Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy
Abstract
:Contents
1. Introduction
1.1. Differential Equations with Constant Delay
1.2. Pantograph-Type ODEs and PDEs and Their Applications
1.3. Concept of ‘Exact Solution’ for Nonlinear Pantograph-Type PDEs
- (i)
- in terms of elementary functions, functions included in the equation (this is necessary when the equation contains arbitrary functions), and indefinite and/or definite integrals;
- (ii)
- in terms of solutions of ODEs without delay or systems of such equations;
- (iii)
- in terms of solutions of pantograph-type ODEs and ODEs with constant or varying delay or systems of such equations.
2. Solutions of Pantograph-Type PDEs That Contain Unknown Functions and
2.1. Equations Containing Free Parameters
2.2. Equations Linear in Derivatives and Containing One Arbitrary Function
2.3. More Complex Nonlinear Equations Containing One Arbitrary Function
2.4. Nonlinear Equations Containing Two Arbitrary Functions
3. Solutions of Pantograph-Type PDEs That Contain Unknown Functions and
3.1. Equations Containing Free Parameters
3.2. Equations Linear in Derivatives and Containing One Arbitrary Function
3.3. More Complex Nonlinear Equations Containing One Arbitrary Function
3.4. Nonlinear Equations Containing Two Arbitrary Functions
4. Solutions of Pantograph-Type PDEs That Contain Unknown Functions and
4.1. Equations Linear in Derivatives
4.2. More Complex Nonlinear Equations
5. Some Generalizations
5.1. Nonlinear Multi-Pantograph Type PDEs
5.2. Nonlinear Pantograph-Type PDEs Containing Unknown Functions with Dilation or Contraction of Arguments in the Derivative
5.3. Principle of Analogy of Solutions
6. Brief Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bellman, R.; Cooke, K.L. Differential-Difference Equations; Academic Press: New York, NY, USA, 1963; ISBN 9780080955148. [Google Scholar]
- Elsgolt’s, L.E.; Norkin, S.B. Introduction to the Theory and Application of Differential Equations With Deviating Arguments; Academic Press: New York, NY, USA, 1973; ISBN 9780122377501. [Google Scholar]
- Myshkis, A.D. Linear Differential Equations with Retarded Argument; Nauka: Moscow, Russia, 1972. (In Russian) [Google Scholar]
- Wu, J. Theory and Applications of Partial Functional Differential Equations; Springer: New York, NY, USA, 1996; ISBN 9780387947716. [Google Scholar]
- Mei, M.; Lin, C.-K.; Lin, C.-T.; So, J.W.-H. Traveling wavefronts for time-delayed reaction–diffusion equation: (I) Local nonlinearity. J. Dif. Equat. 2009, 247, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Lv, G.; Wang, Z. Stability of traveling wave solutions to delayed evolution equation. J. Dyn. Control Syst. 2015, 21, 173–187. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Nonlinear delay reaction–diffusion equations: Traveling-wave solutions in elementary functions. Appl. Math. Lett. 2015, 46, 38–43. [Google Scholar] [CrossRef]
- Meleshko, S.V.; Moyo, S. On the complete group classification of the reaction–diffusion equation with a delay. J. Math. Anal. Appl. 2008, 338, 448–466. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D.; Zhurov, A.I. Exact solutions of linear and nonlinear differential-difference heat and diffusion equations with finite relaxation time. Int. J. Non-Linear Mech. 2013, 54, 115–126. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Functional constraints method for constructing exact solutions to delay reaction–diffusion equations and more complex nonlinear equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 417–430. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Exact separable solutions of delay reaction–diffusion equations and other nonlinear partial functional-differential equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 409–416. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. New generalized and functional separable solutions to nonlinear delay reaction–diffusion equations. Int. J. Non-Linear Mech. 2014, 59, 16–22. