SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center
Abstract
:1. Introduction
1.1. History
1.2. Different Approaches to a Population Study: Diagnostic Radiology and Epidemiology
1.3. Incidental Findings
1.4. Data Protection and Data Sharing
1.5. Contrast Agent
2. Methods and Material
2.1. Identifying Publications for This Review
2.2. Publications Resulting from the Examination Protocols
3. Results
3.1. Metrics
3.2. Published Studies of a Methodological Nature
3.2.1. Pilot Study/Feasibility and Incidental Findings
3.2.2. Normal Values/Contrast Enhancement
3.2.3. Female Breast
3.2.4. Organ Segmentation
3.3. Published Studies According to Anatomical Region
3.3.1. Normal Morphology at Macroscopic Level
Brain
Eye
Dental, Oral, and Maxillofacial Surgery
Cardiac Morphology and Function
Musculoskeletal
Thorax
Liver
Pancreas
Kidney
3.3.2. Normal Anatomy at Microscopic Level
Body
3.4. Association Studies
3.4.1. Neuropsychiatry
3.4.2. Hormones
3.4.3. Cardiovascular
3.4.4. Abdomen
3.5. Studies Resulting from Cooperation within International Imaging Consortia
4. Discussion
4.1. General Timeline
4.2. Role of Radiology in Cohort Studies
4.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIG | Brain imaging genetics |
BIRADS | Breast imaging reporting and data system |
BMI | Body mass index |
CNP | 2′,3′-cyclic-nucleotide 3′-phosphodiesterase |
CNV | Copy number variant |
dACC | Dorsal anterior cingulate cortex |
DWI | Diffusion-weighted imaging |
FLAIR | Fluid attenuated inversion recovery |
GMV | Grey matter volume |
GNCS | German National Cohort Study |
GWAS | Genome wide association study |
HFE | Human hemochromatosis protein |
Ifs | Incidental findings |
MPRAGE | Magnetization prepared rapid gradient echo |
NIH | National Institutes of Health |
OSA | Obstructive sleep apnea |
PACS | Picture archiving and communication system |
PDFF | Proton density fat fraction |
PPI | Proton pump inhibitors |
PRH | Perirenal linear hyperintensities |
R2* | Transverse relaxation rate (1/T2*) |
sMRCP | Secretin stimulated magnetic resonance Cholangiopancreatography |
SHIP | Study of Health in Pomerania |
SHIP-MR | Magnetic Resonance Imaging in subjects from SHIP |
SNP | Single-nucleotide polymorphism |
T | Tesla |
VBM | Voxel-based morphometry |
T2* | T2 relaxation time influenced by magnetic field gradient inhomogeneities |
wb-MRI | Whole-body Magnetic Resonance Imaging |
WMH | White matter hyperintensities |
References
- Volzke, H.; Alte, D.; Schmidt, C.O.; Radke, D.; Lorbeer, R.; Friedrich, N.; Aumann, N.; Lau, K.; Piontek, M.; Born, G.; et al. Cohort profile: The study of health in Pomerania. Int. J. Epidemiol. 2011, 40, 294–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, P.M.; Stein, J.L.; Medland, S.E.; Hibar, D.P.; Vasquez, A.A.; Renteria, M.E.; Toro, R.; Jahanshad, N.; Schumann, G.; Franke, B.; et al. The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014, 8, 153–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, P.M.; Jahanshad, N.; Ching, C.R.K.; Salminen, L.E.; Thomopoulos, S.I.; Bright, J.; Baune, B.T.; Bertolin, S.; Bralten, J.; Bruin, W.B.; et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiat. 2020, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegenscheid, K.; Kuhn, J.P.; Volzke, H.; Biffar, R.; Hosten, N.; Puls, R. Whole-body magnetic resonance imaging of healthy volunteers: Pilot study results from the population-based SHIP study. Rofo 2009, 181, 748–759. [Google Scholar] [CrossRef]
- Hegenscheid, K.; Seipel, R.; Schmidt, C.O.; Volzke, H.; Kuhn, J.P.; Biffar, R.; Kroemer, H.K.; Hosten, N.; Puls, R. Potentially relevant incidental findings on research whole-body MRI in the general adult population: Frequencies and management. Eur. Radiol. 2013, 23, 816–826. [Google Scholar] [CrossRef]
- Ralf Puls, N.H.E. Ganzkörper-MRT-Screening: Befunde und Zufallsbefunde; ABW Wissenschaftsverlag: Berlin, Germany, 2010. [Google Scholar]
