On the Omega Distribution: Some Properties and Estimation
Abstract
:1. Introduction
2. Single and Product Moments of Order Statistics
2.1. Single Moments
2.2. Product Moments
3. Some Statistical Properties
3.1. L-Moments
3.2. Incomplete Moments
4. Methods of Estimation
4.1. Maximum Likelihood Estimation
4.2. Ordinary and Weighted Least-Squares
4.3. Maximum Product of Spacing
4.4. Percentiles
4.5. Anderson–Darling and Right-Tail Anderson–Darling
5. Simulations
- (i)
- (ii)
6. Real Data Illustration
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dombi, J.; Jónás, T.; Tóth, E.Z.; Árva, G. The omega probability distribution and its applications in reliability theory. Qual. Reliab. Eng. Int. 2019, 35, 600–626. [Google Scholar] [CrossRef] [Green Version]
- Okorie, I.E.; Nadarajah, S. On the omega probability distribution. Qual. Reliab. Eng. Int. 2019, 35, 2045–2050. [Google Scholar] [CrossRef]
- Malik, H.J.; Balakrishnan, N.; Ahmed, S.E. Recurrence relations and identities for moments of order statistics I: Arbitrary continuous distribution. Commun. Stat.-Theory Methods 1988, 17, 2632–2655. [Google Scholar]
- Balakrishnan, N.; Malik, H.J.; Ahmed, S.E. Recurrence relations and identities for moments of order statistics II: Specific continuous distributions. Commun. Stat.-Theory Methods 1988, 17, 2657–2694. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sultan, K.S. Recurrence relations and identities for moments of order statistics. In Handbook of Statistics; Balakrishnan, N., Rao, C.R., Eds.; Order Statistics: Theory and Methods; North-Holland: Amsterdam, The Netherlands, 1998; Volume 16, pp. 149–228. [Google Scholar]
- Nadarajah, S. Explicit Expressions for Moments of Order Statistics. Stat. Probab. Lett. 2008, 78, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, H.N. Moments of order statistics and L-moments for the symmetric triangular distribution. Stat. Probab. Lett. 2013, 83, 2357–2363. [Google Scholar] [CrossRef]
- Çetinkaya, Ç.; Genç, A.ŀ. Moments of order statistics of the standard two-sided power distribution. Commun. Stat.-Theory Methods 2018, 47, 4311–4328. [Google Scholar] [CrossRef]
- Akhter, Z.; MirMostafaee, S.M.T.K.; Athar, H. On the moments of order statistics from the standard two-sided power distribution. J. Math. Model. 2019, 7, 381–398. [Google Scholar]
- Akhter, Z.; Saran, J.; Verma, K.; Pushkarna, N. Moments of order statistics from length-biased exponential distribution and associated inference. Ann. Data Sci. 2020. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cohen, A.C. Order Statistics and Inference: Estimation Methods; Academic Press: San Diego, CA, USA, 1991. [Google Scholar]
- Lin, G.D. Characterizations of distributions via moments of order statistics: A survey and comparison of methods. In Statistical Data Analysis and Inference; Dodge, Y., Ed.; North-Holland: Amsterdam, The Netherlands, 1989; pp. 297–307. [Google Scholar]
- Kamps, U. Characterizations of Distributions by Recurrence Relations and Identities for Moments of Order Statistics. In Handbook of Statistics; Balakrishnan, N., Rao, C.R., Eds.; Order Statistics: Theory and Methods; North-Holland: Amsterdam, The Netherlands, 1998; Volume 16, pp. 291–311. [Google Scholar]
