Non-Stationary Model of Cerebral Oxygen Transport with Unknown Sources
Abstract
:1. Introduction
2. Problem Formulation
2.1. The Model
2.2. The Abstract Cauchy Problem
- (i)
- ;
- (ii)
- ;
- (iii)
- .
2.3. The Inverse Problem
3. The Existence and Uniqueness of the Solution of Problem 1
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, R.; Secomb, T.W. A Green’s function method for analysis of oxygen delivery to tissue by microvascular networks. Math. Biosci. 1989, 96, 61–78. [Google Scholar] [CrossRef]
- Secomb, T.W.; Hsu, R.; Beamer, N.B.; Coull, B.M. Theoretical simulation of oxygen transport to brain by networks of microvessels: Effects of oxygen supply and demand on tissue hypoxia. Microcirculation 2000, 7, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Payne, S.J. Modelling the effects of cerebral microvasculature morphology on oxygen transport. Med. Eng. Phys. 2016, 38, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kovtanyuk, A.E.; Chebotarev, A.Y.; Botkin, N.D.; Turova, V.L.; Sidorenko, I.N.; Lampe, R. Continuum model of oxygen transport in brain. J. Math. Anal. Appl. 2019, 474, 1352–1363. [Google Scholar] [CrossRef]
- Kovtanyuk, A.E.; Chebotarev, A.Y.; Botkin, N.D.; Turova, V.L.; Sidorenko, I.N.; Lampe, R. Nonstationary model of oxygen transport in brain tissue. Comp. Math. Meth. Med. 2020, 2020, 4861654. [Google Scholar] [CrossRef] [PubMed]
- Kovtanyuk, A.E.; Chebotarev, A.Y.; Turova, V.L.; Sidorenko, I.N.; Lampe, R. An inverse problem for equations of cerebral oxygen transport. Appl. Math. Comput. 2021, 402, 126154. [Google Scholar]
- Chebotarev, A.Y. Subdifferential inverse problems for stationary systems of Navier-Stokes type. J. Inverse III-Posed Probl. 1995, 3, 268–277. [Google Scholar] [CrossRef]
- Chebotarev, A.Y. Inverse problem for Navier-Stokes systems with finite-dimensional overdetermination. Differ. Equ. 2012, 48, 1153–1160. [Google Scholar] [CrossRef]
- Chebotarev, A.Y.; Grenkin, G.V.; Kovtanyuk, A.E.; Botkin, N.D.; Hoffmann, K.-H. Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange. J. Math. Anal. Appl. 2018, 460, 737–744. [Google Scholar] [CrossRef]
- Chebotarev, A.Y.; Pinnau, R. An inverse problem for a quasi-static approximate model of radiative heat transfer. J. Math. Anal. Appl. 2019, 472, 314–327. [Google Scholar] [CrossRef]
- Kovtanyuk, A.E.; Chebotarev, A.Y.; Botkin, N.D.; Turova, V.L.; Sidorenko, I.N.; Lampe, R. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Math. Control Relat. Fields 2021. [Google Scholar] [CrossRef]
- Botkin, N.D.; Kovtanyuk, A.E.; Turova, V.L.; Sidorenko, I.N.; Lampe, R. Direct modeling of blood flow through the vascular network of the germinal matrix. Comput. Biol. Med. 2018, 92, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Lions, J.-L.; Magenes, E. Non-Homogeneous Boundary Value Problems and Applications; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovtanyuk, A.; Chebotarev, A.; Turova, V.; Sidorenko, I.; Lampe, R. Non-Stationary Model of Cerebral Oxygen Transport with Unknown Sources. Mathematics 2021, 9, 910. https://doi.org/10.3390/math9080910
Kovtanyuk A, Chebotarev A, Turova V, Sidorenko I, Lampe R. Non-Stationary Model of Cerebral Oxygen Transport with Unknown Sources. Mathematics. 2021; 9(8):910. https://doi.org/10.3390/math9080910
Chicago/Turabian StyleKovtanyuk, Andrey, Alexander Chebotarev, Varvara Turova, Irina Sidorenko, and Renée Lampe. 2021. "Non-Stationary Model of Cerebral Oxygen Transport with Unknown Sources" Mathematics 9, no. 8: 910. https://doi.org/10.3390/math9080910
APA StyleKovtanyuk, A., Chebotarev, A., Turova, V., Sidorenko, I., & Lampe, R. (2021). Non-Stationary Model of Cerebral Oxygen Transport with Unknown Sources. Mathematics, 9(8), 910. https://doi.org/10.3390/math9080910