A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control
Abstract
:1. Introduction
2. Circular-Membrane MEMS Devices: Overview
2.1. Circular-Membrane MEMS as Transducer
2.2. p and : An Interesting Relationship
3. Problem Formulation
4. General Problem Formulation
5. Preliminary Lemmas
6. An Interesting Result of the Existence of at Least One Solution
7. Solution Uniqueness
8. On Research of Critical Points and Stability
8.1. A More Suitable Writing of the Differential Model
8.2. Critical Points and Stability
9. On Admissible Values of V
9.1. Minimal Value of V to Win the Mechanical Inertia of the Membrane
9.2. Maximal Value of V so the Membrane Does Not Touch the Upper Disk
10. Interesting Optimal Control Conditions
10.1. V Maximizing W
10.2. An Interesting Limitation for Starting from
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
r | radial coordinate |
R | radius of the membrane |
profile of the membrane | |
V | external voltage |
parameter depending on V | |
d | distance between the parallel disks |
electrostatic field | |
coefficient of proportionality between and | |
parameter concerning the fringing field effect | |
mean curvature of the membrane | |
critical security distance | |
V to win the mechanical inertia of the membrane | |
V to avoid that the membrane touches the upper disk | |
electrostatic pressure | |
permittivity of the free space | |
electrostatic capacitance | |
p | mechanical pressure |
density | |
h | thickness of the plate |
T | mechanical tension of the membrane at rest |
Y | Young modulus |
Poisson ratio | |
displacement at the center of the membrane | |
electrostatic force | |
coefficient of proportionality between and p | |
coefficient of proportionality between and p | |
k | coefficient of proportionality between and |
, | twice continuously differentiable functions (upper and lower solutions) |
, , , | continuous functions |
bounded and continuous electrostatic function | |
total electrostatic capacitance when the membrane is at rest | |
D | constant |
electrostatic capacitance when the membrane is deformed | |
total electrostatic capacitance when the membrane is deformed |
References
- Pelesko, J.A.; Bernstein, D.H. Modeling MEMS and NEMS; Chapman and Hall, CRC Press Company: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2003. [Google Scholar]
- Gad-el-Hak, M. MEMS: Design and Fabrication; Chapman and Hall, CRC Taylor and Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Cauchi, M.; Grech, I.; Mallia, B.; Mollicone, P.; Sammut, N. Analytical, Numerical and Experimental Study of a Horizontal Electrothermal MEMS Microgripper fo the Deformability Characterization of Human Red Blood Cells. Micromachines 2018, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathanson, H.; Newell, W.; Wickstrom, R.; Lewis, J. The Resonant Gate Transistor. IEEE Trans. Electron Devices 1964, 14, 117–133. [Google Scholar] [CrossRef]
- Cassani, D.; Tarsia, A. Periodic Solutions to Nonlocal MEMS Equations. Discret. Contin. Dyn. Syst. Ser. S 2016, 12, 188–199. [Google Scholar] [CrossRef]
- Cassani, D.; do Ó, J.M.; Ghoussoub, N. On a Fourth Order Elliptic Problem with a Singular Nonlinearity. Nonlinear Stud. 2009, 9, 189–209. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Luo, A.; Hu, Y.; Li, X.; Wang, F. Micro Electrostatic Enerhy Harvester with both Broad Bandwidth and High Normalized Power Density. Appl. Energy 2018, 212, 363–371. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ali, N. Effect of High Electrostatic Actuation on Thermoelastic Dameing in Thin Rectangular Microplate Resonators. J. Theor. Appl. Mech. 2015, 53, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Vinyas, M.; Kattimani, S. Investigation of the Effect of BaTiO3-CoFe24 Particle Arrangement on the Static Response of Magneto-Electro-Thermo-Elastic Plates. Compos. Struct. 2018, 185, 51–56. [Google Scholar] [CrossRef]
