Mixed Convection Flow of Powell–Eyring Nanofluid near a Stagnation Point along a Vertical Stretching Sheet
Abstract
:1. Introduction
2. Problem Formulation
2.1. The Continuity and Momentum Equations
2.2. The Energy and Mass Transport Equations
2.3. Skin Friction Coefficient, Heat, and Mass Transfer Rate
3. Method of Solution
4. Discussion
4.1. Dimensionless Velocity, Temperature, and Concentration Fields
4.2. Skin Friction Coefficient, Nusselt Number, and Sherwood Number
5. Conclusions
- Stagnation parameter r has a bigger impact on the heat transfer rate under passive control of nanoparticles.
- Both fluid parameters and have minimal impacts on the fluid flow.
- Assisting flow has higher rates of heat and mass transfer as compared to the opposing flow.
- Both Brownian parameter, , and thermophoresis parameter, , lower the heat transfer rate of the fluid.
- The heat transfer rate is higher under passive control of nanoparticles than the heat transfer rate in active control of nanoparticles.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Roman Letter | |
a | coefficient for stagnation velocity |
c | coefficient for free stream velocity |
fluid parameter | |
C | nanoparticle volume fraction (mol/m) |
nanoparticle volume fraction near the wall surface for active control (mol/m) | |
nanoparticle volume fraction outside the boundary layer region (mol/m) | |
local skin friction | |
Brownian diffusion coefficient | |
thermophoretic diffusion coefficient | |
f | space function |
g | acceleration due to gravity (m/s) |
Lewis number | |
N | buoyancy force ratio |
Brownian motion parameter | |
thermophorosis parameter | |
local Nusselt number | |
Prandtl number | |
Reynolds number | |
local Sherwood number | |
T | fluid temperature (K) |
temperature near the wall surface (K) | |
temperature outside the boundary layer region (K) | |
surface mass flux (kg/s m) | |
surface heat flux (W/m) | |
r | stagnation parameter |
u | velocity component in x-direction (m/s) |
free stream velocity (m/s) | |
velocity near the wall surface (m/s) | |
v | velocity component in y-direction (m/s) |
Greek Letter | |
thermal conductivity (W/mK) | |
fluid parameter | |
thermal expansion coefficient | |
nanoparticle volumetric coefficient | |
variable | |
fluid parameter | |
fluid parameter | |
buoyancy parameter | |
thermal diffusivity (m/s) | |
dynamic viscosity (kg/ms) | |
kinematic viscosity (m/s) | |
dimensionless distance | |
stream function | |
fluid density (kg/m) | |
effective heat capacity ratio | |
wall shear stress (Pa) | |
temperature function | |
nanoparticle volume fraction function | |
Superscript | |
′ | differentiation with respect to |
Subscript | |
w | surface conditions |
∞ | free stream conditions |
References
- Chen, T.S.; Sparrow, E.M.; Mucoglu, A. Mixed convection in boundary layer flow on a horizontal plate. J. Heat Transf. 1977, 99, 66–71. [Google Scholar] [CrossRef]
- Ramachandran, N.; Chen, T.S.; Armaly, B.F. Mixed convection in stagnation flows adjacent to vertical surfaces. J. Heat Transf. 1988, 110, 373–377. [Google Scholar] [CrossRef]
- Merkin, J.H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 1986, 20, 171–179. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Amin, N.; Filip, D.; Pop, I. Mixed convection of the stagnation-point flow towards a stretching vertical permeable sheet. Malays. J. Math. Sci. 2007, 1, 217–226. [Google Scholar]
- Ishak, A.; Nazar, R.; Bachok, N.; Pop, I. MHD mixed convection flow near the stagnation-point on a vertical permeable surface. Phys. A Stat. Mech. Its Appl. 2010, 389, 40–46. [Google Scholar] [CrossRef]
- Bognar, G. On similarity solutions of boundary layer problems with upstream moving wall in non-Newtonian power-law fluids. IMA J. Appl. Math. 2011, 77, 546–562. [Google Scholar] [CrossRef]
- Hayat, T.; Abbas, Z.; Pop, I.; Asghar, S. Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int. J. Heat Mass Transf. 2010, 53, 466–474. [Google Scholar] [CrossRef]
- Aman, F.; Ishak, A.; Pop, I. Mixed convection boundary layer flow near stagnation-point on vertical surface with slip. Appl. Math. Mech. 2011, 32, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M. Mixed convection in the stagnation-point flow of a Maxwell fluid towards a vertical stretching surface. Nonlinear Anal. Real World Appl. 2010, 11, 3218–3228. [Google Scholar] [CrossRef]
