, D.K.; Della Santina, C.C.; Holt, J.R.; et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel–like genes. J. Clin. Investig. 2011, 121, 4796–4809. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Zhang, W.; Meltzer, S.; Zanini, D.; Yu, Y.; Li, J.; Cheng, T.; Guo, Z.; Wang, Q.; et al. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc. Natl. Acad. Sci. USA 2016, 113, 7243–7248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.V.; Aikin, T.J.; Li, Z.; Montell, C. The basis of food texture sensation in Drosophila. Neuron 2016, 91, 863–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, S.W.; Chen, Z.; Zhu, S.; Davis, R.W.; Hu, J.; Liu, L.; Fernando, C.A.; Kindig, K.; Brown, W.C.; Stepanyan, R.; et al. A molecular basis for water motion detection by the mechanosensory lateral line of zebrafish. Nat. Commun. 2017, 8, 2234. [Google Scholar] [CrossRef]
- Chatzigeorgiou, M.; Bang, S.; Hwang, S.W.; Schafer, W.R. tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 2013, 494, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Akyuz, N.; Liu, X.P.; Asai, Y.; Nist-Lund, C.; Kurima, K.; Derfler, B.H.; György, B.; Limapichat, W.; Walujkar, S.; et al. TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron 2018, 99, 736–753. [Google Scholar] [CrossRef] [Green Version]
- Venkatachalam, K.; Montell, C. TRP channels. Annu. Rev. Biochem. 2007, 76, 387–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmel, N.J.; Cox, D.N. Transient receptor potential channels: Current perspectives on evolution, structure, function and nomenclature. Proc. R. Soc. B 2020, 287, 20201309. [Google Scholar] [CrossRef] [PubMed]
- Owsianik, G.; Talavera, K.; Voets, T.; Nilius, B. Permeation and selectivity of TRP channels. Annu. Rev. Physiol. 2006, 68, 685–717. [Google Scholar] [CrossRef]
- Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 2011, 12, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Cheng, L.E.; Kittelmann, M.; Li, J.; Petkovic, M.; Cheng, T.; Jin, P.; Guo, Z.; Göpfert, M.C.; Jan, L.Y.; et al. Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 2015, 162, 1391–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, J.; Li, J.; Chen, G.L.; Ge, Y.; Liu, J.; Xie, K.; Peng, X.; Zhou, W.; Zhong, J.; Zhang, Y.; et al. Cryo-EM structure of TRPC5 at 2.8-Å resolution reveals unique and conserved structural elements essential for channel function. Sci. Adv. 2019, 5, eaaw7935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Wu, M.; Zubcevic, L.; Borschel, W.F.; Lander, G.C.; Lee, S.Y. Structure of the cold-and menthol-sensing ion channel TRPM8. Science 2018, 359, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Viana, F. TRPA1 channels: Molecular sentinels of cellular stress and tissue damage. J. Physiol. 2016, 594, 4151–4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amini, M.; Wang, H.; Belkacemi, A.; Jung, M.; Bertl, A.; Schlenstedt, G.; Flockerzi, V.; Beck, A. Identification of Inhibitory Ca2+ Binding Sites in the Upper Vestibule of the Yeast Vacuolar TRP Channel. Iscience 2019, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Himmel, N.J.; Gray, T.R.; Cox, D.N. Phylogenetics Identifies Two Eumetazoan TRPM Clades and an Eighth TRP Family, TRP Soromelastatin (TRPS). Mol. Biol. Evol. 2020, 37, 2034–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmas, P. Polycystins: Polymodal receptor/ion-channel cellular sensors. Pflügers Archiv 2005, 451, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Eijkelkamp, N.; Quick, K.; Wood, J.N. Transient receptor potential channels and mechanosensation. Annu. Rev. Neurosci. 2013, 36, 519–546. [Google Scholar] [CrossRef]
- Edwards-Jorquera, S.S.; Bosveld, F.; Bellaïche, Y.A.; Lennon-Duménil, A.M.; Glavic, Á. Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. J. Cell Biol. 2020, 219, e201905228. [Google Scholar] [CrossRef] [PubMed]
- Effertz, T.; Wiek, R.; Göpfert, M.C. NompC TRP channel is essential for Drosophila sound receptor function. Curr. Biol. 2011, 21, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, B.P.; Baker, A.E.; Gaudry, Q.; Chiang, A.S.; Wilson, R.I. Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 2013, 77, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.E.; Desmonds, T.; Quick, K.; Taylor, R.; Abramowitz, J.; Forge, A.; Kros, C.J.; Birnbaumer, L.; Wood, J.N. The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci. Lett. 2016, 610, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quick, K.; Zhao, J.; Eijkelkamp, N.; Linley, J.E.; Rugiero, F.; Cox, J.J.; Raouf, R.; Gringhuis, M.; Sexton, J.E.; Abramowitz, J.; et al. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol. 2012, 2, 120068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Zhang, W.; He, Y.; Gorczyca, D.; Xiang, Y.; Cheng, L.E.; Meltzer, S.; Jan, L.Y.; Jan, Y.N. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 2013, 493, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Li, X.; Zheng, H.; Wen, X.; Chen, S.; Ye, J.; Tang, S.; Yao, F.; Li, Y.; Yan, Z. Brv1 is required for Drosophila larvae to sense gentle touch. Cell Rep. 2018, 23, 23–31. [Google Scholar] [CrossRef]