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Nonlinear delay reaction–diffusion equations with varying transfer coefficients: Exact methods and new solutions. Appl. Math. Lett. 2014, 37, 43–48. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Non-linear instability and exact solutions to some delay reaction–diffusion systems. Int. J. Non-Linear Mech. 2014, 62, 33–40. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. The functional constraints method: Application to non-linear delay reaction–diffusion equations with varying transfer coefficients. Int. J. Non-Linear Mech. 2014, 67, 267–277. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. The generating equations method: Constructing exact solutions to delay reaction–diffusion systems and other non-linear coupled delay PDEs. Int. J. Non-Linear Mech. 2015, 71, 104–115. [Google Scholar] [CrossRef]
- Polyanin, A.D. Generalized traveling-wave solutions of nonlinear reaction–diffusion equations with delay and variable coefficients. Appl. Math. Lett. 2019, 90, 49–53. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. A method for constructing exact solutions of nonlinear delay PDEs. J. Math. Anal. Appl. 2021, 494, 124619. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105634. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Generalized and functional separable solutions to non-linear delay Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2676–2689. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G.; Vyazmin, A.V. Exact solutions and qualitative features of nonlinear hyperbolic reaction–diffusion equations with delay. Theor. Found. Chem. Eng. 2015, 49, 622–635. [Google Scholar] [CrossRef]
- Long, F.-S.; Meleshko, S.V. On the complete group classification of the one-dimensional nonlinear Klein–Gordon equation with a delay. Math. Methods Appl. Sci. 2016, 39, 3255–3270. [Google Scholar] [CrossRef]
- Long, F.-S.; Meleshko, S.V. Symmetry analysis of the nonlinear two-dimensional Klein–Gordon equation with a time-varying delay. Math. Methods Appl. Sci. 2017, 40, 4658–4673. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. New exact solutions of nonlinear wave type PDEs with delay. Appl. Math. Lett. 2020, 108, 106512. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Exact solutions of non-linear differential-difference equations of a viscous fluid with finite relaxation time. Int. J. Non-Linear Mech. 2013, 57, 116–122. [Google Scholar] [CrossRef]
- Shampine, L.F.; Thompson, S. Numerical Solutions of Delay Differential Equations. In Delay Differential Equations: Recent Advances and New Directions; Springer: New York, NY, USA, 2009; pp. 245–271. ISBN 9780387855943. [Google Scholar]
- Rihan, F.A. Computational methods for delay parabolic and time-fractional partial differential equations. Numer. Meth. Partial Differ. Equat. 2010, 26, 1556–1571. [Google Scholar] [CrossRef]
- Schiesser, W.E. Time Delay ODE/PDE Models: Applications in Biomedical Science and Engineering; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780367427979. [Google Scholar]
- Jordan, P.M.; Dai, W.; Mickens, R.E. A note on the delayed heat equation: Instability with respect to initial data. Mech. Res. Comm. 2008, 35, 414–420. [Google Scholar] [CrossRef]
- Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A. 1971, 332, 447–468. [Google Scholar] [CrossRef]
- Hall, A.J.; Wake, G.C. A functional differential equation arising in the modelling of cell growth. J. Aust. Math. Soc. Ser. B 1989, 30, 424–435. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.J.; Wake, G.C.; Gandar, P.W. Steady size distributions for cells in one dimensional plant tissues. J. Math. Biol. 1991, 30, 101–123. [Google Scholar] [CrossRef]
- Derfel, G.; van Brunt, B.; Wake, G.C. A cell growth model revisited. Funct. Differ. Equat. 2012, 19, 71–81. [Google Scholar]
