Multidisciplinary Lightweight Optimization for Front Impact Structure of Body Frame Based on Active and Passive Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multidisciplinary Optimization Model
2.2. ATC Model Description
2.3. The Introduction of Dynamic Relaxation Factor in ATC
2.4. Math Problem Application
3. Engineering Problem Solving
3.1. Passive Safety
3.2. Active Safety
3.3. Engineering Problem ATC Model
3.4. Multidisciplinary Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coppola, L.; Marco, B.D.; Niola, V. Impact Attenuator Optimum Design for a FSAE Racing Car by Numerical and Experimental Crash Analysis. Int. J. Automot. Technol. 2020, 21, 1339–1348. [Google Scholar] [CrossRef]
- Hetawal, S.; Gophane, M.; Ajay, B.K. Aerodynamic Study of Formula SAE Car. In Proceedings of the 12th Global Congress on Manufacturing and Management, Vellore, India, 8–10 December 2014. [Google Scholar]
- Boria, S. Behaviour of an Impact Attenuator for Formula SAE Car under Dynamic Loading. Int. J. Veh. Struct. Sys. 2010, 2, 45–53. [Google Scholar] [CrossRef]
- Xiong, F.; Wang, D.; Ma, Z. Lightweight optimization of the front end structure of an automobile body using entropy-based grey relational analysis. Proc. Inst. Mech. Eng. D-J. Aut. 2019, 233, 917–934. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Wang, P.; Wang, H. Lightweight design for an electric vehicle front cabin. J. Plast Environ. Eng. 2018, 25, 1–7. [Google Scholar]
- Mages, M.; Seyffert, M.; Class, U. Analysis of the pre-crash benefit of reversible belt pre- pretensioning in different accident scenarios. In Proceedings of the 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration, Washington, DC, USA, 20–22 April 2011. [Google Scholar]
- Woitsch, G.; Sinz, W. Influences of pre-crash braking induced dummy—Forward displacements on dummy behaviour during EuroNCAP frontal crashtest. Acc. Anal. Prev. 2014, 62, 268–275. [Google Scholar] [CrossRef]
- Jeongmin, C.; Kunsoo, H. Active Front Steering for Driver’s Steering Comfort and Vehicle Driving Stability. Int. J. Automot. Technol. 2019, 20, 589–596. [Google Scholar]
- Wu, W.; Zou, D.; Ou, J. Adaptive Cruise Control Strategy Design with Optimized Active Braking Control Algorithm. Math. Probl. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Narjes, A.; Alireza, K.; Pouria, S. Adaptive yaw stability control by coordination of active steering and braking with an optimized lower-level controller. Int. J. Adapt. Control 2020, 34, 1242–1258. [Google Scholar]
- Sujuan, S.; Dong, J.; Chuan, B.O. Multiobjective Optimization of Nonlinear Active Suspension System with Time-Delayed Feedback. Math. Probl. Eng. 2020, 2020, 1–11. [Google Scholar]
- Yu, Z. The Theory of Automobile, 5th ed.; China Machine Press: Beijing, China, 2009; pp. 138–139. [Google Scholar]
- Roulo, D.; Ptasienski, Z.; Mccumber, B. NASCAR Truck Aerodynamic Analysis and Improvement. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Xiang, Z.; Zhi, J.; Huang, J. A systematic approach for streamlined head form design and evaluation of Chinese high-speed train. Int. J. Rail Transp. 2019, 7, 117–139. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, T.; Jiang, Z.; Guo, Z. Comparative analysis of the effect of different nose lengths on train aerodynamic performance under crosswind. J. Fluid Struct. 2018, 78, 69–85. [Google Scholar] [CrossRef]
- Li, R.; Xu, P.; Peng, Y. Multi-objective optimization of a high-speed train head based on the FFD method. J. Wend Eng. Ind. Aerod. 2016, 152, 41–49. [Google Scholar] [CrossRef]
- Yu, M.; Pan, Z.; Jiang, R. Multi-objective optimization design of the head shape of high-speed train based on approximate model. J. Mech. Eng. 2019, 55, 178–186. [Google Scholar]
- Tijssens, M.; Bosma, F.; Kietlinski, K. A Methodology and Tool Chain to Develop Integrated Safety Systems. In Proceedings of the 24th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Gothenburg, Sweden, 8–11 June 2015. [Google Scholar]
- Schoeneburg, R.; Breitling, T. Enhancement of Active and Passive Safety by Future PRE-SAFE Systems. In Proceedings of the International Technical Conference on the Enhanced Safety of Vehicles, Washington, DC, USA, 6–9 June 2015. [Google Scholar]
- Giesing, J.P.; Barthelemy, J.M. A Summary of Industry MDO Application and Needs; NASA: Washington, DC, USA, 1998.