- Garrison, S.R.; Dietrich, A.; Stucky, C.L. TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J. Neurophysiol. 2012, 107, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Kindt, K.S.; Viswanath, V.; Macpherson, L.; Quast, K.; Hu, H.; Patapoutian, A.; Schafer, W.R. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci. 2007, 10, 568–577. [Google Scholar] [CrossRef]
- Lau, O.C.; Shen, B.; Wong, C.O.; Tjong, Y.W.; Lo, C.Y.; Wang, H.C.; Huang, Y.; Yung, W.H.; Chen, Y.C.; Fung, M.L.; et al. TRPC5 channels participate in pressure-sensing in aortic baroreceptors. Nat. Commun. 2016, 7, 11947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glazebrook, P.A.; Schilling, W.P.; Kunze, D.L. TRPC channels as signal transducers. Pflügers Archiv. 2005, 451, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Feng, Z.; Sternberg, P.W.; Xu, X.S. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 2006, 440, 684–687. [Google Scholar] [CrossRef]
- Kang, L.; Gao, J.; Schafer, W.R.; Xie, Z.; Xu, X.S. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 2010, 67, 381–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeon, J.; Kim, J.; Kim, D.Y.; Kim, H.; Kim, J.; Du, E.J.; Kang, K.; Lim, H.H.; Moon, D.; Kim, K. A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol. 2018, 16, e2004929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, K.Y.; Allchorne, A.J.; Vollrath, M.A.; Christensen, A.P.; Zhang, D.S.; Woolf, C.J.; Corey, D.P. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 2006, 50, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Hwang, R.Y.; Stearns, N.A.; Tracey, W.D. The ankyrin repeat domain of the TRPA protein painless is important for thermal nociception but not mechanical nociception. PLoS ONE 2012, 7, e30090. [Google Scholar] [CrossRef]
- Zhang, X.F.; Chen, J.; Faltynek, C.R.; Moreland, R.B.; Neelands, T.R. Transient receptor potential A1 mediates an osmotically activated ion channel. Eur. J. Neurosci. 2008, 27, 605–611. [Google Scholar] [CrossRef]
- Liu, Y.S.; Liu, Y.A.; Huang, C.J.; Yen, M.H.; Tseng, C.T.; Chien, S.; Lee, O.K. Mechanosensitive TRPM7 mediates shear stress and modulates osteogenic differentiation of mesenchymal stromal cells through Osterix pathway. Sci. Rep. 2015, 5, 16522. [Google Scholar] [CrossRef] [Green Version]
- Hardie, R.C.; Franze, K. Photomechanical responses in Drosophila photoreceptors. Science 2012, 338, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.P.; Corey, D.P. TRP channels in mechanosensation: Direct or indirect activation? Nat. Rev. Neurosci. 2007, 8, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Montell, C. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun. 2015, 460, 22–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaev, Y.A.; Cox, C.D.; Ridone, P.; Rohde, P.R.; Cordero-Morales, J.F.; Vásquez, V.; Laver, D.R.; Martinac, B. Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 2019, 132, jcs238360. [Google Scholar] [CrossRef] [Green Version]
- Nilius, B. Polycystins under pressure. Cell 2009, 139, 466–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharif-Naeini, R.; Folgering, J.H.; Bichet, D.; Duprat, F.; Lauritzen, I.; Arhatte, M.; Jodar, M.; Dedman, A.; Chatelain, F.C.; Schulte, U.; et al. Polycystin-1 and-2 dosage regulates pressure sensing. Cell 2009, 139, 587–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, S.J.; Lee, R.M.; Chang, K.T.; Hernández-Ochoa, E.O.; Annis, D.A.; Ory, E.C.; Thompson, K.N.; Bailey, P.C.; Mathias, T.J.; Ju, J.A.; et al. Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca2+ signals that are inhibited by oncogenic KRas. Proc. Natl. Acad. Sci. USA 2020, 117, 26008–26019. [Google Scholar] [CrossRef]