- Sarhan, A.; Zaindin, M. Modified Weibull distribution. Appl. Sci. 2009, 11, 123–136. [Google Scholar]
- Afify, A.Z.; Nofal, Z.M.; Butt, N.S. Transmuted complementary Weibull geometric distribution. Pak. J. Stat. Oper. Res. 2014, 10, 435–454. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, G.M.; Afify, A.Z.; Yousof, H.M.; Cakmakyapan, S.; Ozel, G. The Lindley Weibull distribution: Properties and applications. An. Acad. Bras. CiêNcias 2018, 90, 2579–2598. [Google Scholar] [CrossRef]
- Bagdonovacius, V.; Nikulin, M. Accelerated Life Models: Modeling and Statistical Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Nassar, M.; Alzaatreh, A.; Mead, M.; Abo-Kasem, O. Alpha power Weibull distribution: Properties and applications. Commun. Stat.-Theory Methods 2017, 46, 10236–10252. [Google Scholar] [CrossRef]
- Mead, M.E.; Cordeiro, G.M.; Afify, A.Z.; Al Mofleh, H. The alpha power transformation family: Properties and applications. Pak. J. Stat. Oper. Res. 2019, 15, 525–545. [Google Scholar] [CrossRef]
- Mudholkar, G.; Srivastava, D. Exponentiated Weibull family for analyzing bathtub failure-real data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Afify, A.Z.; Mohamed, O.A. A new three-parameter exponential distribution with variable shapes for the hazard rate: Estimation and applications. Mathematics 2020, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Nassar, M.; Afify, A.Z.; Shakhatreh, M.K.; Dey, S. On a new extension of Weibull distribution: Properties, estimation, and applications to one and two causes of failures. Qual. Reliab. Eng. Int. 2020, 36, 2019–2043. [Google Scholar] [CrossRef]
- David, H.A.; Nagaraja, H.N. Order Statistics, 3rd ed.; John Wiley: New York, NY, USA, 2003. [Google Scholar]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; SIAM Publishers: Philadelphia, PA, USA, 2008. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 7th ed.; Jeffrey, A., Zwillinger, D., Eds.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Khan, A.H.; Yaqub, M.; Parvez, S. Recurrence relations between moments of order statistics. Nav. Res. Logist. Q. 1983, 30, 419–441, Corrections in 1985, 32, 693. [Google Scholar] [CrossRef]
- Khan, A.H.; Khan, R.U.; Parvez, S. Inverse moments of order statistics from Weibull distribution. Scand. Actuar. J. 1984, 1984, 91–94. [Google Scholar] [CrossRef]
- Ali, M.M.; Khan, A.H. On order statistics from the log-logistic distribution. J. Stat. Plan. Inference 1987, 17, 103–108. [Google Scholar]
- Khan, A.H.; Parvez, S.; Yaqub, M. Recurrence relations between product moments of order statistics. J. Stat. Plan. Inference 1983, 95, 175–183. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 22 June 2020).
- Hosking, J.R.M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. B 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Ranneby, B. The maximum spacing method: An estimation method related to the maximum likelihood method. Scand. J. Stat. 1984, 11, 93–112. [Google Scholar]
- Choulakian, V.; Stephens, M.A. Goodness-of-fit tests for the generalized Pareto distribution. Technometrics 2001, 43, 478–484. [Google Scholar] [CrossRef]
n | r | ||||||
1 | 1 | ||||||
2 | 1 | ||||||
2 | |||||||
3 | 1 | ||||||
