Canonical Almost Geodesic Mappings of the First Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces
Abstract
:1. Introduction
2. Basic Definitions of Almost Geodesic Mappings of Spaces with Affine Connections
3. Ricci-Symmetric, Generalized Ricci-Symmetric, 2-Ricci-Symmetric and Generalized 2-Ricci-Symmetric Spaces
4. Canonical Almost Geodesic Mappings of type of Spaces with Affine Connections onto Generalized 2-Ricci-Symmetric Spaces
5. Canonical Almost Geodesic Mappings of Type of Spaces with Affine Connections onto Generalized 3-Ricci-Symmetric Spaces
6. Canonical Almost Geodesic Mappings of Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sinyukov, N.S. Almost geodesic mappings of affinely connected and Riemannian spaces. Sov. Math. 1963, 4, 1086–1088. [Google Scholar]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Sinyukov, N.S. Almost-geodesic mappings of affinely connected and Riemann spaces. J. Sov. Math. 1984, 25, 1235–1249. [Google Scholar] [CrossRef]
- Mikeš, J.; Vanžurová, A.; Hinterleitner, I. Geodesic Mappings and Some Generalizations; Palacky Univ. Press: Olomouc, Czech Republic, 2009; ISBN 978-80-244-2524-5/pbk. [Google Scholar]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M.; et al. Differential Geometry of Special Mappings; Palacky Univ. Press: Olomouc, Czech Republic, 2015; ISBN 978-80-244-4671-4/pbk. [Google Scholar]
- Mikeš, J.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Formella, S.; Gavrilchenko, M.L.; Haddad, M.; Hinterleitner, I.; et al. Differential Geometry of Special Mappings; Palacky Univ. Press: Olomouc, Czech Republic, 2019; ISBN 978-80-244-5535-8/pbk. [Google Scholar]
- Mikeš, J. Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. N. Y. 1996, 78, 311–333. [Google Scholar] [CrossRef]
- Mikeš, J. Holomorphically projective mappings and their generalizations. J. Math. Sci. N. Y. 1998, 89, 1334–1353. [Google Scholar] [CrossRef]
- Mikeš, J.; Berezovski, V.E.; Stepanova, E.; Chudá, H. Geodesic mappings and their generalizations. J. Math. Sci. N. Y. 2016, 217, 607–623. [Google Scholar] [CrossRef]
- Levi-Civita, T. Sulle trasformazioni dello equazioni dinamiche. Ann. Mat. Pura Appl. 1896, 24, 252–300. [Google Scholar] [CrossRef] [Green Version]
- Petrov, A.Z. New Methods in General Relativity; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Kozak, A.; Borowiec, A. Palatini frames in scalar-tensor theories of gravity. Eur. Phys. J. 2019, 79, 335. [Google Scholar] [CrossRef]
- Bejan, C.-L.; Kowalski, O. On generalization of geodesic and magnetic curves. Note Mat. 2017, 37, 49–57. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On the classification of almost geodesic mappings of affine-connected spaces. In Proceedings of the Differential Geometry and its Applications, Dubrovnik, Yugoslavia, 26 June–3 July 1988; pp. 41–48. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On a classification of almost geodesic mappings of affine connection spaces. Acta Univ. Palacki. Olomuc. Math. 1996, 35, 21–24. [Google Scholar]
- Chernyshenko, V.M. Spaces with a special complex of geodesics. Tr. Semin. Vektor. Tenzor. Anal. 1961, 11, 253–268. [Google Scholar]
- Dobrovol’skii, V.A. Riemannian spaces with a general complex of geodesics. Gravitacija i Teor. Otnositel’nosti 1969, 6, 41–45. [Google Scholar]
- Aminova, A.V.; Mukhamedov A., M. Groups of almost projective motions of n-dimensional (pseudo) Euclidean spaces. Soviet Math. (Iz. VUZ) 1980, 24, 1–10. [Google Scholar]
- Sobchuk, V.S. Almost geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces. Mat. Zametki 1975, 17, 757–763. [Google Scholar]