- Dexl, F.; Hauffe, A.; Wolf, K. Multidisciplinary multi-objective design optimization of an active morphing wing section. Struct. Multidiscipl. Optim. 2020, 62, 2423–2440. [Google Scholar] [CrossRef]
- Anselma, P.G.; Niutta, C.B.; Mainini, L. Multidisciplinary design optimization for hybrid electric vehicles: Component sizing and multi-fidelity frontal crashworthiness. Struct. Multidiscipl. Optim. 2020, 62, 2149–2166. [Google Scholar] [CrossRef]
- Hirschler, T.; Bouclier, R.; Duval, A. Isogeometric sizing and shape optimization of thin structures with a solid-shell approach. Struct. Multidiscipl. Optim. 2019, 59, 767–785. [Google Scholar] [CrossRef] [Green Version]
- Martin, I.; Hartwig, L.; Bestle, D. A multi-objective optimization framework for robust axial compressor airfoil design. Struct. Multidiscipl. Optim. 2019, 59, 1935–1947. [Google Scholar] [CrossRef]
- Denis, V.; Chirkov, A.S.; Ankudinova, A.E. Skorospelov. Multi-objective shape optimization of a hydraulic turbine runner using efficiency, strength and weight criteria. Struct. Multidiscipl. Optim. 2018, 58, 627–640. [Google Scholar]
- Cramer, E.J.; Dennis, J.E.; Frank, P.D. Problem formulation for multidisciplinary optimization. SIAM J. Optim. 1994, 4, 754–776. [Google Scholar] [CrossRef]
- Haftka, R.T. Simultaneous analysis and design. AIAA J. 1985, 7, 1099–1103. [Google Scholar] [CrossRef]
- Balling, R.J.; Sobieszczanski-Sobieski, J. Optimiza-tion of coupled systems: A critical overview of approaches. AIAA J. 1996, 34, 6–17. [Google Scholar] [CrossRef]
- Sobieszczanski-Sobieski, J. Optimization by Decomposition: A Step Form Hierarchic to Non-Hierarchic Systems; NASA: Washington, DC, USA, 1989.
- Kroo, J.; Altus, S.; Sobieszczanski-Sobieski, J. Multidisciplinary Optimization Methods for Aircraft Prelimin-Ary Design; NASA: Washington, DC, USA, 1994.
- Sobieszczanski-Sobieski, J.; Agte, J.; Robert, S.R. Bi-Level Integrated System Synthesis (Bliss); NASA: Washington, DC, USA, 1998.
- Michelena, N.; Kim, H.M.; Papalambros, P.Y. A System Partitioning and Optimization Approach to Target Cascading. In Proceedings of the 12th International Conference on Engineering Design, Munich, Germany, 24–26 August 1999. [Google Scholar]
- Yao, W.; Wu, Y.; Chen, F. A concurrent subspace collaborative optimization architecture to structural synthetical optimization design. Struct. Multidiscipl. Optim. 2016, 53, 1197–1207. [Google Scholar] [CrossRef]
- Shin, M.K.; Park, G.J. Multidisciplinary design optimization based on independent subspaces. Int. J. Numer. Meth. Engng. 2005, 64, 599–617. [Google Scholar] [CrossRef]
- Kim, H.M.; Rideout, D.G.; Papalambros, P.Y. Analytical target cascading in automotive vehicle design. J. Mech. Des. 2003, 125, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Braun, R.; Gage, P.; Kroo, I. Implementation and Performance Issues in Collaborative Optimization; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1996. [Google Scholar]
- Li, X.; Li, W.; Liu, C. Geometric analysis of collaborative optimization. Struct. Multidiscipl. Optim. 2008, 35, 301–313. [Google Scholar] [CrossRef]