- Prager-Khoutorsky, M.; Khoutorsky, A.; Bourque, C.W. Unique interweaved microtubule scaffold mediates osmosensory transduction via physical interaction with TRPV1. Neuron 2014, 83, 866–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, M.; Mizuno, A.; Kodaira, K.; Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 2003, 278, 22664–22668. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Yang, Z.; Jacoby, R.A.; Wu, S.M.; Pang, J.J. The expression and function of TRPV4 channels in primate retinal ganglion cells and bipolar cells. Cell Death Dis. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Strotmann, R.; Harteneck, C.; Nunnenmacher, K.; Schultz, G.; Plant, T.D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2000, 2, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Maroto, R.; Raso, A.; Wood, T.G.; Kurosky, A.; Martinac, B.; Hamill, O.P. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 2005, 7, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wong, C.O.; Lau, O.C.; Woo, T.; Bai, S.; Huang, Y.; Yao, X. Plasma membrane mechanical stress activates TRPC5 channels. PLoS ONE 2015, 10, e0122227. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Iribe, G.; Nishida, M.; Naruse, K. Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Prog. Biophys. Mol. Biol. 2017, 130, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Dryer, S.E. A mutation in TRPC6 channels abolishes their activation by hypoosmotic stretch but does not affect activation by diacylglycerol or G protein signaling cascades. Am. J. Physiol.-Ren. Physiol. 2014, 306, F1018–F1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spassova, M.A.; Hewavitharana, T.; Xu, W.; Soboloff, J.; Gill, D.L. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc. Natl. Acad. Sci. USA 2006, 103, 16586–16591. [Google Scholar] [CrossRef] [Green Version]
- Dyachenko, V.; Husse, B.; Rueckschloss, U.; Isenberg, G. Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2. 3 channels. Cell Calcium 2009, 45, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Kim, E.Y.; Hagmann, H.; Benzing, T.; Dryer, S.E. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am. J. Physiol.-Cell Physiol. 2013, 305, C276–C289. [Google Scholar] [CrossRef] [PubMed]
- Numata, T.; Shimizu, T.; Okada, Y. Direct mechano-stress sensitivity of TRPM7 channel. Cell. Physiol. Biochem. 2007, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Honda, A.; Inoue, R.; Ito, Y.; Abe, K.; Nelson, M.T.; Brayden, J.E. Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J. Pharmacol. Sci. 2007, 103, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauli, S.M.; Alenghat, F.J.; Luo, Y.; Williams, E.; Vassilev, P.; Li, X.; Elia, A.E.; Lu, W.; Brown, E.M.; Quinn, S.J.; et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 2003, 33, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Loukin, S.; Zhou, X.; Su, Z.; Saimi, Y.; Kung, C. Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J. Biol. Chem. 2010, 285, 27176–27181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mopharty, L.; Zygmunt, P.M. Human TRPA1 is an inherently mechanosensitive bilayer-gated ion channel. Cell Calcium 2020, 91, 102255. [Google Scholar]
- Sun, Y.; Liu, L.; Ben-Shahar, Y.; Jacobs, J.S.; Eberl, D.F.; Welsh, M.J. TRPA channels distinguish gravity sensing from hearing in Johnston’s organ. Proc. Natl. Acad. Sci. USA 2009, 106, 13606–13611. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, P.; Folgering, J.; Maroto, R.; Raso, A.; Wood, T.G.; Kurosky, A.; Bowman, C.; Bichet, D.; Patel, A.; Sachs, F.; et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflügers Archiv-Eur. J. Physiol. 2008, 455, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Servin-Vences, M.R.; Moroni, M.; Lewin, G.R.; Poole, K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. Elife 2017, 6, e21074. [Google Scholar] [CrossRef]
- Constantine, M.; Liew, C.K.; Lo, V.; Macmillan, A.; Cranfield, C.G.; Sunde, M.; Whan, R.; Graham, R.M.; Martinac, B. Heterologously-expressed and liposome-reconstituted human transient receptor potential melastatin 4 channel (TRPM4) is a functional tetramer. Sci. Rep. 2016, 6, 19352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geffeney, S.L.; Cueva, J.G.; Glauser, D.A.; Doll, J.C.; Lee, T.H.C.; Montoya, M.; Karania, S.; Garakani, A.M.; Pruitt, B.L.; Goodman, M.B. DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor. Neuron 2011, 71, 845–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Wang, F.; Peng, Y.; Williams, C.R.; Jenkins, B.; Wildonger, J.; Kim, H.J.; Perr, J.B.; Vaughan, J.C.; Kern, M.E.; et al. Microtubule acetylation is required for mechanosensation in Drosophila. Cell Rep. 2018, 25, 1051–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, A.J.; Brierley, S.M.; Martin, C.M.; Price, M.P.; Symonds, E.; Butler, R.; Wemmie, J.A.; Blackshaw, L. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 2005, 54, 1408–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, K.; Herget, R.; Lapatsina, L.; Ngo, H.D.; Lewin, G.R. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat. Commun. 2014, 5, 3520. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Zhao, J.; Li, X.; Fan, Y.; Duan, D.; Zhang, X.; Zou, W.; Sheng, Y.; Zhang, T.; Yang, Q.; et al. TMC proteins modulate egg laying and membrane excitability through a background leak conductance in C. elegans. Neuron 2018, 97, 571–585. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.G.; Willingham, A.T.; Zuker, C.S. A Drosophila mechanosensory transduction channel. Science 2000, 287, 2229–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Madrid, J.; Gärtner, R.; Verbavatz, J.M.; Schiklenk, C.; Wilsch-Bräuninger, M.; Bogdanova, A.; Stenger, F.; Voigt, A.; Howard, J. A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr. Biol. 2013, 23, 755–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, P.; Bulkley, D.; Guo, Y.; Zhang, W.; Guo, Z.; Huynh, W.; Wu, S.; Meltzer, S.; Cheng, T.; Jan, L.Y.; et al. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 2017, 547, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Gao, Y.; He, J.; Cui, L.; Meissner, J.; Verbavatz, J.M.; Li, B.; Feng, X.; Liang, X. Ultrastructural organization of NompC in the mechanoreceptive organelle of Drosophila campaniform mechanoreceptors. Proc. Natl. Acad. Sci. USA 2019, 116, 7343–7352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidi, S.; Friedrich, R.W.; Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 2003, 301, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kindrat, A.N.; Sharif-Naeini, R.; Bourque, C.W. Actin filaments mediate mechanical gating during osmosensory transduction in rat supraoptic nucleus neurons. J. Neurosci. 2007, 27, 4008–4013. [Google Scholar] [CrossRef] [Green Version]
- Zaelzer, C.; Hua, P.; Prager-Khoutorsky, M.; Ciura, S.; Voisin, D.L.; Liedtke, W.; Bourque, C.W. ΔN-TRPV1: A molecular co-detector of body temperature and osmotic stress. Cell Rep. 2015, 13, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciura, S.; Bourque, C.W. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 2006, 26, 9069–9075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciura, S.; Liedtke, W.; Bourque, C.W. Hypertonicity sensing in organum vasculosum lamina terminalis neurons: A mechanical process involving TRPV1 but not TRPV4. J. Neurosci. 2011, 31, 14669–14676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihara, H.; Boudaka, A.; Shibasaki, K.; Yamanaka, A.; Sugiyama, T.; Tominaga, M. Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice. J. Neurosci. 2010, 30, 16536–16544. [Google Scholar] [CrossRef]
- Suzuki, M.; Watanabe, Y.; Oyama, Y.; Mizuno, A.; Kusano, E.; Hirao, A.; Ookawara, S. Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci. Lett. 2003, 353, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Ryskamp, D.A.; Jo, A.O.; Frye, A.M.; Vazquez-Chona, F.; MacAulay, N.; Thoreson, W.B.; Križaj, D. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J. Neurosci. 2014, 34, 15689–15700. [Google Scholar] [CrossRef] [Green Version]
- Lakk, M.; Young, D.; Baumann, J.M.; Jo, A.O.; Hu, H.; Križaj, D. Polymodal TRPV1 and TRPV4 sensors colocalize but do not functionally interact in a subpopulation of mouse retinal ganglion cells. Front. Cell. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liedtke, W.; Choe, Y.; Martí-Renom, M.A.; Bell, A.M.; Denis, C.S.; Hudspeth, A.; Friedman, J.M.; Heller, S. Vanilloid receptor–related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000, 103, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Richter, F.; von Banchet, G.S.; Schaible, H.G. Transient Receptor Potential vanilloid 4 ion channel in C-fibres is involved in mechanonociception of the normal and inflamed joint. Sci. Rep. 2019, 9, 10928. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Pisupati, A.; Jegla, T.; Crook, M.; Mickolajczyk, K.J.; Shorey, M.; Rohan, L.E.; Billings, K.A.; Rolls, M.M.; Hancock, W.O.; et al. Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel. Nat. Commun. 2016, 7, 13135. [Google Scholar] [CrossRef] [Green Version]