2 | |||||||
3 | |||||||
4 | 1 | ||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | 1 | ||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | |||||||
n | r | ||||||
1 | 1 | ||||||
2 | 1 | ||||||
2 | |||||||
3 | 1 | ||||||
2 | |||||||
3 | |||||||
4 | 1 | ||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | 1 | ||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 |
L-CV | |||
L-skewness | |||
L-kurtosis | |||
L-CV | |||
L-skewness | |||
L-kurtosis | |||
L-CV | |||
L-skewness | |||
L-kurtosis |
, | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||
0.87 | 0.93 | 1.90361 | 0.97775 | 1.17247 | 0.98500 | 0.70901 | 0.93445 | 1.08478 | 1.04719 | 1.07467 | 1.03326 | 0.83278 | 0.84073 | 0.84178 | 0.90401 | 0.85494 | 0.92186 | 0.84801 | 0.94972 |
1.06834 | 0.00228 | 0.09149 | 0.00303 | 0.02592 | 0.00002 | 0.04613 | 0.01373 | 0.04189 | 0.01066 | 0.01256 | 0.02182 | 0.01404 | 0.02933 | 0.01461 | 0.02129 | 0.01488 | 0.02885 | ||
1.13 | 1.76199 | 1.19622 | 1.12939 | 1.20065 | 0.70856 | 1.13624 | 1.16218 | 1.08787 | 1.14776 | 1.06316 | 0.84693 | 1.02608 | 0.83936 | 1.08234 | 0.85357 | 1.11997 | 0.87280 | 1.15809 | |
0.79564 | 0.00439 | 0.06728 | 0.00499 | 0.02606 | 0.00004 | 0.08537 | 0.00177 | 0.07715 | 0.00447 | 0.01372 | 0.03125 | 0.01253 | 0.03498 | 0.01788 | 0.02374 | 0.01631 | 0.03774 | ||
1.2 | 0.93 | 2.69826 | 1.02435 | 1.64527 | 1.01351 | 0.97872 | 0.93556 | 0.98912 | 0.99923 | 1.03952 | 1.001991 | 1.12266 | 0.84731 | 1.14453 | 0.87031 | 1.18940 | 0.93200 | 1.17475 | 0.94700 |
2.24480 | 0.00890 | 0.19827 | 0.00697 | 0.04897 | 0.00003 | 0.04426 | 0.00479 | 0.02575 | 0.00808 | 0.02816 | 0.02060 | 0.03028 | 0.02721 | 0.02773 | 0.01854 | 0.02763 | 0.02239 | ||
1.13 | 2.49098 | 1.23895 | 1.58396 | 1.22766 | 0.97824 | 1.13743 | 1.07621 | 1.02107 | 1.11504 | 1.04399 | 1.12919 | 1.02693 | 1.15512 | 1.07141 | 1.18158 | 1.12426 | 1.19308 | 1.14571 | |
1.66662 | 0.01187 | 0.14743 | 0.00954 | 0.04918 | 0.00006 | 0.01532 | 0.01187 | 0.00722 | 0.00740 | 0.02911 | 0.02749 | 0.02515 | 0.03222 | 0.02687 | 0.02214 | 0.02713 | 0.02518 | ||
, | |||||||||||||||||||
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||
0.87 | 0.93 | 1.54211 | 1.03280 | 1.05172 | 1.00841 | 0.70734 | 0.93657 | 1.08327 | 1.05595 | 1.05401 | 1.02839 | 0.83803 | 0.85779 | 0.84783 | 0.88259 | 0.85959 | 0.93044 | 0.85968 | 0.93157 |
0.45173 | 0.01057 | 0.03302 | 0.00615 | 0.02646 | 0.00004 | 0.04548 | 0.01586 | 0.03386 | 0.00968 | 0.01207 | 0.01719 | 0.01629 | 0.02632 | 0.01506 | 0.01487 | 0.01665 | 0.01880 | ||
1.13 | 1.45280 | 1.30177 | 1.01514 | 1.24375 | 0.70639 | 1.13942 | 1.16405 | 1.10418 | 1.13861 | 1.06261 | 0.85525 | 1.03388 | 0.86585 | 1.06827 | 0.88848 | 1.13508 | 0.85762 | 1.14933 | |
0.33965 | 0.02950 | 0.02107 | 0.01294 | 0.02677 | 0.00009 | 0.08647 | 0.00067 | 0.07215 | 0.00454 | 0.01174 | 0.02582 | 0.01738 | 0.02158 | 0.01738 | 0.02158 | 0.01746 | 0.02570 | ||
1.2 | 0.93 | 2.20326 | 1.04720 | 1.48388 | 1.01874 | 0.97695 | 0.93775 | 0.96939 | 0.99884 | 0.97100 | 1.00069 | 1.14440 | 0.85349 | 1.19189 | 0.92439 | 1.19189 | 0.92439 | 1.18214 | 0.95906 |
1.00654 | 0.01373 | 0.08059 | 0.00788 | 0.04975 | 0.00006 | 0.05318 | 0.00474 | 0.05244 | 0.00500 | 0.02648 | 0.01456 | 0.02443 | 0.02621 | 0.02620 | 0.01366 | 0.02943 | 0.01693 | ||