- Feng, J.; Liu, C.; Zhang, W.; Hao, S. Static and Dynamic Mechanical Behaviors of Electrostatic MEMS Resonator witgh Surface Processing Error. Micromachines 2018, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Di Barba, P.; Fattorusso, L.; Versaci, M. Electrostatic Feld in Terms of Geometric Curvature in Membrane MEMS Devices. Commun. Appl. Ind. Math. 2017, 8, 165–184. [Google Scholar]
- Di Barba, P.; Fattorusso, L.; Versaci, M. A 2D Non-Linear Second-Order Differential Model for Electrostatic Circular Membrane MEMS Devices: A Result of Existence and Uniqueness. Mathematics 2019, 7, 1193. [Google Scholar] [CrossRef] [Green Version]
- Pelesko, J.A.; Driscoll, T.A. The Effect of the Small-Aspect-Ratio Approximation on Canonical Electrostatic MEMS Models. J. Eng. Math. 2005, 53, 129–152. [Google Scholar] [CrossRef] [Green Version]
- Angiulli, G.; Jannelli, A.; Morabito, F.C.; Versaci, M. Reconstructing the Membrane Detection of a 1D Electrostatic-Driven MEMS Device by the Shooting Method: Convergence Analysis and Ghost Solutions Identification. Comp. Appl. Math. 2018, 37, 4484–4498. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; Fattorusso, L.; Jannelli, A. On the Uniqueness of the Solution for a Semi-Linear Elliptic Boundary Value Problem of the Membrane MEMS Device for Reconstructing the Membrane Profile in Absence of Ghost Solutions. Int. J. Non-Linear Mech. 2019, 109, 24–31. [Google Scholar] [CrossRef]
- Versaci, M.; Jannelli, A.; Angiulli, G. Electrostatic Micro-Electro-Mechanical-Systems (MEMS) Devices: A Comparison Among Numerical Techniques for Recovering the Membrane Profile. IEEE Access 2020, 8, 125874–125886. [Google Scholar] [CrossRef]
- Versaci, M.; Di Barba, P.; Morabito, F.C. Curvature-Dependent Electrostatic Field as a Principle for Modelling Membrane-Based MEMS Devices. A Review. Membranes 2020, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Versaci, M.; Morabito, F.C. Membrane Micro Electro-Mechanical Systems for Industrial Applications. In Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics; IGI Global: Hershey, PA, USA, 2003; pp. 139–175. [Google Scholar]
- Zozulya, V.V.; Saez, A. A High-Order Theory of a Thermoelastic Beams and Its Application to the MEMS/NEMS Analysis and Simulations. A Review. Arch. Appl. Mech. 2016, 86, 1255–1273. [Google Scholar] [CrossRef]
- Zega, V.; Frangi, A.; Guercilena, A.; Gattere, G. Analysis of Frequency Stability and Thermoelastic Effects for Slotted Tuning Fork MEMS Resonators. Sensors 2018, 8, 2157. [Google Scholar] [CrossRef] [Green Version]
- Sravani, K.G.; Narayana, T.L.; Guha, K.; Rao, K.S. Role of Dielectric Layer and Beam Membrane in Improving the Performance of Capacitive RF MEMS Switches for Ka-Band Applications. Math. Technol. 2018, 9, 145–156. [Google Scholar] [CrossRef]
- Neff, B.; Casset, F.; Millet, A.; Agache, V.; Verplanck, N.; Boizot, F.; Fanget, S. Development and Characterization of MEMS Membrane Based on Thin-Film PZT Actuators for Microfluidic Applications. In Proceedings of the 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Toulouse, France, 15–18 April 2018. [Google Scholar]
- Javaher, H.; Ghanati, P.P.; Azizi, S. A Case Study on the Numerical Solution and Reduced Order Model of MEMS. Sensors 2018, 19, 35–48. [Google Scholar] [CrossRef]
- de Oliveira Hansen, R.; Mátéfi-Tempfli, M.; Safonovs, R.; Adam, J.; Chemnitz, S.; Reimer, T.; Wagner, B.; Benecke, W.; Mátéfi-Tempfli, S. Magnetic Films for Electromagnetic Actuation in MEMS Switches. Microsyst. Technol. 2018, 24, 1987–1994. [Google Scholar] [CrossRef]