- Tobin, D.M.; Madsen, D.M.; Kahn-Kirby, A.; Peckol, E.L.; Moulder, G.; Barstead, R.; Maricq, A.V.; Bargmann, C.I. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 2002, 35, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Kahn-Kirby, A.H.; Dantzker, J.L.; Apicella, A.J.; Schafer, W.R.; Browse, J.; Bargmann, C.I.; Watts, J.L. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 2004, 119, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Montell, C. Drosophila TRP channels. Pflügers Archiv 2005, 451, 19–28. [Google Scholar] [CrossRef]
- O‘Neil, R.G.; Heller, S. The mechanosensitive nature of TRPV channels. Pflügers Archiv. 2005, 451, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Son, W.; Chung, Y.D.; Kim, J.; Shin, D.W.; McClung, C.A.; Lee, Y.; Lee, H.W.; Chang, D.J.; Kaang, B.K.; et al. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 2004, 24, 9059–9066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, K.; Langeslag, M.; Van Leeuwen, B.; Ran, L.; Ryazanov, A.G.; Figdor, C.G.; Moolenaar, W.H.; Jalink, K.; Van Leeuwen, F.N. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J. 2006, 25, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Langeslag, M.; Clark, K.; Moolenaar, W.H.; van Leeuwen, F.N.; Jalink, K. Activation of TRPM7 channels by phospholipase C-coupled receptor agonists. J. Biol. Chem. 2007, 282, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.; Wang, X.; Chen, M.; Ouyang, K.; Song, L.S.; Cheng, H. Calcium flickers steer cell migration. Nature 2009, 457, 901–905. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, M.L.; Stein, P.; Carvacho, I.; Krapp, C.; Ardestani, G.; Mehregan, A.; Umbach, D.M.; Bartolomei, M.S.; Fissore, R.A.; Williams, C.J. TRPM7 and CaV3. 2 channels mediate Ca2+ influx required for egg activation at fertilization. Proc. Natl. Acad. Sci. USA 2018, 115, E10370–E10378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hagan, R.; Wang, J.; Barr, M.M. Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Semin. Cell Dev. Biol. 2014, 33, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Gianmarchi, A.; Delmas, P. Activation Mechanisms and Functional Roles of TRPP2 Cation Channels. In TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades; Liedtke, W., Heller, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; Chapter 14. [Google Scholar]
- Lam, R.M.; Chesler, A.T. Shear elegance: A novel screen uncovers a mechanosensitive GPCR. J. Gen. Physiol. 2018, 150, 907–910. [Google Scholar] [CrossRef] [Green Version]
- Chachisvilis, M.; Zhang, Y.L.; Frangos, J.A. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl. Acad. Sci. USA 2006, 103, 15463–15468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.; Akazawa, H.; Qin, Y.; Sano, M.; Takano, H.; Minamino, T.; Makita, N.; Iwanaga, K.; Zhu, W.; Kudoh, S.; et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat. Cell Biol. 2004, 6, 499–506. [Google Scholar] [CrossRef]
- Xu, J.; Mathur, J.; Vessières, E.; Hammack, S.; Nonomura, K.; Favre, J.; Grimaud, L.; Petrus, M.; Francisco, A.; Li, J.; et al. GPR68 senses flow and is essential for vascular physiology. Cell 2018, 173, 762–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdogmus, S.; Storch, U.; Danner, L.; Becker, J.; Winter, M.; Ziegler, N.; Wirth, A.; Offermanns, S.; Hoffmann, C.; Gudermann, T.; et al. Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat. Commun. 2019, 10, 5784. [Google Scholar] [CrossRef] [PubMed]
- Franz, F.; Daday, C.; Gräter, F. Advances in molecular simulations of protein mechanical properties and function. Curr. Opin. Struct. Biol. 2020, 61, 132–138. [Google Scholar] [CrossRef]
- Cox, C.D.; Bavi, N.; Martinac, B. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep. 2019, 29, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Corey, R.A.; Hedger, G.; Aryal, P.; Grieben, M.; Nasrallah, C.; Baronina, A.; Pike, A.C.; Shi, J.; Carpenter, E.P.; et al. Lipid interactions of a ciliary membrane TRP channel: Simulation and structural studies of polycystin-2. Structure 2020, 28, 169–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, A.L.; Corey, R.A.; Sansom, M.S. Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc. Natl. Acad. Sci. USA 2020, 117, 7803–7813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, A.L.; Song, W.; Sansom, M.S. Lipid-dependent regulation of ion channels and G protein–coupled receptors: Insights from structures and simulations. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 31–50. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.B.; Tao, X.; MacKinnon, R. Structural basis of PIP 2 activation of the classical inward rectifier K+ channel Kir2. 2. Nature 2011, 477, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.R.; MacKinnon, R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife 2017, 6, e33660. [Google Scholar] [CrossRef] [PubMed]