1.13 | 2.10115 | 1.30970 | 1.44094 | 1.25042 | 0.97603 | 1.14093 | 1.06191 | 1.02706 | 1.06082 | 1.02775 | 1.15861 | 1.03901 | 1.15246 | 1.04726 | 1.19892 | 1.13898 | 1.19322 | 1.13811 | |
0.81207 | 0.03229 | 0.05805 | 0.01450 | 0.05016 | 0.00012 | 0.01907 | 0.01060 | 0.01937 | 0.01045 | 0.02281 | 0.02187 | 0.02003 | 0.03058 | 0.02772 | 0.01767 | 0.02920 | 0.02455 |
, | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||
0.87 | 0.93 | 1.34853 | 1.00804 | 1.01406 | 1.02278 | 0.78926 | 0.97620 | 1.12365 | 1.05208 | 1.11842 | 1.03861 | 0.83136 | 0.87720 | 0.86727 | 0.91031 | 0.86670 | 0.93192 | 0.86835 | 0.92905 |
0.22899 | 0.00609 | 0.02075 | 0.00861 | 0.00652 | 0.00213 | 0.06434 | 0.01490 | 0.06171 | 0.01180 | 0.00717 | 0.01052 | 0.00786 | 0.01416 | 0.00847 | 0.00912 | 0.00689 | 0.01213 | ||
1.13 | 1.29182 | 1.23316 | 0.99197 | 1.25150 | 0.78534 | 1.19121 | 1.20831 | 1.09239 | 1.19600 | 1.06877 | 0.84425 | 1.05951 | 0.86358 | 1.09930 | 0.85660 | 1.13831 | 0.86605 | 1.13738 | |
0.17793 | 0.01064 | 0.01488 | 0.01476 | 0.00717 | 0.00375 | 0.11445 | 0.00141 | 0.10627 | 0.00375 | 0.00732 | 0.01473 | 0.00779 | 0.01810 | 0.00802 | 0.01366 | 0.00883 | 0.01779 | ||
1.2 | 0.93 | 1.91432 | 1.04520 | 1.43378 | 1.04552 | 1.09919 | 0.98271 | 1.00075 | 0.99885 | 1.08239 | 1.02611 | 1.15683 | 0.88122 | 1.16811 | 0.90605 | 1.19586 | 0.93076 | 1.18405 | 0.93916 |
0.51025 | 0.01327 | 0.05465 | 0.01335 | 0.01016 | 0.00278 | 0.03970 | 0.00474 | 0.01383 | 0.00924 | 0.01169 | 0.00889 | 0.01300 | 0.01205 | 0.01282 | 0.00771 | 0.01480 | 0.00941 | ||
1.13 | 1.83291 | 1.26779 | 1.40502 | 1.27320 | 1.09529 | 1.19679 | 1.09726 | 1.02205 | 1.16675 | 1.05265 | 1.15442 | 1.07899 | 1.16688 | 1.09085 | 1.19491 | 1.11544 | 1.19832 | 1.13403 | |
0.40057 | 0.01899 | 0.04203 | 0.02051 | 0.01097 | 0.00446 | 0.01056 | 0.01165 | 0.00111 | 0.00598 | 0.01425 | 0.01164 | 0.01252 | 0.01511 | 0.01377 | 0.01384 | 0.01243 | 0.01422 | ||
, | |||||||||||||||||||
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||
0.87 | 0.93 | 1.19276 | 1.04442 | 0.94912 | 1.04919 | 0.77686 | 0.98620 | 1.10071 | 1.05384 | 1.06551 | 1.02568 | 0.85951 | 0.87735 | 0.86037 | 0.89362 | 0.86465 | 0.93171 | 0.86160 | 0.93042 |
0.10418 | 0.01309 | 0.00626 | 0.01421 | 0.00868 | 0.00316 | 0.05323 | 0.01534 | 0.03822 | 0.00915 | 0.00773 | 0.00756 | 0.00906 | 0.01399 | 0.00770 | 0.00757 | 0.00718 | 0.00901 | ||
1.13 | 1.14805 | 1.29397 | 0.92835 | 1.28804 | 0.77266 | 1.20042 | 1.19059 | 1.10049 | 1.15709 | 1.05861 | 0.85970 | 1.06870 | 0.87311 | 1.06892 | 0.87015 | 1.12682 | 0.86461 | 1.13474 | |
0.07731 | 0.02689 | 0.00341 | 0.02498 | 0.00496 | 0.00496 | 0.10278 | 0.00087 | 0.08242 | 0.00510 | 0.00674 | 0.01131 | 0.00821 | 0.01762 | 0.00704 | 0.01042 | 0.00886 | 0.01165 | ||
1.2 | 0.93 | 1.70553 | 1.05709 | 1.35483 | 1.05781 | 1.08732 | 0.98796 | 0.98537 | 1.00050 | 0.99420 | 1.00447 | 1.17078 | 0.88325 | 1.17816 | 0.89004 | 1.20293 | 0.92650 | 1.20355 | 0.93267 |
0.25556 | 0.01615 | 0.02397 | 0.01634 | 0.01270 | 0.00336 | 0.04607 | 0.00497 | 0.04235 | 0.00555 | 0.01226 | 0.00662 | 0.01368 | 0.01235 | 0.01354 | 0.00688 | 0.01527 | 0.00945 | ||