- Precup, R.; David, R.; Roman, R. Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems. Int. J. Comput. Int. Syst. 2021, 14, 1042–1052. [Google Scholar] [CrossRef]
- Zapata, H.; Perozo, N.; Angulo, W. A Hybrid Swarm Algorithm for Collective Construction of 3D Structures. Int. J. Artif. Intell. 2020, 18, 1–18. [Google Scholar]
- Roman, R.; Precup, R.; Bojan-Dragos, C. Combined Model-Free Adaptive Control with Fuzzy Component by Virtual Reference. Feedback Tuning for Tower Crane Systems. Procedia Comput. Sci. 2019, 162, 267–274. [Google Scholar] [CrossRef]
- Fatma, G.; Islem, L.; Chiraz, H. Optimization of boron removal from water by electrodialysis using response surface methodology. Water Sci. Technol. 2020, 81, 293–300. [Google Scholar]
- Srinivas, G.R.; Deb, A.; Sanketh, R. An Enhanced Methodology for Lightweighting a Vehicle Design Considering Front Crashworthiness and Pedestrian Impact Safety Requirements. Adv. Mat. Res. 2017, 173, 623–630. [Google Scholar] [CrossRef]
- Xiong, J.; Li, T.; Zhang, J. Shape optimization of high-speed trains under multi running conditions. Sci. China Technol. Sci. 2016, 46, 313–322. [Google Scholar]
- Muñoz-Paniagua, J.; García, J.; Crespo, A. Genetically aerodynamic optimization of the nose shape of a high-speed train entering a tunnel. J. Wind Eng. Ind. Aerod. 2014, 130, 48–61. [Google Scholar] [CrossRef] [Green Version]
Solve under Different Conditions | Optimal Solution | Error Accuracy | Number of Iterations |
---|---|---|---|
Theoretical solution | 3.9604 | —— | —— |
Solution with a relaxation factor of 0.1 | 2.8204 | 28.79% | 20 |
Solution with a relaxation factor of 0.001 | 3.8796 | 2.04% | 34 |
Solution with a relaxation factor of 0.00001 | No feasible solution | —— | —— |
Dynamic relaxation factor | 3.9125 | 1.21% | 17 |
Main Components (Design Variables) | Initial Value/mm | Design Upper Limit/mm | Design Lower Limit/mm | Material |
---|---|---|---|---|
(0) Front ring and main ring | 1.6 | - | - | 4130 steel |
(1) Front baffle, roll cage diagonal brace, main ring diagonal brace, side anti-collision structure, battery protection structure | 1.6 | 2.0 | 1.2 | 4130 steel |
(2) The upper and lower supports of the front clapboard and the upper and lower longitudinal pipes of the motor drive cabin | 3.5 | 4.5 | 3.0 | 6061 aluminum |
(3) Truss support pipe for front cabin and motor drive cabin | 3.5 | 4.5 | 3.0 | 6061 aluminum |
(4) Front partition support and main ring support | 1.5 | 1.6 | 1.5 | 4130 steel |
(5) Cockpit and battery protection structure truss support pipe | 1.6 | 2.0 | 1.2 | 4130 steel |
(6) Mounting cross bar for motor, differential, and drive | 1.2 | 1.6 | 0.9 | 4130 steel |
Design Variable | Initial Value/mm | Lower Limit/mm | Upper Limit/mm |
---|---|---|---|
Change value of length of tube 1 | 0 | −5.0 | 30.0 |
Change value of length of tube 2 | 0 | −50.0 | 75.0 |
Change value of length of tube 3 | 0 | −25.0 | 15.0 |
Change value of longitudinal symmetry plane of the vehicle head | 0 | −20.0 | 25.0 |
Calculation Domain Boundary Type | Parameter Setting |
---|---|
VELOCITY INLET | m/s |
PRESSURE OUTLET | Free pressure outlet, hydraulic diameter: 2.04 m, turbulence intensity: 5% |