- Ralf Puls, N.H.E. Whole-Body MRI Screening; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Schmidt, C.O.; Hegenscheid, K.; Erdmann, P.; Kohlmann, T.; Langanke, M.; Volzke, H.; Puls, R.; Assel, H.; Biffar, R.; Grabe, H.J. Psychosocial consequences and severity of disclosed incidental findings from whole-body MRI in a general population study. Eur. Radiol. 2013, 23, 1343–1351. [Google Scholar] [CrossRef]
- Appelbaum, P.S.; Roth, L.H.; Lidz, C.W.; Benson, P.; Winslade, W. False Hopes and Best Data-Consent to Research and the Therapeutic Misconception. Hastings Cent. Rep. 1987, 17, 20–24. [Google Scholar] [CrossRef]
- Hoffmann, M. Two basic ethical problems of incidental findings in population-based, non-intervening magnetic resonance imaging (MRI) research. J. Eval. Clin. Pr. 2013, 19, 427–432. [Google Scholar] [CrossRef]
- Wolf, S.M.; Lawrenz, F.P.; Nelson, C.A.; Kahn, J.P.; Cho, M.K.; Clayton, E.W.; Fletcher, J.G.; Georgieff, M.K.; Hammerschmidt, D.; Hudson, K.; et al. Managing incidental findings in human subjects research: Analysis and recommendations. J. Law Med. Ethics 2008, 36, 219–248. [Google Scholar] [CrossRef]
- Woodward, C.I.; Toms, A.P. Incidental findings in “normal” volunteers. Clin. Radiol. 2009, 64, 951–953. [Google Scholar] [CrossRef]
- Richter, A.; Sierocinski, E.; Singer, S.; Bulow, R.; Hackmann, C.; Chenot, J.F.; Schmidt, C.O. The effects of incidental findings from whole-body MRI on the frequency of biopsies and detected malignancies or benign conditions in a general population cohort study. Eur. J. Epidemiol. 2020, 35, 925–935. [Google Scholar] [CrossRef]
- Habes, M.; Erus, G.; Toledo, J.B.; Zhang, T.H.; Bryan, N.; Launer, L.J.; Rosseel, Y.; Janowitz, D.; Doshi, J.; Van der Auwera, S.; et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain 2016, 139, 1164–1179. [Google Scholar] [CrossRef] [Green Version]
- Kromrey, M.L.; Bulow, R.; Hubner, J.; Paperlein, C.; Lerch, M.M.; Ittermann, T.; Volzke, H.; Mayerle, J.; Kuhn, J.P. Prospective study on the incidence, prevalence and 5-year pancreatic-related mortality of pancreatic cysts in a population-based study. Gut 2018, 67, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, J.P.; Berthold, F.; Mayerle, J.; Volzke, H.; Reeder, S.B.; Rathmann, W.; Lerch, M.M.; Hosten, N.; Hegenscheid, K.; Meffert, P.J. Pancreatic Steatosis Demonstrated at MR Imaging in the General Population: Clinical Relevance. Radiology 2015, 276, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Janowitz, D.; Wittfeld, K.; Terock, J.; Freyberger, H.J.; Hegenscheid, K.; Volzke, H.; Habes, M.; Hosten, N.; Friedrich, N.; Nauck, M.; et al. Association between waist circumference and gray matter volume in 2344 individuals from two adult community-based samples. Neuroimage 2015, 122, 149–157. [Google Scholar] [CrossRef]
- Grabe, H.J.; Wittfeld, K.; Hegenscheid, K.; Hosten, N.; Lotze, M.; Janowitz, D.; Volzke, H.; John, U.; Barnow, S.; Freyberger, H.J. Alexithymia and Brain Gray Matter Volumes in a General Population Sample. Hum. Brain Mapp. 2014, 35, 5932–5945. [Google Scholar] [CrossRef]
- Kuhn, J.P.; Meffert, P.; Heske, C.; Kromrey, M.L.; Schmidt, C.O.; Mensel, B.; Volzke, H.; Lerch, M.M.; Hernando, D.; Mayerle, J.; et al. Prevalence of Fatty Liver Disease and Hepatic Iron Overload in a Northeastern German Population by Using Quantitative MR Imaging. Radiology 2017, 284, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Baraliakos, X.; Richter, A.; Feldmann, D.; Ott, A.; Buelow, R.; Schmidt, C.; Braun, J. The Degree of Bone Marrow Edema as Detected by Magnetic Resonance Imaging in the Sacroiliac Joints and the Spine Suspicious of Axial Spondyloarthritis in the General Population Is Associated with Different Factors. Ann. Rheum. Dis. 2020, 79, 57. [Google Scholar] [CrossRef]