- Grieben, M.; Pike, A.C.; Shintre, C.A.; Venturi, E.; El-Ajouz, S.; Tessitore, A.; Shrestha, L.; Mukhopadhyay, S.; Mahajan, P.; Chalk, R.; et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 2017, 24, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Aryal, P.; Jarerattanachat, V.; Clausen, M.V.; Schewe, M.; McClenaghan, C.; Argent, L.; Conrad, L.J.; Dong, Y.Y.; Pike, A.C.; Carpenter, E.P.; et al. Bilayer-mediated structural transitions control mechanosensitivity of the TREK-2 K2P channel. Structure 2017, 25, 708–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nematian-Ardestani, E.; Jarerattanachat, V.; Aryal, P.; Sansom, M.S.; Tucker, S.J. The effects of stretch activation on ionic selectivity of the TREK-2 K2P K+ channel. Channels 2017, 11, 482–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, M.V.; Jarerattanachat, V.; Carpenter, E.P.; Sansom, M.S.; Tucker, S.J. Asymmetric mechanosensitivity in a eukaryotic ion channel. Proc. Natl. Acad. Sci. USA 2017, 114, E8343–E8351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennecke, J.T.; de Groot, B.L. Mechanism of mechanosensitive gating of the TREK-2 potassium channel. Biophys. J. 2018, 114, 1336–1343. [Google Scholar] [CrossRef] [Green Version]
- Kocer, A. Mechanisms of mechanosensing—Mechanosensitive channels, function and re-engineering. Curr. Opin. Chem. Biol. 2015, 29, 120–127. [Google Scholar] [CrossRef]
- Ocello, R.; Furini, S.; Lugli, F.; Recanatini, M.; Domene, C.; Masetti, M. Conduction and Gating Properties of the TRAAK Channel from Molecular Dynamics Simulations with Different Force Fields. J. Chem. Inf. Model. 2020, 60, 6532–6543. [Google Scholar] [CrossRef]
- Masetti, M.; Berti, C.; Ocello, R.; Di Martino, G.P.; Recanatini, M.; Fiegna, C.; Cavalli, A. Multiscale simulations of a two-pore potassium channel. J. Chem. Theory Comput. 2016, 12, 5681–5687. [Google Scholar] [CrossRef] [PubMed]
- Stansfeld, P.J.; Sansom, M.S. From coarse grained to atomistic: A serial multiscale approach to membrane protein simulations. J. Chem. Theory Comput. 2011, 7, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- De Vecchis, D.; Beech, D.J.; Kalli, A.C. Molecular principles of Piezo1 activation by increased membrane tension. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Yoo, J.; Yethiraj, A.; Cui, Q.; Chen, X. Mechanosensitive channels: Insights from continuum-based simulations. Cell Biochem. Biophys. 2008, 52, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavi, O.; Vossoughi, M.; Naghdabadi, R.; Jamali, Y. The combined effect of hydrophobic mismatch and bilayer local bending on the regulation of mechanosensitive ion channels. PLoS ONE 2016, 11, e0150578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanegas, J.M.; Torres-Sánchez, A.; Arroyo, M. Importance of force decomposition for local stress calculations in biomembrane molecular simulations. J. Chem. Theory Comput. 2014, 10, 691–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Sánchez, A.; Vanegas, J.M.; Arroyo, M. Examining the mechanical equilibrium of microscopic stresses in molecular simulations. Phys. Rev. Lett. 2015, 114, 258102. [Google Scholar] [CrossRef]
- Eastwood, A.L.; Sanzeni, A.; Petzold, B.C.; Park, S.J.; Vergassola, M.; Pruitt, B.L.; Goodman, M.B. Tissue mechanics govern the rapidly adapting and symmetrical response to touch. Proc. Natl. Acad. Sci. USA 2015, 112, E6955–E6963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolic, K.; Loizu, J.; Degenaar, P.; Toumazou, C. A stochastic model of the single photon response in Drosophila photoreceptors. Integr. Biol. 2010, 2, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.J.; Eckford, A.W. Capacity of a simple intercellular signal transduction channel. IEEE Trans. Inf. Theory 2016, 62, 7358–7382. [Google Scholar] [CrossRef] [Green Version]
- Jérusalem, A.; García-Grajales, J.A.; Merchán-Pérez, A.; Peña, J.M. A computational model coupling mechanics and electrophysiology in spinal cord injury. Biomech. Model. Mechanobiol. 2014, 13, 883–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Huang, G.; Lin, M.; Qiu, J.; Sha, B.; Lu, T.J.; Xu, F. A mechanoelectrical coupling model of neurons under stretching. J. Mech. Behav. Biomed. Mater. 2019, 93, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, J.; Peets, T.; Tamm, K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol. 2018, 17, 1771–1783. [Google Scholar] [CrossRef] [Green Version]