- Di Barba, P.; Wiak, S. MEMS: Field Models and Optimal Design; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Di Barba, P.; Gotszalk, T.; Majastrzyk, W.; Mognasti, M.; Orlowska, K. Optimal Design of Electromagnetically Actuated MEMS Cantilevers. Sensors 2018, 18, 2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velosa-Moncada, L.A.; Aguilera-Cortés, L.A.; González-Palacios, M.A.; Raskin, J.P.; Herrera-May, A.L. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Combdrive Actuators for Biomedical Applications. Sensors 2018, 18, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisar, A.; Afzulpurkar, N.; Mahaisavariya, B.; Tuantranont, A. MEMS-Based Micropumps in Drug Delivery and Biomedical Applications. Sens. Actuators B Chem. 2008, 2, 917–942. [Google Scholar] [CrossRef]
- Wei, J.; Ye, D. On MEMS Equation with Fringing Field. Proc. Am. Math. Soc. 2010, 138, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Leus, V.; Elata, D. Fringing Field Effect in Electrostatic Actuator. In Technical Report ETR-2004-2; Israel Institute of Technology, Faculty of Mechanical Engineering: Haifa, Israel, 2004. [Google Scholar]
- Hosseini, M.; Zhu, G.; Peter, Y.A. A New Formulation of Fringing Capacitance and its Application to the Control of Parallel-Plate Electrostatic Micro Actuators. Analog. Integr. Circ. Sig. Process. 2007, 53, 119–128. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Pickard, F.C., IV; Narayanan, B.; Sen, F.G.; Chan, M.K.; Sankaranarayanan, S.K.; Brooks, B.R.; Roux, B. Machine Learning Force Field Parameters from Ab Initio Data. J. Chem. Theory Comput. 2017, 13, 4492–4503. [Google Scholar] [CrossRef] [Green Version]
- Imani, M.; Ghoreishi, S.F. Scalable Inverse Reinforcement Learning Through Multi-Fidelity Bayesian Optimization. IEEE Trans. Meural Netw. Learn. Syst. 2021, 1–8. [Google Scholar] [CrossRef]
- Roudneshin, M.; Sayrafian-Pour, K.; Aghdam, A. A Machine Learning Approach to the Estimation of Near-Optimal Electrostatic Force in Micro Energy-Harvesters. In Proceedings of the 2019 IEEE International Conference on Wireless for Space and Extreme Environments, Ottawa, ON, Canada, 16–18 October 2019. [Google Scholar]
- Timoshenko, S.; Woinowsly-Krieger, S. Theory of Plates and Shells; McGraw Hill: New York, NY, USA, 1959. [Google Scholar]
- Bayley, P.B.; Shampine, L.F.; Waltman, P.E. Nonlinear Two Point Boundary Value Problems; Academic Press: Cambridge, MA, USA, 1968. [Google Scholar]
- Di Barba, P.; Fattorusso, L.; Versaci, M. Curvature Dependent Electrostatic Field in the Deformable MEMS Device: Stability and Optimal Control. Commun. Appl. Ind. Math. 2020, 11, 35–54. [Google Scholar]
- Barreira, L.; Valls, C. Dynamical Systems; Springer: London, UK, 2020. [Google Scholar]
- Fujimoto, M. Physics of Classical Electromagnetism; Springer: New York, NY, USA, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Barba, P.; Fattorusso, L.; Versaci, M. A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control. Mathematics 2021, 9, 465. https://doi.org/10.3390/math9050465
Di Barba P, Fattorusso L, Versaci M. A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control. Mathematics. 2021; 9(5):465. https://doi.org/10.3390/math9050465
Chicago/Turabian StyleDi Barba, Paolo, Luisa Fattorusso, and Mario Versaci. 2021. "A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control" Mathematics 9, no. 5: 465. https://doi.org/10.3390/math9050465
APA StyleDi Barba, P., Fattorusso, L., & Versaci, M. (2021). A 2D Membrane MEMS Device Model with Fringing Field: Curvature-Dependent Electrostatic Field and Optimal Control. Mathematics, 9(5), 465. https://doi.org/10.3390/math9050465