- Hayat, T.; Shehzad, S.A.; Alsaedi, A.; Alhothuali, M.S. Mixed convection stagnation point flow of Casson fluid with convective boundary conditions. Chin. Phys. Lett. 2012, 29, 114704. [Google Scholar] [CrossRef]
- Tian, X.Y.; Li, B.W.; Hu, Z.M. Convective stagnation point flow of a MHD non-Newtonian nanofluid towards a stretching plate. Int. J. Heat Mass Transf. 2018, 127, 768–780. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed 1995, 231, 99–106. [Google Scholar]
- Makinde, O.D.; Khan, W.A.; Khan, Z.H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 2013, 62, 526–533. [Google Scholar] [CrossRef]
- Pal, D.; Mandal, G. Mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation. J. Pet. Sci. Eng. 2015, 126, 16–25. [Google Scholar] [CrossRef]
- Hsiao, K.L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng. 2016, 98, 850–861. [Google Scholar] [CrossRef]
- Abbasi, F.M.; Shehzad, S.A.; Hayat, T.; Alhuthali, M.S. Mixed convection flow of Jeffrey nanofluid with thermal radiation and double stratification. J. Hydrodyn. Ser. B 2016, 28, 840–849. [Google Scholar] [CrossRef]
- Othman, N.A.; Yacob, N.A.; Bachok, N.; Ishak, A.; Pop, I. Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid. Appl. Therm. Eng. 2017, 115, 1412–1417. [Google Scholar] [CrossRef]
- Zaib, A.; Khan, U.; Khan, I.; Seikh, A.H.H.; Sherif, E.S.M.M. Entropy Generation and Dual Solutions in Mixed Convection Stagnation Point Flow of Micropolar Ti6Al4V Nanoparticle along a Riga Surface. Processes 2019, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, R.; Karimi, N.; Nourbakhsh, A. Effects of radiation and magnetic field on mixed convection stagnation-point flow over a cylinder in a porous medium under local thermal non-equilibrium. J. Therm. Anal. Calorim. 2019, 140, 1371–1391. [Google Scholar] [CrossRef] [Green Version]
- Jamaludin, A.; Nazar, R.; Pop, I. Mixed convection stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of thermal radiation and heat source/sink. Energies 2019, 12, 788. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Salahuddin, T.; Tanveer, A.; Malik, M.Y.; Hussain, A. Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity. Chin. J. Chem. Eng. 2019, 27, 2352–2358. [Google Scholar] [CrossRef]
- Hayat, T.; Sajjad, R.; Muhammad, T.; Alsaedi, A.; Ellahi, R. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial. Results Phys. 2017, 7, 535–543. [Google Scholar]
- Hussain, Q.; Alvi, N.; Latif, T.; Asghar, S. Radiative heat transfer in Eyring-Powell nanofluid with peristalsis. Int. J. Thermophys. 2019, 40, 46. [Google Scholar] [CrossRef]
- Ibrahim, W.; Gadisa, G. Finite Element Method Solution of Boundary Layer Flow of Eyring-Powell Nanofluid over a Nonlinear Stretching Surface. J. Appl. Math. 2019, 2019, 3472518. [Google Scholar]
- Ogunseye, H.A.; Mondal, H.; Sibanda, P.; Mambili-Mamboundou, H. Lie group analysis of a Powell–Eyring nanofluid flow over a stretching surface with variable properties. SN Appl. Sci. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Fatima, S.; Malik, M.Y.; Salahuddin, T. Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface. Results Phys. 2018, 8, 1194–1203. [Google Scholar]
- Ogunseye, H.A.; Sibanda, P. A mathematical model for entropy generation in a Powell-Eyring nanofluid flow in a porous channel. Heliyon 2019, 5, e01662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaedi, A.; Hayat, T.; Qayyum, S.; Yaqoob, R. Eyring–Powell nanofluid flow with nonlinear mixed convection: Entropy generation minimization. Comput. Methods Programs Biomed. 2020, 186, 105183. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Jabeen, S.; Hayat, T.; Shehzad, S.A.; Alsaedi, A. Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. Int. Commun. Heat Mass Transf. 2020, 112, 104401. [Google Scholar] [CrossRef]
- Aziz, A.; Jamshed, W.; Aziz, T.; Bahaidarah, H.M.S.; Rehman, K.U. Entropy analysis of Powell–Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation. J. Therm. Anal. Calorim. 2020. [Google Scholar] [CrossRef]