- Sripati, A.P.; Bensmaia, S.J.; Johnson, K.O. A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J. Neurophysiol. 2006, 95, 3852–3864. [Google Scholar] [CrossRef] [Green Version]
- Lesniak, D.R.; Gerling, G.J. Predicting SA-I mechanoreceptor spike times with a skin-neuron model. Math. Biosci. 2009, 220, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Gerling, G.J.; Wan, L.; Hoffman, B.U.; Wang, Y.; Lumpkin, E.A. Computation predicts rapidly adapting mechanotransduction currents cannot account for tactile encoding in Merkel cell-neurite complexes. PLoS Comput. Biol. 2018, 14, e1006264. [Google Scholar] [CrossRef] [Green Version]
- Quindlen, J.C.; Stolarski, H.K.; Johnson, M.D.; Barocas, V.H. A multiphysics model of the Pacinian corpuscle. Integr. Biol. 2016, 8, 1111–1125. [Google Scholar] [CrossRef] [PubMed]
- Sanzeni, A.; Katta, S.; Petzold, B.; Pruitt, B.L.; Goodman, M.B.; Vergassola, M. Somatosensory neurons integrate the geometry of skin deformation and mechanotransduction channels to shape touch sensing. Elife 2019, 8, e43226. [Google Scholar] [CrossRef]
- Chiodo, L.; Malliavin, T.; Maragliano, L.; Cottone, G. A possible desensitized state conformation of the human α7 nicotinic receptor: A molecular dynamics study. Biophys. Chem. 2017, 229, 99–109. [Google Scholar] [CrossRef]
- Cottone, G.; Chiodo, L.; Maragliano, L. Thermodynamics and kinetics of ion permeation in wild-type and mutated open active conformation of the human α7 nicotinic receptor. J. Chem. Inf. Model. 2020, 60, 5045–5056. [Google Scholar] [CrossRef] [PubMed]
- Loppini, A.; Braun, M.; Filippi, S.; Pedersen, M.G. Mathematical modeling of gap junction coupling and electrical activity in human β-cells. Phys. Biol. 2015, 12, 066002. [Google Scholar] [CrossRef] [PubMed]
- Bini, D.; Cherubini, C.; Filippi, S. Heat transfer in Fitzhugh-Nagumo models. Phys. Rev. E 2006, 74, 041905. [Google Scholar] [CrossRef] [PubMed]
- Nestola, M.G.C.; Faggiano, E.; Vergara, C.; Lancellotti, R.M.; Ippolito, S.; Antona, C.; Filippi, S.; Quarteroni, A.; Scrofani, R. Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.; Monaldo, E.; Gizzi, A.; Marino, M.; Filippi, S.; Vairo, G. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy. Med. Eng. Phys. 2017, 47, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Gizzi, A.; Cherubini, C.; Pomella, N.; Persichetti, P.; Vasta, M.; Filippi, S. Computational modeling and stress analysis of columellar biomechanics. J. Mech. Behav. Biomed. Mater. 2012, 15, 46–58. [Google Scholar] [CrossRef]
- Gizzi, A.; Ruiz-Baier, R.; Rossi, S.; Laadhari, A.; Cherubini, C.; Filippi, S. A three-dimensional continuum model of active contraction in single cardiomyocytes. In Modeling the Heart and the Circulatory System; Springer: Cham, Switzerland, 2015; pp. 157–176. [Google Scholar]
- Loppini, A.; Gizzi, A.; Ruiz-Baier, R.; Cherubini, C.; Fenton, F.H.; Filippi, S. Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics. Front. Physiol. 2018, 9, 1714. [Google Scholar] [CrossRef]
- Ruiz Baier, R.; Gizzi, A.; Loppini, A.; Cherubini, C.; Filippi, S. Modelling thermo–electro-mechanical effects in orthotropic cardiac tissue. Commun. Comput. Phys. 2019, 27, 87–115. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, M.; Loppini, A.; Chiodo, L.; Folli, V.; Ruocco, G.; Filippi, S. Biophysical modeling of C. elegans neurons: Single ion currents and whole-cell dynamics of AWCon and RMD. PLoS ONE 2019, 14, e0218738. [Google Scholar] [CrossRef] [PubMed]
Mechanosensitive Channels | |||
---|---|---|---|
Channel | Role | Expression Pattern | Gating Mechanism |
DEG/ENaC/ASiC | |||
C. elegans MEC-4/MEC-10 | Gentle touch, nociception, proprioception ultrasound response [19,21,22,23] | Axons of touch receptors neurons [18,19,20] | Pore forming subunits in MeT complexs [18,19,20] Proposed force-from-tether model [42,43,44] |
Mammalian ASIC | Nociception, regulation of blood pressure, regulation of gastrointestinal function [34] | Dorsal root ganglia [35,36], visceral mechanoreceptors [34,157], aortic baroreceptors neurons [33], sensory neurons of the skin [28,29] | Still debated, proposed force-from-lipid and force-from-tether models [38] |
Drosophila pickpocket, ripped pocket, and balboa | Drosophila mechanmechannociception | Class IV multidendritic (md) [13,26,27] | Not known |
K2P | |||
Mammalian TREK-1/2, and TRAAK | Regulation of the threshold for mechanical responses | Dorsal root ganglia | Force-from-lipid gating stretch-activated currents in heterologous expression elicited by negative-pressure |