GROUND | m/s |
WALL | |
FRONT SURFACE | Immovable avoidance surface |
Design Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1.68 | 1.65 | 1.81 | 2.00 | 1.84 | 1.92 | 1.89 | 1.87 | |
3.97 | 4.03 | 4.30 | 3.83 | 3.77 | 4.17 | 3.57 | 3.90 | |
4.23 | 3.50 | 4.30 | 4.43 | 4.37 | 3.77 | 3.90 | 3.83 | |
/mm | 1.51 | 1.50 | 1.60 | 1.54 | 1.58 | 1.53 | 1.51 | 1.53 |
1.95 | 1.76 | 1.92 | 1.87 | 1.60 | 2.00 | 1.71 | 1.63 | |
1.95 | 1.81 | 1.79 | 1.89 | 1.73 | 1.71 | 1.68 | 2.00 | |
−14.00 | −6.67 | −21.33 | 4.33 | 26.33 | −17.67 | 30.00 | −3.00 | |
0.00 | −33.33 | 41.67 | 16.67 | 25.00 | 58.33 | −8.33 | 75.00 | |
15.00 | −3.67 | −9.00 | −25.00 | 7.00 | −19.67 | −14.33 | 9.67 | |
−2.00 | −17.00 | −14.00 | −11.00 | 16.00 | 13.00 | 1.00 | −5.00 | |
46.43 | 45.77 | 45.85 | 47.79 | 49.22 | 48.81 | 47.52 | 43.84 | |
50.19 | 49.57 | 50.13 | 62.90 | 50.16 | 62.26 | 64.71 | 63.83 | |
48.42 | 45.75 | 49.84 | 50.93 | 48.25 | 50.00 | 47.76 | 48.94 | |
0.26 | 0.30 | 0.25 | 0.25 | 0.23 | 0.23 | 0.24 | 0.21 | |
Design Variable | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
1.71 | 1.95 | 1.63 | 1.79 | 1.73 | 1.97 | 1.76 | 1.60 | |
4.10 | 3.70 | 4.43 | 4.23 | 3.50 | 4.50 | 4.37 | 3.63 | |
3.70 | 3.63 | 4.17 | 4.50 | 4.10 | 3.97 | 3.57 | 4.03 | |
/mm | 1.57 | 1.59 | 1.55 | 1.52 | 1.56 | 1.55 | 1.57 | 1.59 |
1.73 | 1.84 | 1.65 | 1.81 | 1.97 | 1.68 | 1.89 | 1.79 | |
1.60 | 1.84 | 1.87 | 1.63 | 1.65 | 1.76 | 1.97 | 1.92 | |
15.33 | 8.00 | 11.67 | 19.00 | −10.33 | −25.00 | 22.67 | 0.67 | |
66.67 | −41.67 | 8.33 | 33.33 | 50.00 | −16.67 | −25.00 | −50.00 | |
11.67 | 1.67 | −17.00 | −1.00 | 4.33 | −6.33 | 12.33 | −22.33 | |
4.00 | 19.00 | 25.00 | −20.00 | 22.00 | 10.00 | −8.00 | 7.00 | |
46.66 | 39.19 | 43.04 | 43.08 | 45.20 | 41.43 | 45.85 | 51.78 | |
65.43 | 67.00 | 70.84 | 66.51 | 69.77 | 78.54 | 71.04 | 65.10 | |
46.86 | 48.49 | 47.23 | 49.10 | 47.85 | 49.05 | 48.71 | 47.59 | |
0.20 | 0.29 | 0.24 | 0.24 | 0.23 | 0.28 | 0.27 | 0.32 |
Response Value | Initial Value | Optimized Value | Improvement Effect |
---|---|---|---|
M/kg | 46.76 | 43.71 | −6.50% |
A/g | 53.42 | 46.96 | −12.09% |
D/mm | 70.62 | 50.02 | −29.18% |
0.24 | 0.21 | −12.50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, M.; Li, X.; Qin, D. Multidisciplinary Lightweight Optimization for Front Impact Structure of Body Frame Based on Active and Passive Safety. Mathematics 2021, 9, 907. https://doi.org/10.3390/math9080907
Wang T, Wang M, Li X, Qin D. Multidisciplinary Lightweight Optimization for Front Impact Structure of Body Frame Based on Active and Passive Safety. Mathematics. 2021; 9(8):907. https://doi.org/10.3390/math9080907
Chicago/Turabian StyleWang, Tingting, Mengjian Wang, Xia Li, and Dongchen Qin. 2021. "Multidisciplinary Lightweight Optimization for Front Impact Structure of Body Frame Based on Active and Passive Safety" Mathematics 9, no. 8: 907. https://doi.org/10.3390/math9080907
APA StyleWang, T., Wang, M., Li, X., & Qin, D. (2021). Multidisciplinary Lightweight Optimization for Front Impact Structure of Body Frame Based on Active and Passive Safety. Mathematics, 9(8), 907. https://doi.org/10.3390/math9080907