1.13 | 1.65395 | 1.30184 | 1.33259 | 1.29386 | 1.08356 | 1.20149 | 1.08266 | 1.02744 | 1.09014 | 1.03172 | 1.17186 | 1.06329 | 1.18024 | 1.07519 | 1.19245 | 1.12796 | 1.18118 | 1.14030 | |
0.20607 | 0.02953 | 0.01758 | 0.02685 | 0.01356 | 0.00511 | 0.01377 | 0.01052 | 0.01207 | 0.00966 | 0.01268 | 0.01144 | 0.01249 | 0.01649 | 0.01343 | 0.00903 | 0.01486 | 0.00992 |
, | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||
0.87 | 0.93 | 1.45050 | 0.95173 | 0.97891 | 0.93983 | 0.74543 | 0.87881 | 1.04628 | 1.02686 | 1.05436 | 1.01859 | 0.85500 | 0.89777 | 0.86302 | 0.91781 | 0.86457 | 0.93082 | 0.86860 | 0.93064 |
0.33698 | 0.00047 | 0.01186 | 0.00010 | 0.01552 | 0.00262 | 0.03107 | 0.00938 | 0.03399 | 0.00785 | 0.00330 | 0.00455 | 0.00315 | 0.00734 | 0.00346 | 0.00492 | 0.00373 | 0.00652 | ||
1.13 | 1.38531 | 1.15687 | 0.96318 | 1.14421 | 0.74886 | 1.06856 | 1.12466 | 1.05904 | 1.12377 | 1.04149 | 0.86294 | 1.09025 | 0.86783 | 1.11965 | 0.86321 | 1.13137 | 0.86643 | 1.13577 | |
0.26554 | 0.00072 | 0.00868 | 0.00020 | 0.01468 | 0.00377 | 0.06485 | 0.00504 | 0.06440 | 0.00783 | 0.00311 | 0.00655 | 0.00367 | 0.00805 | 0.00315 | 0.00569 | 0.00337 | 0.00821 | ||
1.2 | 0.93 | 2.02646 | 0.98252 | 1.35536 | 0.95649 | 1.01827 | 0.87988 | 0.93840 | 0.97469 | 1.02700 | 1.01074 | 1.17643 | 0.89712 | 1.19057 | 0.91267 | 1.19480 | 0.93004 | 1.18940 | 0.93878 |
0.68304 | 0.00276 | 0.02414 | 0.00070 | 0.03303 | 0.00251 | 0.06843 | 0.00200 | 0.02993 | 0.00652 | 0.00703 | 0.00412 | 0.00691 | 0.00725 | 0.00705 | 0.00386 | 0.00748 | 0.00581 | ||
1.13 | 1.93060 | 1.18660 | 1.33287 | 1.16146 | 1.02209 | 1.06972 | 1.01866 | 0.98638 | 1.09410 | 1.02921 | 1.16278 | 1.09422 | 1.19074 | 1.11981 | 1.19849 | 1.12524 | 1.19452 | 1.13326 | |
0.53378 | 0.00320 | 0.01765 | 0.00099 | 0.03165 | 0.00363 | 0.03289 | 0.02063 | 0.01122 | 0.01016 | 0.00645 | 0.00585 | 0.00771 | 0.00673 | 0.00680 | 0.00490 | 0.00681 | 0.00637 | ||
, | |||||||||||||||||||
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||
0.87 | 0.93 | 1.27440 | 0.97197 | 0.93217 | 0.95269 | 0.75563 | 0.88071 | 1.02716 | 1.02834 | 1.00295 | 1.00369 | 0.86789 | 0.89946 | 0.86565 | 0.90885 | 0.86897 | 0.93038 | 0.86926 | 0.93136 |
0.16354 | 0.00176 | 0.00387 | 0.00051 | 0.01308 | 0.00243 | 0.02470 | 0.00967 | 0.01768 | 0.00543 | 0.00314 | 0.00386 | 0.00431 | 0.00614 | 0.00350 | 0.00352 | 0.00368 | 0.00514 | ||
1.13 | 1.22416 | 1.20242 | 0.91604 | 1.16740 | 0.75906 | 1.07067 | 1.11346 | 1.07054 | 1.08868 | 1.03031 | 0.87108 | 1.08931 | 0.87014 | 1.10645 | 0.86386 | 1.13887 | 0.87051 | 1.12814 | |
0.12543 | 0.00525 | 0.00212 | 0.00140 | 0.01231 | 0.00352 | 0.05927 | 0.00354 | 0.04782 | 0.00994 | 0.00364 | 0.00541 | 0.00413 | 0.00803 | 0.00448 | 0.00433 | 0.00452 | 0.00566 | ||
1.2 | 0.93 | 1.78210 | 0.98400 | 1.29300 | 0.96102 | 1.02945 | 0.88117 | 0.91602 | 0.97229 | 0.93676 | 0.98497 | 1.17599 | 0.89597 | 1.19327 | 0.90448 | 1.19926 | 0.93377 | 1.19185 | 0.92922 |
0.33884 | 0.00292 | 0.00865 | 0.00096 | 0.02909 | 0.00238 | 0.08064 | 0.00179 | 0.06929 | 0.00302 | 0.00572 | 0.00408 | 0.00668 | 0.00698 | 0.00648 | 0.00359 | 0.00688 | 0.00385 | ||
1.13 | 1.72137 | 1.21054 | 1.27431 | 1.17384 | 1.03305 | 1.07085 | 1.00501 | 0.99249 | 1.02174 | 1.00571 | 1.17254 | 1.09691 | 1.18779 | 1.09645 | 1.19416 | 1.13131 | 1.19843 | 1.13062 | |
