Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales
Abstract
:1. Introduction
- () , ;
- () is a quotient of odd positive integers;
- () such that , , , ;
- () and there exists a function such that for all and .
- (i)
- , , , : L. Erbe et al. [12];
- (ii)
- , , : Z. Han et al. [14];
- (iii)
- (iv)
- , , and : R.P. Agarwal et al. [5];
- (v)
- , , , and , where is the ratio of odd positive integers, is unbounded: G. E. Chatzarakis et al. [10];
- (vi)
- , , , , or , : T. Li and Yu. V. Rogovchenko [17];
- (vii)
- , , , , : E. Thandapani and T. Li [21];
- (viii)
- , , , , , : Y. Jiang et al. [15];
- (ix)
2. Main Results
2.1. Oscillation Results for (1) When (2) Holds
2.2. Oscillation Results for (1) When (3) Holds
3. Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales, an Introduction with Applications; Birkhäuer: Basel, Switzerland, 2001. [Google Scholar]
- Bohner, M.; Georgiev, S.G. Multivariable Dynamic Calculus on Time Scales; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Tang, S.; Li, T.; Zhang, C. Oscillation and asymptotic behavior of third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 2012, 219, 3600–3609. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Hille and Nehari type criteria for third-order delay dynamic equations. J. Differ. Equ. Appl. 2013, 19, 1563–1579. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A Philos-type theorem for third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 2014, 249, 527–531. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Candan, T. Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations. Adv. Differ. Equ. 2014, 2014, 35. [Google Scholar] [CrossRef] [Green Version]
- Candan, T. Oscillation criteria and asymptotic properties of solutions of third-order nonlinear neutral differential equations. Math. Meth. Appl. Sci. 2015, 38, 1379–1392. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovska, I.; Li, T.; Tunc, E. Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, 2019, 5691758. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Cesarano, C.; Bazighifan, I.; Moaaz, O. Asymptotic and Oscillatory Behavior of Solutions of a Class of Higher Order Differential Equation. Symmetry 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Erbe, L.; Peterson, A.; Saker, S.H. Hille and Nehari type criteria for third-order dynamic equations. J. Math. Anal. Appl. 2007, 329, 112–131. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Zhang, Z. Oscillation theorems for third-order nonlinear delay dynamic equations on time scales. Appl. Math. A J. Chin. Univ. (Ser. A) 2020, 35, 211–222. [Google Scholar]
- Han, Z.; Li, T.; Sun, S.; Cao, F. Oscillation criteria for third-order nonlinear delay dynamic equations on time scales. Ann. Polon. Math. 2010, 99, 143–156. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, C.; Li, T. Oscillatory behavior of third-order nonlinear neutral delay differential equations. Adv. Differ. Equ. 2016, 2016, 171. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Li, T. Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments. J. Nonli. Sci. Appl. 2016, 9, 6170–6182. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 2020, 105, 106293. [Google Scholar] [CrossRef]
- Li, T.; Thandapani, E.; Graef, J.R. Oscillation of third-order neutral retarded differential equations. Int. J. Pure Appl. Math. 2012, 75, 511–520. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. Asymptotic behavior of higher-order quasilinear neutral differential equations. Abst. Appl. Anal. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Moaaz, O.; Qaraad, B.; El-Nabulsi, R.A.; Bazighifan, O. New results for kneser solutions of third-order nonlinear neutral differential equations. Mathematics 2020, 8, 686. [Google Scholar] [CrossRef]
- Thandapani, E.; Li, T. On the oscillation of third-order quasilinear neutral functional differential equations. Arch. Math. (Brno) Tomus 2011, 47, 181–199. [Google Scholar]
- Saker, S.H. On Oscillation of a certain class of third-order nonlinear functional dynamic equations on time scales. Bull. Math. Soc. Sci. Math. Roum. Tome 2011, 54, 365–389. [Google Scholar]
- Saker, S.H. Oscillation of third-order functional dynamic equations on time scales. Sci. China Math. 2011, 54, 2597–2614. [Google Scholar] [CrossRef]
- Saker, S.H.; Graef, J.R. Oscillation of third-order nonlinear neutral functional dynamic equations on time scales. Dyn. Syst. Appl. 2012, 21, 583–606. [Google Scholar]
- Wang, Y.; Xu, Z. Asymptotic properties of solutions of certain third-order dynamic equations. J. Comput. Appl. Math. 2012, 236, 2354–2366. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Han, Z.; Sun, S.; Zhao, P. Hille and Nehari-type oscillation criteria for third-order Emden-Fowler neutral delay dynamic equations. Bull. Malays. Math. Sci. Soc. 2017, 40, 1187–1217. [Google Scholar] [CrossRef]
- Li, T.; Han, Z.; Sun, S.; Zhao, Y. Oscillation results for third order nonlinear delay dynamic equations on time scales. Bull. Malays. Math. Sci. Soc. 2011, 34, 639–648. [Google Scholar]
- Li, T.; Zhang, C. Properties of third-order half-linear dynamic equations with an unbounded neutral coefficient. Adv. Differ. Equ. 2013, 2013, 333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Han, Q.; Yu, Y. Oscillation criteria for third-order nonlinear neutral dynamic equations on time scales. Chin. J. Eng. Math. 2016, 33, 206–220. [Google Scholar]
- Zhang, Z.; Wang, X.; Yu, Y. On Comparison criteria for oscillation of third order nonlinear functional differential equations. Math. Appl. 2016, 29, 359–369. [Google Scholar]
- Zhang, Z.; Zhang, Y.; Yu, Y. Oscillation and asymptotic behavior for third-order Emden-Fowler neutral delay dynamic equation on time scaies. Acta Math. Appl. Sin. 2020, 43, 502–516. [Google Scholar]
- Zhang, Z.; Feng, R. Oscillation criteria for a class of third order Emden–Fowler delay dynamic equations with sublinear neutral terms on time scales. Adv. Differ. Equ. 2021, 2021, 53. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef] [Green Version]
- Džurina, J.; Jadlovská, I. Oscillation of third-order differential equations with noncanonical operators. Appl. Math. Comput. 2018, 336, 394–402. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Feng, R.; Jadlovská, I.; Liu, Q. Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales. Mathematics 2021, 9, 552. https://doi.org/10.3390/math9050552
Zhang Z, Feng R, Jadlovská I, Liu Q. Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales. Mathematics. 2021; 9(5):552. https://doi.org/10.3390/math9050552
Chicago/Turabian StyleZhang, Zhiyu, Ruihua Feng, Irena Jadlovská, and Qingmin Liu. 2021. "Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales" Mathematics 9, no. 5: 552. https://doi.org/10.3390/math9050552
APA StyleZhang, Z., Feng, R., Jadlovská, I., & Liu, Q. (2021). Oscillation Criteria for Third-Order Nonlinear Neutral Dynamic Equations with Mixed Deviating Arguments on Time Scales. Mathematics, 9(5), 552. https://doi.org/10.3390/math9050552