- Sobchuk, V.S.; Mikeš, J.; Pokorná, O. On almost geodesic mappings π2 between semisymmetric Riemannian spaces. Novi Sad J. Math. 1999, 9, 309–312. [Google Scholar]
- Yablonskaya, N.V. Special groups of almost geodesic transformations of spaces with affine connection. Sov. Math. 1986, 30, 105–108. [Google Scholar]
- Yablonskaya, N.V. On some classes of almost geodesic mappings of general spaces with affine connections. (Russian). Ukr. Geom. Sb. 1984, 27, 120–124. [Google Scholar]
- Berezovski, V.; Bácsó, S.; Mikeš, J. Almost geodesic mappings of affinely connected spaces that preserve the Riemannian curvature. Ann. Math. Inf. 2015, 45, 3–10. [Google Scholar]
- Berezovski, V.; Cherevko, Y.; Hinterleitner, I.; Peška, P. Geodesic mappings of spaces with affine connections onto generalized symmetric and Ricci-symmetric spaces. Mathematics 2020, 8, 1560. [Google Scholar] [CrossRef]
- Berezovski, V.E.; Guseva, N.I.; Mikeš, J. On special first-type almost geodesic mappings of affine connection spaces preserving a certain tensor. Math. Notes 2015, 98, 515–518. [Google Scholar] [CrossRef]
- Berezovski, V.E.; Jukl, M.; Juklová, L. Almost geodesic mappings of the first type onto symmetric spaces. In Proceedings of the In Proc. 16th Conference on Applied Mathematics (APLIMAT 2017), Bratislava, Slovak Republic, 31 January–2 February 2017; pp. 126–131. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On almost geodesic mappings of the type π1 of Riemannian spaces preserving a system n-orthogonal hypersurfaces. Rend. Circ. Mat. Palermo 1999, 59, 103–108. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. Almost geodesic mappings of type π1 onto generalized Ricci-symmetric manifolds. Uch. zap. Kazan. Univ. Ser. Fiz.-Math. 2009, 151, 9–14. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On canonical almost geodesic mappings of the first type of affinely connected spaces. Russ. Math. 2014, 58, 1–5. [Google Scholar] [CrossRef]
- Berezovski, V.E.; Mikeš, J. Almost geodesic mappings of spaces with affine connection. J. Math. Sci. 2015, 207, 389–409. [Google Scholar] [CrossRef]
- Berezovski, V.E.; Mikeš, J.; Chudá, H.; Chepurna, O.Y. On canonical almost geodesic mappings which preserve the Weyl projective tensor. Russ. Math. 2017, 61, 1–5. [Google Scholar] [CrossRef]
- Berezovski, V.; Mikeš, J.; Rýparová, L.; Sabykanov, A. On canonical almost geodesic mappings of type π2(e). Mathematics 2020, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Berezovski, V.E.; Mikeš, J.; Vanžurová, A. Almost geodesic mappings onto generalized Ricci-Symmetric manifolds. Acta Math. Acad. Paedag. Nyhazi. 2010, 26, 221–230. [Google Scholar]
- Berezovski, V.E.; Mikeš, J.; Vanžurová, A. Fundamental PDE’s of the canonical almost geodesic mappings of type π1. Bull. Malays. Math. Sci. Soc. 2014, 2, 647–659. [Google Scholar]
- Vavříková, H.; Mikeš, J.; Pokorná, O.; Starko, G. On fundamental equations of almost geodesic mappings π2(e). Russ. Math. 2007, 1, 8–12. [Google Scholar] [CrossRef]
- Belova, O.; Mikeš, J. Almost geodesics and special affine connection. Res. Math. 2020, 75, 127. [Google Scholar] [CrossRef]
- Belova, O.; Falcone, G.; Figula, A.; Mikeš, J.; Nagy, P.T.; Wefelscheid, H. Our Friend and Mathematician Karl Strambach. Res. Math. 2020, 75, 69. [Google Scholar] [CrossRef]
- Stanković, M.S. On canonic almost geodesic mappings of the second type of affine spaces. Filomat 1999, 13, 105–144. [Google Scholar]