0.27183 | 0.00649 | 0.00552 | 0.00192 | 0.02787 | 0.00350 | 0.03802 | 0.01891 | 0.03178 | 0.01545 | 0.00581 | 0.00423 | 0.00599 | 0.00672 | 0.00641 | 0.00485 | 0.00680 | 0.00630 |
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||||||
0.87 | 0.93 | 2.5 | 1.16973 | 0.97058 | 2.42667 | 0.85797 | 0.89910 | 3.61047 | 0.86182 | 0.91653 | 2.57385 | 0.82138 | 0.85666 | 2.49664 | 0.84120 | 0.87920 | 2.56599 | 0.86459 | 0.94039 | 2.50937 | 0.85276 | 0.94735 | 2.50230 |
0.08984 | 0.00165 | 0.00538 | 0.01904 | 0.02049 | 0.72080 | 0.01924 | 0.02529 | 0.05422 | 0.01618 | 0.02311 | 0.02626 | 0.01783 | 0.03123 | 0.05753 | 0.01818 | 0.02216 | 0.04243 | 0.0190 | 0.03011 | 0.03212 | |||
3.5 | 1.10448 | 0.96495 | 3.18576 | 0.84108 | 0.90352 | 3.71845 | 0.86217 | 0.91164 | 3.85118 | 0.84486 | 0.85089 | 3.50032 | 0.83404 | 0.87348 | 3.56767 | 0.86606 | 0.92755 | 3.53227 | 0.84532 | 0.95100 | 3.55824 | ||
0.05498 | 0.00122 | 0.09875 | 0.01790 | 0.02386 | 0.69853 | 0.01836 | 0.02006 | 0.67096 | 0.01564 | 0.02038 | 0.36521 | 0.01730 | 0.02721 | 0.50768 | 0.01761 | 0.01801 | 0.52519 | 0.01867 | 0.02500 | 0.44699 | |||
1.13 | 2.5 | 1.12800 | 1.17398 | 2.37765 | 0.85638 | 1.10046 | 2.62488 | 0.85913 | 1.11324 | 2.62249 | 0.82903 | 1.05127 | 2.50626 | 0.83602 | 1.10019 | 2.54137 | 0.85524 | 1.14335 | 2.50127 | 0.85331 | 1.14198 | 2.49006 | |
0.06656 | 0.00193 | 0.01497 | 0.01898 | 0.03815 | 0.15516 | 0.01913 | 0.03248 | 0.12087 | 0.01773 | 0.03359 | 0.05968 | 0.01710 | 0.03425 | 0.09475 | 0.01630 | 0.02971 | 0.08296 | 0.01722 | 0.04375 | 0.07120 | |||
3.5 | 1.07008 | 1.17165 | 2.99676 | 0.85381 | 1.07378 | 3.70903 | 0.84669 | 1.09664 | 3.92017 | 0.83840 | 1.02877 | 3.50698 | 0.84160 | 1.05252 | 3.63691 | 0.85842 | 1.12629 | 3.50504 | 0.85856 | 1.14217 | 3.58477 | ||
0.04003 | 0.00174 | 0.25325 | 0.01652 | 0.03082 | 1.10097 | 0.01760 | 0.02850 | 1.22602 | 0.01700 | 0.03263 | 0.76098 | 0.01944 | 0.03263 | 0.92533 | 0.01968 | 0.02351 | 1.02916 | 0.01917 | 0.03000 | 0.81197 | |||
1.2 | 0.93 | 2.5 | 1.64792 | 0.99520 | 2.26968 | 1.17214 | 0.89429 | 2.67821 | 1.18009 | 0.91221 | 2.70901 | 1.10971 | 0.83781 | 2.49436 | 1.12330 | 0.87145 | 2.53378 | 1.19145 | 0.92422 | 2.49067 | 1.18732 | 0.94025 | 2.53305 |
0.20063 | 0.00425 | 0.05305 | 0.03792 | 0.02375 | 0.43638 | 0.03870 | 0.02129 | 0.34603 | 0.04219 | 0.02233 | 0.22219 | 0.03861 | 0.03252 | 0.27448 | 0.03922 | 0.01984 | 0.22524 | 0.04339 | 0.02599 | 0.22528 | |||
3.5 | 1.56192 | 0.97964 | 2.80003 | 1.17319 | 0.89346 | 3.78217 | 1.16352 | 0.90406 | 4.15396 | 1.12557 | 0.85339 | 3.51248 | 1.13180 | 0.84244 | 3.93617 | 1.18766 | 0.93411 | 3.54796 | 1.17033 | 0.9263 | 3.57184 | ||
0.13099 | 0.00246 | 0.48996 | 0.03507 | 0.02001 | 2.45763 | 0.03566 | 0.01755 | 2.35785 | 0.03856 | 0.01838 | 1.48395 | 0.03495 | 0.02396 | 1.67699 | 0.04030 | 0.01893 | 1.69027 | 0.03634 | 0.01800 | 1.54125 | |||
1.13 | 2.5 | 1.59148 | 1.19621 | 2.18668 | 1.16595 | 1.08608 | 2.54017 | 1.16945 | 1.09705 | 2.75583 | 1.14230 | 1.03035 | 2.51986 | 1.15041 | 1.06205 | 2.66932 | 1.16812 | 1.11271 | 2.45261 | 1.18475 | 1.14355 | 2.48243 | |