Drosophila ORK-1 | Regulation of sleep and cardiac rhythm [64,65,66] | Heart [64] | Not known |
Piezo | |||
Mammalian Piezo-1/2 | Mammalian noxious mechanosensation | Merkel cells, hair follicles and hair cells of the auditory system | Force-from-lipid [69,84,158] is the principal mechanism for Piezo-1 but not for Piezo-2 [85] |
Drosophila Piezo | Drosophila mechanonociception | Neuronal and non-neuronal cells | Stretch-activated currents elicited by negative pressure application [75] |
C. elegans PEZO-1 | Severe defects in oocyte and sperm transit [84] | Male tail sensory neurons, pharyngeal neurons, intestine and vulva [76] | Not known |
Anoctamin superfamily | |||
Mammalian TMC-1/2 | Human and mice hearing | Stereocilia of inner ear hair cells | Pore forming subunits in MeT complexes in inner ear hair cells. |
Drosophila TMC-1/2 | Drosophila propriorception and locomotion | class I and class II dendritic arborization neurons and bipolar dendrites neurons | Not known |
Danio rerio TMC-1 and TMC-2 | Water motion detection and hearing [95] | Stereocilia of the neuromast [95] | Pore forming subunits of MeT complexes [8] |
C. elegans TMC-1 and TMC-2 | Vulval muscle excitability, mechanosensation salt sensation [9,96,159] | Mechanosensory neurons [9] vulval muscles [159] ASH neurons [96] | Pore forming subunits in MeT complexes [9] |
Channel | Role | Expression Pattern | Gating Mechanism |
---|---|---|---|
TRP Channels | |||
TRPN | |||
Drosophila NoMPC | Auditory transduction | Auditory organs and Mechanosensory bristles [160] | Activation through intracellular theters [102,115,161,162,163] |
C. elegans TRP-4 | Propriorception [121,122] | Mechanosensory neurons [121,122] | Direct activation by force [122] |
Danio rerio TRPN-1 | Hearing [164] | Auditory cells [164] | Not known |
TRPV | |||
Mammalian TRPV-1,2,4 | Mechanosensation in osmosensory neurons | Myenteric neurons Dorsal root ganglia osmosensory neurons C-fibers [135,137,165,166,167,168,169,170,171,172,173,174] | Debated: stretch sensitive sensitive [135,137,138,169,170] or insensitive [131,153] |
C. elegans OSM-9 and OCR-1/4 | Nose-touch osmosensation [20,175,176] | Mechanosesory neurons | Indirect activation [155,177] |
Drosophila iav and nan | Gravity and sound sensation [178,179,180] | Johnston’S organ [178,179,180] | Not known |
TRPC | |||
Mammalian TRPC-1, TRPC-3, and TRPC-5 | Ligth touch and sound responses. Blood pressure regulation [113,114,117,119,120] | Dorsal root ganglia, cochlear cells, light touch cutaneous afferents and aortic baroreceptors neurons [113,114,139,140] | Debated: stretch sensitive sensitive [139,140,141,142,143,144,145] or insensitive [131,152] |
C. elegans TRP-1/2 | Propiorception [123] | SMDD neurons [123] | Not known |
TRPM | |||
Mammalian TRPM-4/7/8 | Cell adhesion and migration shear stress detection [147,181,182,183,184] | Non neuronal cells [181,182,183,184] | Debated: stretch sensitive sensitive [127,146,147] or insensitive [131,154] |
TRPP | |||
Drosophila BRV-1 | Cold sensation Gentle touch sensation in larvae [116] | class III neurons [116] | Stretch-activation in heterologous expression [116] |
C. elegans LOV-1 and PDK-2 | Male mating behaviour [185,186] | Male specific sensory neurons [185,186] | Pore forming subunits of MeT complexes [185,186] |
TRPA | |||
Mammalian TRPA | Candidates for auditory transduction [124] | Auditory cells Dorsal root ganglia [124] | Debated: stretch sensitive sensitive [124,150] or insensitive [131] |
C. elegans TRPA | Nose touch [118] | OLQ and IL1 mechanosensory neurons [118] | Stretch-gated [118] |
Drosophila TRPA | Noxious mechanical stimuli geotaxis [125,126,151] | Sensory neurons Johnston organ [125,126] | Activated by osmotic changes [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, M.; Chiodo, L.; Loppini, A. Biophysics and Modeling of Mechanotransduction in Neurons: A Review. Mathematics 2021, 9, 323. https://doi.org/10.3390/math9040323
Nicoletti M, Chiodo L, Loppini A. Biophysics and Modeling of Mechanotransduction in Neurons: A Review. Mathematics. 2021; 9(4):323. https://doi.org/10.3390/math9040323
Chicago/Turabian StyleNicoletti, Martina, Letizia Chiodo, and Alessandro Loppini. 2021. "Biophysics and Modeling of Mechanotransduction in Neurons: A Review" Mathematics 9, no. 4: 323. https://doi.org/10.3390/math9040323
APA StyleNicoletti, M., Chiodo, L., & Loppini, A. (2021). Biophysics and Modeling of Mechanotransduction in Neurons: A Review. Mathematics, 9(4), 323. https://doi.org/10.3390/math9040323