- Stanković, M.S.; Zlatanović, M.L.; Vesić, N.O. Basic equations of G-almost geodesic mappings of the second type, which have the property of reciprocity. Czech. Math. J. 2015, 65, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Petrović, M.Z.; Stanković, M.S. Special almost geodesic mappings of the first type of non-symmetric affine connection spaces. Bull. Malays. Math. Sci. Soc. 2017, 40, 1353–1362. [Google Scholar] [CrossRef]
- Petrović, M.Z. Canonical almost geodesic mappings of type θπ2(0,F), θ ∈ {1,2} between generalized parabolic Kähler manifolds. Miskolc Math. Notes 2018, 19, 469–482. [Google Scholar] [CrossRef]
- Petrović, M.Z. Special almost geodesic mappings of the second type between generalized Riemannian spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 707–727. [Google Scholar] [CrossRef]
- Vesić, N.O.; Stanković, M.S. Invariants of special second-type almost geodesic mappings of generalized Riemannian space. Mediterr. J. Math. 2018, 15, 60. [Google Scholar] [CrossRef]
- Vesić, N.O.; Velimirović, L.S.; Stanković, M.S. Some invariants of equitorsion third type almost geodesic mappings. Mediterr. J. Math. 2016, 13, 4581–4590. [Google Scholar] [CrossRef]
- Kaigorodov, V.R. A structure of space-time curvature. J. Soviet Math. 1985, 28, 256–273. [Google Scholar] [CrossRef]
- Fomin, V.E. On geodesic mappings of infinite-dimmensional Riemannian spaces onto symmetric spaces of an affine connection. Tr. Geom. Semin. Kazan 1979, 11, 93–99. [Google Scholar]
- Mikeš, J. Geodesic Ricci mappings of two-symmetric Riemann spaces. Math. Notes 1980, 28, 622–624. [Google Scholar] [CrossRef]
- Mikeš, J. On geodesic and holomorphic-projective mappings of generalized m-recurrent Riemannian spaces. Sib. Mat. Zh. 1992, 33, 215. [Google Scholar]
- Hinterleitner, I.; Mikeš, J. Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2009, 2, 125–133. [Google Scholar]
- Škodová, M.; Mikeš, J.; Pokorná, O. On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo. Ser. II 2005, 75, 309–316. [Google Scholar]
- Mikeš, J. Special F-planar mappings of affinely connected spaces onto Riemannian spaces. Mosc. Univ. Math. Bull. 1994, 49, 15–21. [Google Scholar]
- Mikeš, J.; Gavrilchenko, M.L.; Gladysheva, E.I. Conformal mappings onto Einstein spaces. Mosc. Univ. Math. Bull. 1994, 49, 10–14. [Google Scholar]
- Mikeš, J.; Rýparová, L.; Chudá, H. On the theory of rotary mappings. Math. Notes 2018, 104, 617–620. [Google Scholar] [CrossRef]
- Rýparová, L.; Křížek, J.; Mikeš, J. On fundamental equations of rotary vector fields. In Proceedings of the 18th Conference on Applied Mathematics (APLIMAT 2019), Bratislava, Slovak Republic, 5–7 February 2019; Volume 2, pp. 1031–1035. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezovski, V.; Cherevko, Y.; Mikeš, J.; Rýparová, L. Canonical Almost Geodesic Mappings of the First Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces. Mathematics 2021, 9, 437. https://doi.org/10.3390/math9040437
Berezovski V, Cherevko Y, Mikeš J, Rýparová L. Canonical Almost Geodesic Mappings of the First Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces. Mathematics. 2021; 9(4):437. https://doi.org/10.3390/math9040437
Chicago/Turabian StyleBerezovski, Volodymyr, Yevhen Cherevko, Josef Mikeš, and Lenka Rýparová. 2021. "Canonical Almost Geodesic Mappings of the First Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces" Mathematics 9, no. 4: 437. https://doi.org/10.3390/math9040437
APA StyleBerezovski, V., Cherevko, Y., Mikeš, J., & Rýparová, L. (2021). Canonical Almost Geodesic Mappings of the First Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces. Mathematics, 9(4), 437. https://doi.org/10.3390/math9040437