0.15326 | 0.00438 | 0.09817 | 0.04165 | 0.03334 | 0.50741 | 0.03596 | 0.02842 | 0.53997 | 0.03661 | 0.03082 | 0.31262 | 0.02908 | 0.03019 | 0.42781 | 0.03455 | 0.02656 | 0.39271 | 0.03716 | 0.03067 | 0.34325 | |||
3.5 | 1.52164 | 1.18331 | 2.57844 | 1.16117 | 1.06498 | 3.50364 | 1.19403 | 1.12632 | 3.73279 | 1.11321 | 1.01263 | 3.50056 | 1.12579 | 1.01083 | 3.85679 | 1.15473 | 1.11011 | 3.63090 | 1.16324 | 1.10965 | 3.73028 | ||
0.10345 | 0.00284 | 0.84928 | 0.03721 | 0.02858 | 2.66621 | 0.00876 | 0.00569 | 0.76719 | 0.03436 | 0.02751 | 1.84959 | 0.03110 | 0.02952 | 2.60923 | 0.02909 | 0.02539 | 2.42241 | 0.03863 | 0.02604 | 2.41540 |
Actual Value | MLE | LSE | WLSE | MPSE | PCE | ADE | RADE | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MSE | MSE | MSE | MSE | MSE | MSE | |||||||||||||||||
0.87 | 0.93 | 2.5 | 0.97880 | 0.93964 | 2.49926 | 0.87104 | 0.92841 | 3.54490 | 0.86923 | 0.93406 | 2.51990 | 0.85230 | 0.90074 | 2.50732 | 0.86208 | 0.90887 | 2.50505 | 0.86507 | 0.93647 | 2.50449 | 0.87170 | 0.94490 | 2.51283 |
0.01184 | 0.00009 | 0.00000 | 0.00457 | 0.00576 | 0.10668 | 0.00466 | 0.00542 | 0.00330 | 0.00446 | 0.00519 | 0.00135 | 0.00382 | 0.00929 | 0.00719 | 0.00377 | 0.00486 | 0.00237 | 0.0045 | 0.00578 | 0.00214 | |||
3.5 | 0.95295 | 0.94328 | 3.48873 | 0.86833 | 0.93153 | 3.52863 | 0.87338 | 0.92823 | 3.56461 | 0.86499 | 0.90094 | 3.53805 | 0.86773 | 0.92735 | 3.56388 | 0.86270 | 0.93799 | 3.52931 | 0.87093 | 0.95082 | 3.54010 | ||
0.00688 | 0.00018 | 0.00013 | 0.00484 | 0.00624 | 0.08283 | 0.00456 | 0.00521 | 0.05955 | 0.00382 | 0.00470 | 0.03365 | 0.00411 | 0.00584 | 0.06303 | 0.00435 | 0.00491 | 0.04358 | 0.00379 | 0.00656 | 0.03929 | |||
1.13 | 2.5 | 0.96291 | 1.14355 | 2.49730 | 0.87024 | 1.14195 | 2.53072 | 0.87266 | 1.13342 | 2.52735 | 0.86193 | 1.09156 | 2.52224 | 0.86641 | 1.10883 | 2.51962 | 0.87231 | 1.13790 | 2.50952 | 0.86975 | 1.14612 | 2.51740 | |
0.00863 | 0.00018 | 0.00001 | 0.00522 | 0.00827 | 0.01681 | 0.00442 | 0.00758 | 0.00896 | 0.00384 | 0.00708 | 0.00462 | 0.00437 | 0.01013 | 0.01299 | 0.00451 | 0.00725 | 0.00723 | 0.00483 | 0.00964 | 0.00548 | |||
3.5 | 0.93611 | 1.15178 | 3.46097 | 0.86646 | 1.13147 | 3.61355 | 0.87020 | 1.13168 | 3.61366 | 0.86378 | 1.10062 | 3.59934 | 0.86611 | 1.11925 | 3.64973 | 0.86698 | 1.13708 | 3.53451 | 0.86855 | 1.14506 | 3.53665 | ||
0.00437 | 0.00047 | 0.00152 | 0.00500 | 0.00872 | 0.31372 | 0.00442 | 0.00710 | 0.18080 | 0.00407 | 0.00677 | 0.10902 | 0.00393 | 0.00876 | 0.16244 | 0.00464 | 0.00743 | 0.13304 | 0.00495 | 0.00773 | 0.11993 | |||
1.2 | 0.93 | 2.5 | 1.35447 | 0.95561 | 2.49149 | 1.20989 | 0.92921 | 2.54467 | 1.20209 | 0.93366 | 2.55229 | 1.17249 | 0.89724 | 2.53444 | 1.19713 | 0.92500 | 2.55575 | 1.19314 | 0.93896 | 2.52120 | 1.20592 | 0.94595 | 2.51118 |
0.02386 | 0.00066 | 0.00007 | 0.01142 | 0.00582 | 0.06289 | 0.00962 | 0.00499 | 0.03502 | 0.00898 | 0.00498 | 0.01908 | 0.00918 | 0.00679 | 0.03923 | 0.00948 | 0.00448 | 0.02371 | 0.00862 | 0.00643 | 0.02200 | |||
3.5 | 1.31762 | 0.95387 | 3.43316 | 1.19365 | 0.92637 | 3.56898 | 1.19924 | 0.93133 | 3.65960 | 1.18870 | 0.90496 | 3.60242 | 1.19213 | 0.91665 | 3.66724 | 1.21087 | 0.93322 | 3.55809 | 1.19687 | 0.9449 | 3.58595 | ||