- Zaidi, A.A.; van Brunt, B.; Wake, G.C. Solutions to an advanced functional partial differential equation of the pantograph type. Proc. R. Soc. A. 2015, 471, 20140947. [Google Scholar] [CrossRef]
- Efendiev, M.; van Brunt, B.; Wake, G.C.; Zaidi, A.A. A functional partial differential equation arising in a cell growth model with dispersion. Math. Meth. Appl. Sci. 2018, 41, 1541–1553. [Google Scholar] [CrossRef]
- Ambartsumyan, V.A. On the fluctuation of the brightness of the Milky Way. Dokl. Akad. Nauk SSSR 1944, 44, 223–226. [Google Scholar]
- Dehghan, M.; Shakeri, F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 2008, 78, 065004. [Google Scholar] [CrossRef]
- Ajello, W.G.; Freedman, H.I.; Wu, J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 1992, 52, 855–869. [Google Scholar] [CrossRef]
- Mahler, K. On a special functional equation. J. Lond. Math. Soc. 1940, 1, 115–123. [Google Scholar] [CrossRef]
- Ferguson, T.S. Lose a dollar or double your fortune. In Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability; Le Cam, L.M., Neyman, J., Scott, E.L., Eds.; University California Press: Berkeley, CA, USA, 1972; Volume III, pp. 657–666, ISBN 9780520021853. [Google Scholar]
- Robinson, R.W. Counting labeled acyclic digraphs. In New Directions in the Theory of Graphs; Harari, F., Ed.; Academic Press: New York, NY, USA, 1973; pp. 239–273. ISBN 9780123242556. [Google Scholar]
- Gaver, D.P. An absorption probablility problem. J. Math. Anal. Appl. 1964, 9, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, Y. State estimation of neural networks with both time-varying delays and norm-bounded parameter uncertainties via a delay decomposition approach. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3517–3529. [Google Scholar] [CrossRef]
- Fox, L.; Mayers, D.F.; Ockendon, J.R.; Tayler, A.B. On a functional differential equation. IMA J. Appl. Math. 1971, 8, 271–307. [Google Scholar] [CrossRef]
- Iserles, A. On the generalized pantograph functional differential equation. Eur. J. Appl. Math. 1993, 4, 1–38. [Google Scholar] [CrossRef]
- Kate, T.; McLeod, J.B. Functional-differential equation y′ = ay(λt) + by(t). Bull. Am. Math. Soc. 1971, 77, 891–937. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Z.; Li, D. Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math. Comput. 2004, 155, 853–871. [Google Scholar] [CrossRef]
- Van Brunt, B.; Wake, G.C. A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model. Eur. J. Appl. Math. 2011, 22, 151–168. [Google Scholar] [CrossRef]
- Yüzbasi, S.; Sezer, M. An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model. 2013, 37, 9160–9173. [Google Scholar] [CrossRef]
- Reutskiy, S.Y. A new collocation method for approximate solution of the pantograph functional differential equations with proportional delay. Appl. Math. Comput. 2015, 266, 642–655. [Google Scholar] [CrossRef]
- Isik, O.R.; Turkoglu, T. A rational approximate solution for generalized pantograph-delay differential equations. Math. Meth. Appl. Sci. 2016, 39, 2011–2024. [Google Scholar] [CrossRef]
- Patade, J.; Bhalekar, S. Analytical solution of pantograph equation with incommensurate delay. Phys. Sci. Rev. 2017, 2, 20165103. [Google Scholar] [CrossRef]
- Bahgat, M.S.M. Approximate analytical solution of the linear and nonlinear multi-pantograph delay differential equations. Phys. Scr. 2020, 95, 055219. [Google Scholar] [CrossRef]
- Hou, C.-C.; Simos, T.E.; Famelis, I.T. Neural network solution of pantograph type differential equations. Math. Meth. Appl. Sci. 2020, 43, 3369–3374. [Google Scholar] [CrossRef]
- Alrabaiah, H.; Ahmad, I.; Shah, K.; Rahman, G.U. Qualitative analysis of nonlinear coupled pantograph differential equations of fractional order with integral boundary conditions. Bound. Value Probl. 2020, 2020, 138. [Google Scholar] [CrossRef]
