Global Dynamics of a Discrete-Time MERS-Cov Model
Abstract
:1. Introduction
2. Model Formulation
3. Fundamental Properties
4. Disease-Free Equilibrium (DFE)
4.1. Local Stability of DFE
4.2. Global Stability of DFE
5. Endemic Equilibria
5.1. Existence of the Endemic Equilibrium Point EEP
5.2. Stability of the Endemic Equilibrium
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Variable | Description |
Population of susceptible individuals | |
Population of exposed individuals | |
Population of asymptotic individuals | |
Population of symptotic individuals | |
Population of hospitalized individuals | |
Population of recovered individuals | |
Parameter | Description |
Recruitment rate | |
Natural death rate | |
r | The clinical outbreak rate |
Contact rate | |
The mean time of incubation period | |
The mean time from symptoms to hospitalization | |
The reduction factor in transmission rate by symptomated per day | |
The reduction factor in transmission rate by hospitalized per day | |
The mean infections period of asymptomatic infected person for survivors | |
The mean duration of infected person for survivors | |
The mean duration for hospitalized cases for survivors | |
Disease-induced death rate of infectious individuals | |
Disease-induced death rate of treated individuals |
References
- Khan, J.S.; Mclntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 2005, 24, 16378050. [Google Scholar] [CrossRef] [PubMed]
- A chronicle on the SARS epidemic. Chin. Law Gov. 2003, 36, 12–15. [CrossRef]
- Chan-Yeung, M.; Xu, R. SARS epidemiology. Respirology 2003, 8, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.; Smallwood, C.; Arbuthnott, K.; Malik, M.S.; Barbeschi, M.; Memish, Z. Emerging respiratory and novel coronavirus 2012 infections and mass gatherings. East. Mediterr. Health J. 2012, 19, 48–54. [Google Scholar] [CrossRef]
- World Health Organization. Middle East Respiratory Syndrome Coronavirus (MERS-Cov); World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Mackay, T.M.; Arden, K.E. MERS coronavirius: Diagnostics epidemology and transmissions. Proc. R Soc. Lond. B 2015, 12, 222. [Google Scholar]
- The Kingdome of Saudi Arabia. Middle East Respiratory Syndrome Coronavirus (MERS-Cov); The Kingdome of Saudi Arabia: Riyadh, Saudi Arabia, 2019. [Google Scholar]
- World Health Organization. World Health Organization Coronavirus; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marearo, G.; Zeng, Y. From SARS and MERS to Covid-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef]
- He, S.; Peng, Y.; Sun, K. SEIR modeling of the covid-19 and its dynamics. Nonlinear Dyn. 2020, 101, 1667–1680. [Google Scholar] [CrossRef]
- Ellison, G. Implications of the Heterogeneous SIR Models for Analyses of Covid-19; NBER Working Papers 27373; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 2020. [Google Scholar]
- Law, K.B.; Peariasamy, K.M.; Gill, B.S. Tracking the early depleting transmission dynamics of Covid-19 with a time-varying SIR model. Sci. Rep. 2020, 10, 21721. [Google Scholar]
- Ng, T.W.; Turinic, G.; Danchin, A. A double epidemic model for the SARS propagation. BMC Infect. Dis. 2003, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jiang, D.; Shi, N. Global stability of two-group SIR model with random perturbation. J. Math. Anal. Appl. 2009, 360, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Ma, W.; Ruan, S. Analysis of SIR epidemic models with nonlinear incidence rate and treatment. Math. Biosci. 2012, 238, 12–20. [Google Scholar] [CrossRef]
- Lee, J.; Chowell, G.; Jung, J. A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events. J. Theor. Biol. 2018, 408, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Usaini, S.; Hassan, A.S.; Garba, S.M.; Lubuma, J.M.-S. Modeling the transmission dynamics of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) with latent immigrants. J. Interdiscip. Math. 2019, 22, 903–930. [Google Scholar] [CrossRef] [Green Version]
- Batarfi, H.; Elaiw, A.; Alshareef, A. Dynamical behavior of MERS-COV model with discrete delays. J. Comput. Anal. Appl. 2019, 26, 37–49. [Google Scholar]