0.01384 | 0.00057 | 0.00447 | 0.01008 | 0.00435 | 0.54059 | 0.00909 | 0.00472 | 0.35629 | 0.00831 | 0.00465 | 0.22486 | 0.00943 | 0.00741 | 0.27246 | 0.00902 | 0.00412 | 0.31724 | 0.00911 | 0.00557 | 0.23988 | |||
1.13 | 2.5 | 1.33131 | 1.15920 | 2.47943 | 1.19828 | 1.12827 | 2.53089 | 1.20480 | 1.13201 | 2.57526 | 1.18642 | 1.09261 | 2.54373 | 1.18622 | 1.11948 | 2.54547 | 1.20212 | 1.13189 | 2.52018 | 1.21200 | 1.14271 | 2.53404 | |
0.01724 | 0.00085 | 0.00042 | 0.01001 | 0.00719 | 0.10014 | 0.00958 | 0.00705 | 0.06865 | 0.00840 | 0.00711 | 0.04119 | 0.00950 | 0.00872 | 0.05489 | 0.01020 | 0.00803 | 0.04895 | 0.00884 | 0.00893 | 0.05142 | |||
3.5 | 1.29618 | 1.15965 | 3.34558 | 1.19697 | 1.11334 | 3.63626 | 1.19403 | 1.12632 | 3.73279 | 1.19482 | 1.10559 | 3.51937 | 1.19388 | 1.11944 | 3.77965 | 1.20138 | 1.12515 | 3.53402 | 1.19888 | 1.13129 | 3.65714 | ||
0.00925 | 0.00088 | 0.02384 | 0.00941 | 0.00749 | 1.00722 | 0.00876 | 0.00569 | 0.76719 | 0.00760 | 0.00528 | 0.57646 | 0.00958 | 0.00709 | 0.57924 | 0.00843 | 0.00650 | 0.58128 | 0.00903 | 0.00723 | 0.68413 |
Distribution | MLEs | SEs | K-S (Stat) | K-S (p-Value) |
---|---|---|---|---|
OMEGA | 0.4824807 | 0.0889468 | 0.6191953 | |
0.0810828 | ||||
MW | 6.2615708 | 0.1046855 | 0.4091079 | |
0.4037047 | ||||
6.6030829 | ||||
TCWG | 0.8151071 | 0.1071177 | 0.3805323 | |
0.1689987 | ||||
0.4452576 | ||||
3.3411493 | ||||
LiW | 5.7555398 | 0.1066129 | 0.3863592 | |
0.1103413 | ||||
4.2907423 | ||||
PGW | 1.7813975 | 0.1062762 | 0.3902766 | |
0.1473203 | ||||
5.5840937 | ||||
APW | 1.269151 | 0.1061151 | 0.3921589 | |
0.132235 | ||||
0.983672 | ||||
APEW | 0.0339949 | 0.09805297 | 0.4930507 | |
0.3614408 | ||||
0.3860032 | ||||
0.0289383 | ||||
EW | 0.5896521 | 0.1073935 | 0.377372 | |
1.2449955 | ||||
0.3116688 | ||||
EOWE | 0.1200032 | 0.09914981 | 0.4786092 | |
0.5052505 | ||||
1.4535656 | ||||
LTW | 0.9457565 | 0.1070967 | 0.380773 | |
0.1681637 | ||||
1.2212993 | ||||
W | 0.08555716 | 0.1052065 | 0.402882 | |
0.75473964 |
Method | Estimates | K-S (Stat) | K-S (p-Value) |
---|---|---|---|
MLE | 0.0889468 | 0.6191953 | |
LSE | 0.07090078 | 0.9125179 | |
WLSE | 0.14252334 | 0.1719133 | |
MPSE | 0.11491242 | 0.3978472 | |
PCE | 0.07701275 | 0.8553612 | |
ADE | 0.07626228 | 0.8630764 | |
RADE | 0.07102754 | 0.9114741 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsubie, A.; Akhter, Z.; Athar, H.; Alam, M.; Ahmad, A.E.-B.A.; Cordeiro, G.M.; Afify, A.Z. On the Omega Distribution: Some Properties and Estimation. Mathematics 2021, 9, 656. https://doi.org/10.3390/math9060656
Alsubie A, Akhter Z, Athar H, Alam M, Ahmad AE-BA, Cordeiro GM, Afify AZ. On the Omega Distribution: Some Properties and Estimation. Mathematics. 2021; 9(6):656. https://doi.org/10.3390/math9060656
Chicago/Turabian StyleAlsubie, Abdelaziz, Zuber Akhter, Haseeb Athar, Mahfooz Alam, Abd EL-Baset A. Ahmad, Gauss M. Cordeiro, and Ahmed Z. Afify. 2021. "On the Omega Distribution: Some Properties and Estimation" Mathematics 9, no. 6: 656. https://doi.org/10.3390/math9060656
APA StyleAlsubie, A., Akhter, Z., Athar, H., Alam, M., Ahmad, A. E. -B. A., Cordeiro, G. M., & Afify, A. Z. (2021). On the Omega Distribution: Some Properties and Estimation. Mathematics, 9(6), 656. https://doi.org/10.3390/math9060656