- Liu, Y. On the θ-method for delay differential equations with infinite lag. J. Comput. Appl. Math. 1996, 71, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Bellen, A.; Guglielmi, N.; Torelli, L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl. Numer. Math. 1997, 24, 279–293. [Google Scholar] [CrossRef]
- Koto, T. Stability of Runge–Kutta methods for the generalized pantograph equation. Numer. Math. 1999, 84, 233–247. [Google Scholar] [CrossRef]
- Bellen, A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J. Numer. Anal. 2002, 22, 529–536. [Google Scholar] [CrossRef]
- Guglielmi, N.; Zennaro, M. Stability of one-leg θ-methods for the variable coefficient pantograph equation on the quasi-geometric mesh. IMA J. Numer. Anal. 2003, 23, 421–438. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, M.Z. H-stability of Runge–Kutta methods with general variable stepsize for pantograph equation. Appl. Math. Comput. 2004, 148, 881–892. [Google Scholar] [CrossRef]
- Evans, D.J.; Raslan, K.R. The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math. 2005, 82, 49–54. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.Z. Runge–Kutta methods for the multi-pantograph delay equation. Appl. Math. Comput. 2005, 163, 383–395. [Google Scholar] [CrossRef]
- Liu, M.Z.; Yang, Z.W.; Xu, Y. The stability of modified Runge–Kutta methods for the pantograph equation. Math. Comput. 2006, 75, 1201–1215. [Google Scholar] [CrossRef]
- Sezer, M.; Akyüz-Dascioglu, A. A Taylor method for numerical solution of generalized pantograph equations with linear functional argument. J. Comput. Appl. Math. 2007, 200, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Sezer, M.; Yalçinbaş, S.; Sahin, N. Approximate solution of multi-pantograph equation with variable coefficients. J. Comput. Appl. Math. 2008, 214, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Saadatmandi, A.; Dehghan, M. Variational iteration method for solving a generalized pantograph equation. Comput. Math. Appl. 2009, 58, 2190–2196. [Google Scholar] [CrossRef] [Green Version]
- Brunner, H.; Huang, Q.; Xie, H. Discontinuous Galerkin methods for delay differential equations of pantograph type. SIAM J. Numer. Anal. 2010, 48, 1944–1967. [Google Scholar] [CrossRef]
- Shakeri, F.; Dehghan, M. Application of the decomposition method of Adomian for solving the pantograph equation of order m. Z. Naturforsch. 2010, 65a, 453–460. [Google Scholar] [CrossRef]
- Yusufoğlu, E. An efficient algorithm for solving generalized pantograph equations with linear functional argument. Appl. Math. Comput. 2010, 217, 3591–3595. [Google Scholar] [CrossRef]
- Gülsu, M.; Sezer, M. A Taylor collocation method for solving high-order linear pantograph equations with linear functional argument. Numer. Meth. Partial Differ. Equat. 2011, 27, 1628–1638. [Google Scholar] [CrossRef]
- Yalçinbaş, S.; Aynigül, M.; Sezer, M. A collocation method using Hermite polynomials for approximate solution of pantograph equations. J. Frankl. Inst. 2011, 348, 1128–1139. [Google Scholar] [CrossRef]
- Yüzbaşi, S.; Şahin, N.; Sezer, M. A Bessel collocation method for numerical solution of generalized pantograph equations. Numer. Methods Partial Differ. Equ. 2011, 28, 1105–1123. [Google Scholar] [CrossRef]
- Sedaghat, S.; Ordokhani, Y.; Dehghan, M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4815–4830. [Google Scholar] [CrossRef]
- Tohidi, E.; Bhrawy, A.H.; Erfani, K. A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 2013, 37, 4283–4294. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Baleanu, D.; Hafez, M. A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 2014, 77, 43–54. [Google Scholar] [CrossRef]
- Wang, W. High order stable Runge–Kutta methods for nonlinear generalized pantograph equations on the geometric mesh. Appl. Math. Model. 2015, 39, 270–283. [Google Scholar] [CrossRef]