- Alshareef, A.; Elaiw, A. Dynamical behavior of MERS-COV model with distributed delays. Appl. Math. Sci. 2019, 13, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Chowell, G.; Blumberg, S.; Simonsen, L.; Miller, M.; Viboud, C. Synthesizing data and models for the spread of MERS-COV, 2013: Key role of index cases and hospital transmission. Epidemics 2014, 9, 40–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DarAssi, M.H.; Safi, M.A.; Al-Hdaibat, B. A delayed SEIR epidemic model with pulse vaccination and treatment. Nonlinear Stud. 2018, 25, 1–16. [Google Scholar]
- Yong, B.; Owen, L. Dynamical transmission model of MERS-Cov in two areas. AIP Conf. Proc. 2016, 1716, 020010. [Google Scholar] [PubMed]
- Wang, L.; Cui, Q.; Teng, Z. Global dynamics in a class of discrete-time epidemic models with disease courses. Adv. Differ. Equ. 2013, 2013, 57. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Teng, Z.; Rehim, M. Lyapunov functions for a class of discrete SIRS models with nonlinear incidence rate and varying population sizes. Discret. Dyn. Nat. Soc. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Fan, X.; Wang, L.; Teng, Z. Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence. Adv. Differ. Equ. 2016, 2016, 123. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Khan, K.; Safi, M.A.; DarAssi, M.H. A Discrete Model of TB Dynamics in Khyber Pakhtunkhwa-Pakistan. Comput. Model. Eng. Sci. 2020, 123, 777–795. [Google Scholar]
- Safi, M.A.; Al-Hdaibat, B.; DarAssi, M.H.; Khan, M.A. Global dynamics for a discrete quarantine/isolation model. Rersults Phys. 2021, 21, 103788. [Google Scholar]
- Safi, M.A.; Gumel, A.B. Global asymptotic dynamics of a model for quarantine and isolation. Discret. Contin. Dyn. Syst. B 2010, 14, 209–231. [Google Scholar]
- Shang, Y. Lie algebra method for solving biological population model. J. Theor. Appl. Phys. 2013, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y. Analytical solution for an in-host viral infection model with time-inhomogeneous rates. Acta Phys. Pol. B 2015, 46, 1567–1577. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y. Lie algebraic discussion for affinity based information diffusion in social networks. Open Phys. 2017, 15, 705–711. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Population Biology of Infectious Diseases; Springer-Verlag: Berlin/Heidelrberg, Germany; New York, NY, USA, 1982. [Google Scholar]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J. On the definition and computation of the basic reproduction ratio R0 in models for infectious disease in heterogeneous population. J. Math. Biol. 1990, 28, 365–382. [Google Scholar]
- van den Driessche, P.; Watmough, J. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- LaSalle, J.P. The Stability of Dynamical Systems; SIAM: Philadelphia, PA, USA, 1976. [Google Scholar]
- Shang, Y. Global stability of disease-free equilibria in a two-group SI model with feedback control. Nonlinear Anal. Model. Control. 2015, 20, 501–508. [Google Scholar] [CrossRef] [Green Version]
Parameter | Parameter | ||||
---|---|---|---|---|---|
136 | 136 | 0.0337 | 0.0337 | ||
0.000035 | 0.000035 | 0.0486 | 0.0486 | ||
r | 0.5 | 0.5 | 0.0535 | 0.0535 | |
0.05 | 0.10 | 0.1 | 0.1 | ||
0.157 | 0.157 | 0.1 | 0.1 | ||
0.2 | 0.2 | 0.03 | 0.03 | ||
0.04 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
DarAssi, M.H.; Safi, M.A.; Ahmad, M. Global Dynamics of a Discrete-Time MERS-Cov Model. Mathematics 2021, 9, 563. https://doi.org/10.3390/math9050563
DarAssi MH, Safi MA, Ahmad M. Global Dynamics of a Discrete-Time MERS-Cov Model. Mathematics. 2021; 9(5):563. https://doi.org/10.3390/math9050563
Chicago/Turabian StyleDarAssi, Mahmoud H., Mohammad A. Safi, and Morad Ahmad. 2021. "Global Dynamics of a Discrete-Time MERS-Cov Model" Mathematics 9, no. 5: 563. https://doi.org/10.3390/math9050563
APA StyleDarAssi, M. H., Safi, M. A., & Ahmad, M. (2021). Global Dynamics of a Discrete-Time MERS-Cov Model. Mathematics, 9(5), 563. https://doi.org/10.3390/math9050563