- Hayat, T.; Farooq, M.; Alsaedi, A.; Iqbal, Z. Melting heat transfer in the stagnation point flow of Powell–Eyring fluid. J. Thermophys. Heat Transf. 2013, 27, 761–766. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Ishfaq, N.; Khan, Z.H.; Khan, W.A.; Culham, R.J. Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model. J. Hydrodyn. 2016, 28, 596–602. [Google Scholar] [CrossRef]
Ishfaq et al. [33] | Current Study | |
---|---|---|
0.1 | 1.2764 | 1.27637 |
0.2 | 1.1836 | 1.18362 |
0.3 | 1.0957 | 1.09571 |
0.4 | 1.0131 | 1.01309 |
0.5 | 0.9361 | 0.93607 |
r | N | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Active | Passive | Active | Passive | Active | Passive | |||||
0.2 | 0.3 | 0.1 | 1 | 0.5 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 |
0.5 | −0.1121 | −0.3418 | 0.1628 | 1.3079 | 1.9985 | −1.3079 | ||||
1.0 | 0.4303 | 0.2151 | 0.1673 | 1.4104 | 2.1538 | −1.4104 | ||||
1.2 | 0.7128 | 0.5023 | 0.1698 | 1.4540 | 2.2185 | −1.4540 | ||||
0.2 | 0 | −0.3009 | −0.5904 | 0.1623 | 1.2478 | 1.9108 | −1.2478 | |||
0.1 | −0.3041 | −0.5736 | 0.1622 | 1.2520 | 1.9144 | −1.2520 | ||||
0.3 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | ||||
0.5 | −0.3074 | −0.5198 | 0.1618 | 1.2656 | 1.9269 | −1.2656 | ||||
0.7 | −0.3062 | −0.4985 | 0.1617 | 1.2710 | 1.9321 | −1.2710 | ||||
0.3 | 0 | −0.3073 | −0.5438 | 0.1620 | 1.2595 | 1.9211 | −1.2595 | |||
0.1 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | ||||
0.3 | −0.3068 | −0.5457 | 0.1620 | 1.2591 | 1.9209 | −1.2591 | ||||
0.5 | −0.3065 | −0.5469 | 0.1620 | 1.2589 | 1.9208 | −1.2589 | ||||
0.7 | −0.3063 | −0.5482 | 0.1620 | 1.2586 | 1.9207 | −1.2586 | ||||
0.1 | −1 | −1.4386 | −1.1039 | 0.1479 | 1.1653 | 1.5966 | −1.1653 | |||
−0.5 | −1.0936 | −0.9507 | 0.1524 | 1.1939 | 1.7275 | −1.1939 | ||||
0 | −0.8081 | −0.8081 | 0.1561 | 1.2184 | 1.8077 | −1.2184 | ||||
0.5 | −0.5493 | −0.6733 | 0.1592 | 1.2399 | 1.8695 | −1.2399 | ||||
1 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | ||||
1 | 0.0 | −0.4274 | −0.5383 | 0.1608 | 1.2560 | 1.8975 | −1.2560 | |||
0.5 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | ||||
1 | −0.1899 | −0.5513 | 0.1631 | 1.2625 | 1.9429 | −1.2625 | ||||
2 | 0.0371 | −0.5666 | 0.1652 | 1.2684 | 1.9829 | −1.2684 |
Active | Passive | Active | Passive | Active | Passive | ||||
---|---|---|---|---|---|---|---|---|---|
0.1 | 0.5 | 1 | 5 | −0.3700 | −0.5772 | 0.3120 | 1.5658 | 1.7157 | −0.3132 |
0.3 | −0.3364 | −0.5615 | 0.2212 | 1.4090 | 1.8154 | −0.8454 | |||
0.5 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | |||
0.7 | −0.2815 | −0.5263 | 0.1225 | 1.1202 | 2.0193 | −1.5683 | |||
0.5 | 0.1 | −0.2593 | −0.5750 | 0.5876 | 1.2712 | 1.4680 | −6.3558 | ||
0.3 | −0.3156 | −0.5489 | 0.3172 | 1.2615 | 1.9149 | −2.1025 | |||
0.5 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | |||
0.7 | −0.2931 | −0.5426 | 0.0785 | 1.2584 | 1.8860 | −0.8989 | |||
0.5 | 1 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | ||
2 | −0.3449 | −0.5255 | 0.1135 | 1.1013 | 2.7166 | −1.1013 | |||
3 | −0.3653 | −0.5162 | 0.0963 | 1.0159 | 3.3040 | −1.0159 | |||
4 | −0.3788 | −0.5107 | 0.0873 | 0.9614 | 3.7925 | −0.9614 | |||
1 | 1 | −0.1451 | −0.4212 | 0.4777 | 0.6640 | 0.5283 | −0.6640 | ||
3 | −0.2693 | −0.5142 | 0.3335 | 1.0731 | 1.3429 | −1.0731 | |||
5 | −0.3071 | −0.5445 | 0.1620 | 1.2594 | 1.9210 | −1.2594 | |||
7 | −0.3258 | −0.5567 | 0.0697 | 1.3396 | 2.3250 | −1.3396 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Halim, N.; Mohd Noor, N.F. Mixed Convection Flow of Powell–Eyring Nanofluid near a Stagnation Point along a Vertical Stretching Sheet. Mathematics 2021, 9, 364. https://doi.org/10.3390/math9040364
Abdul Halim N, Mohd Noor NF. Mixed Convection Flow of Powell–Eyring Nanofluid near a Stagnation Point along a Vertical Stretching Sheet. Mathematics. 2021; 9(4):364. https://doi.org/10.3390/math9040364
Chicago/Turabian StyleAbdul Halim, Nadhirah, and Noor Fadiya Mohd Noor. 2021. "Mixed Convection Flow of Powell–Eyring Nanofluid near a Stagnation Point along a Vertical Stretching Sheet" Mathematics 9, no. 4: 364. https://doi.org/10.3390/math9040364
APA StyleAbdul Halim, N., & Mohd Noor, N. F. (2021). Mixed Convection Flow of Powell–Eyring Nanofluid near a Stagnation Point along a Vertical Stretching Sheet. Mathematics, 9(4), 364. https://doi.org/10.3390/math9040364