- Wang, W. Fully-geometric mesh one-leg methods for the generalized pantograph equation: Approximating Lyapunov functional and asymptotic contractivity. Appl. Numer. Math. 2017, 117, 50–68. [Google Scholar] [CrossRef]
- Yang, C. Modified Chebyshev collocation method for pantograph-type differential equations. Appl. Numer. Math. 2018, 134, 132–144. [Google Scholar] [CrossRef]
- Yang, C.; Lv, X. Generalized Jacobi spectral Galerkin method for fractional pantograph differential equation. Math. Methods Appl. Sci. 2021, 44, 153–165. [Google Scholar] [CrossRef]
- Li, X.Y.; Wu, B.Y. A continuous method for nonlocal functional differential equations with delayed or advanced arguments. J. Math. Anal. Appl. 2014, 409, 485–493. [Google Scholar] [CrossRef]
- Liu, C.-S. Basic theory of a class of linear functional differential equations with multiplication delay. arXiv 2018, arXiv:1605.06734v4. [Google Scholar]
- Rossovskii, L.E. Elliptic functionally-differential equations with contractions of arguments. Dokl. Math. 2006, 74, 809–811. [Google Scholar] [CrossRef]
- Rossovskii, L.E. Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function. J. Math. Sci. 2017, 223, 351–493. [Google Scholar] [CrossRef]
- Skubachevskii, A.L. Boundary-value problems for elliptic functional-differential equations and their applications. Russ. Math. Surv. 2016, 71, 801–906. [Google Scholar] [CrossRef] [Green Version]
- Abazari, R.; Ganji, M. Extended two-dimensional DTM and its application on nonlinear PDEs with proportional delay. Int. J. Comput. Math. 2011, 88, 1749–1762. [Google Scholar] [CrossRef]
- Grover, D.; Sharma, D.; Singh, P. Accelerated HPSTM: An efficient semi-analytical technique for the solution of nonlinear PDE’s. Nonlinear Eng. 2020, 9, 329–337. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Polyanin, A.D. Methods for constructing complex solutions of nonlinear PDEs using simpler solutions. Mathematics 2021, 9, 345. [Google Scholar] [CrossRef]
- Solodushkin, S.I.; Yumanova, I.F.; Staelen, R.D. First-order partial differential equations with time delay and retardation of a state variable. J. Comput. Appl. Math. 2015, 289, 322–330. [Google Scholar] [CrossRef]
- Sakar, M.G.; Uludag, F.; Erdogan, F. Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method. Appl. Math. Model. 2016, 40, 6639–6649. [Google Scholar] [CrossRef]
- Bekela, A.S.; Belachew, M.T.; Wole, G.A. A numerical method using Laplace-like transform and variational theory for solving time-fractional nonlinear partial differential equations with proportional delay. Adv. Differ. Equat. 2020, 2020, 586. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, C. A fully discrete θ-method for solving semi-linear reaction–diffusion equations with time-variable delay. Math. Comput. Simul. 2021, 179, 48–56. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781420087239. [Google Scholar]
- Dorodnitsyn, V.A. On invariant solutions of the equation of non-linear heat conduction with a source. USSR Comput. Math. Math. Phys. 1982, 22, 115–122. [Google Scholar] [CrossRef]
- Nucci, M.C.; Clarkson, P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. Phys. Lett. A 1992, 164, 49–56. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On exact solutions of families of Fisher equations. Theor. Math. Phys. 1993, 94, 211–218. [Google Scholar] [CrossRef]
- Galaktionov, V.A. Quasilinear heat equations with first-order sign-invariants and new explicit solutions. Nonlinear Anal. Theor. Meth. Appl. 1994, 23, 1595–1621. [Google Scholar] [CrossRef]
- Ibragimov, N.H. (Ed.) Vol. 1, Symmetries, Exact Solutions and Conservation Laws. In CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1994; ISBN 9780849344886. [Google Scholar]
- Doyle, P.W.; Vassiliou, P.J. Separation of variables for the 1-dimensional non-linear diffusion equation. Int. J. Non-Linear Mech. 1998, 33, 315–326. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of variables. Phys. D 2000, 139, 28–47. [Google Scholar] [CrossRef]
- Estevez, P.G.; Qu, C.; Zhang, S. Separation of variables of a generalized porous medium equation with nonlinear source. J. Math. Anal. Appl. 2002, 275, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Kaptsov, O.V.; Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen. 2003, 36, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2007; ISBN 9781584886631. [Google Scholar]
- Vaneeva, O.O.; Johnpillai, A.G.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction–diffusion equations with power nonlinearities. J. Math. Anal. Appl. 2007, 330, 1363–1386. [Google Scholar] [CrossRef] [Green Version]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction–diffusion equations with exponential nonlinearities. J. Math. Anal. Appl. 2012, 396, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Broadbridge, P.; Bradshaw-Hajek, B.H. Exact solutions for logistic reaction–diffusion equations in biology. Z. Angew. Math. Phys. 2016, 67, 93. [Google Scholar] [CrossRef] [Green Version]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781498776196. [Google Scholar]
- Bradshaw-Hajek, B.H. Nonclassical symmetry solutions for non-autonomous reaction–diffusion equations. Symmetry 2019, 11, 208. [Google Scholar] [CrossRef] [Green Version]
- Goard, J.; Broadbridge, P. A note on separation of variables solutions of generalized nonlinear diffusion equations. Appl. Math. Lett. 2019, 98, 7–12. [Google Scholar] [CrossRef]
- Kosov, A.A.; Semenov, E.I. The Lambert function and exact solutions of nonlinear parabolic equations. Russ. Math. 2019, 63, 10–16. [Google Scholar] [CrossRef]
- Polyanin, A.D. Construction of exact solutions in implicit form for PDEs: New functional separable solutions of non-linear reaction–diffusion equations with variable coefficients. Int. J. Non-Linear Mech. 2019, 111, 95–105. [Google Scholar] [CrossRef]
- Polyanin, A.D. Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 347, 282–292. [Google Scholar] [CrossRef]
- Polyanin, A.D. Comparison of the effectiveness of different methods for constructing exact solutions to nonlinear PDEs. Generalizations and new solutions. Mathematics 2019, 7, 386. [Google Scholar] [CrossRef] [Green Version]
- Kosov, A.A.; Semenov, E.I. Exact solutions of the generalized Richards equation with power-law nonlinearities. Diff. Equ. 2020, 56, 1119–1129. [Google Scholar] [CrossRef]
- Opanasenko, S.; Boyko, V.; Popovych, R.O. Enhanced group classification of nonlinear diffusion-reaction equations with gradient-dependent diffusivity. J. Math. Anal. Appl. 2020, 484, 123739. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D. Functional separation of variables in nonlinear PDEs: General approach, new solutions of diffusion-type equations. Mathematics 2020, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Polyanin, A.D.; Zhurov, A.I. Separation of variables in PDEs using nonlinear transformations: Applications to reaction–diffusion type equations. Appl. Math. Lett. 2020, 100, 106055. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Sorokin, V.G. Exact solutions of nonlinear partial differential equations with pantograph type variable delay. Bull. NRNU MEPhI 2020, 9, 315–328. (In Russian) [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyanin, A.D.; Sorokin, V.G. Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy. Mathematics 2021, 9, 511. https://doi.org/10.3390/math9050511
Polyanin AD, Sorokin VG. Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy. Mathematics. 2021; 9(5):511. https://doi.org/10.3390/math9050511
Chicago/Turabian StylePolyanin, Andrei D., and Vsevolod G. Sorokin. 2021. "Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy" Mathematics 9, no. 5: 511. https://doi.org/10.3390/math9050511
APA StylePolyanin, A. D., & Sorokin, V. G. (2021). Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy. Mathematics, 9(5), 511. https://doi.org/10.3390/math9050511