- Baraliakos, X.; Richter, A.; Feldmann, D.; Ott, A.; Buelow, R.; Schmidt, C.O.; Braun, J. Frequency of MRI changes suggestive of axial spondyloarthritis in the axial skeleton in a large population-based cohort of individuals aged < 45 years. Ann. Rheum. Dis. 2020, 79, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Daboul, A.; Schwahn, C.; Bulow, R.; Kiliaridis, S.; Kocher, T.; Klinke, T.; Mundt, T.; Mourad, S.; Volzke, H.; Habes, M.; et al. Influence of Age and Tooth Loss on Masticatory Muscles Characteristics: A Population Based MR Imaging Study. J. Nutr. Health Aging 2018, 22, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.S.; Kuhn, J.P.; Ittermann, T.; Schmidt, C.O.; Gumbel, D.; Kasch, R.; Frank, M.; Laqua, R.; Hinz, P.; Lange, J. What Are the Reference Values and Associated Factors for Center-edge Angle and Alpha Angle? A Population-based Study. Clin. Orthop. Relat. R. 2018, 476, 2249–2259. [Google Scholar] [CrossRef]
- Fischer, C.S.; Kühn, J.P.; Völzke, H.; Ittermann, T.; Gümbel, D.; Kasch, R.; Haralambiev, L.; Laqua, R.; Hinz, P.; Lange, J. The neck-shaft angle: An update on reference values and associated factors. Acta Orthop. 2020, 91, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Ivanovska, T.; Laqua, R.; Wang, L.; Schenk, A.; Yoon, J.H.; Hegenscheid, K.; Volzke, H.; Liebscher, V. An efficient level set method for simultaneous intensity inhomogeneity correction and segmentation of MR images. Comput. Med. Imag. Grap. 2016, 48, 9–20. [Google Scholar] [CrossRef]
- Kasch, R.; Scheele, J.; Hancock, M.; Hofer, A.; Maher, C.; Bulow, R.; Lange, J.; Lahm, A.; Napp, M.; Wassilew, G.; et al. Prevalence of benign osseous lesions of the spine and association with spinal pain in the general population in whole body MRI. PLoS ONE 2019, 14, e0219846. [Google Scholar] [CrossRef]
- Kasch, R.; Truthmann, J.; Hancock, M.J.; Maher, C.G.; Otto, M.; Nell, C.; Reichwein, N.; Bülow, R.; Chenot, J.F.; Hofer, A.; et al. Association of Lumbar MRI Findings with Current and Future Back Pain in a Population-Based Cohort Study. Spine 2021. [Google Scholar] [CrossRef]
- Kindler, S.; Ittermann, T.; Bulow, R.; Holtfreter, B.; Klausenitz, C.; Metelmann, P.; Mksoud, M.; Pink, C.; Seebauer, C.; Kocher, T.; et al. Does craniofacial morphology affect third molars impaction? Results from a population-based study in northeastern Germany. PLoS ONE 2019, 14, e0225444. [Google Scholar] [CrossRef]
- Kindler, S.; Mksoud, M.; Holtfreter, B.; Friedrich, N.; Bulow, R.; Ittermann, T. Do Third Molars Contribute to Systemic Inflammation? Results From a Population-Based Study From Northeast Germany. J. Oral Maxil. Surg. 2019, 77, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Mensel, B.; Kuhn, J.P.; Kracht, F.; Volzke, H.; Lieb, W.; Dabers, T.; Lorbeer, R. Prevalence of renal cysts and association with risk factors in a general population: An MRI-based study. Abdom. Radiol. 2018, 43, 3068–3074. [Google Scholar] [CrossRef]
- Witte, T.; Volzke, H.; Lerch, M.M.; Hegenscheid, K.; Friedrich, N.; Ittermann, T.; Batsis, J.A. Association between Serum Thyroid-Stimulating Hormone Levels and Visceral Adipose Tissue: A Population-Based Study in Northeast Germany. Eur. Thyroid J. 2017, 6, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Hecker, M.; Hegenscheid, K.; Volzke, H.; Hinz, P.; Lange, J.; Ekkernkamp, A.; Frank, M. Needle decompression of tension pneumothorax: Population-based epidemiologic approach to adequate needle length in healthy volunteers in Northeast Germany. J. Trauma Acute Care 2016, 80, 119–124. [Google Scholar] [CrossRef]
- Ivanovska, T.; Daboul, A.; Kalentev, O.; Hosten, N.; Biffar, R.; Volzke, H.; Worgotter, F. A deep cascaded segmentation of obstructive sleep apnea-relevant organs from sagittal spine MRI. Int. J. Comput. Ass. Rad. 2021, 16, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Nell, C.; Bulow, R.; Hosten, N.; Schmidt, C.O.; Hegenscheid, K. Reference values for the cervical spinal canal and the vertebral bodies by MRI in a general population. PLoS ONE 2019, 14, e0222682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindler, S.; Holtfreter, B.; Koppe, T.; Mksoud, M.; Lucas, C.; Seebauer, C.; Volzke, H.; Kocher, T.; Johnson, K.; Langner, S.; et al. Third molars and periodontal damage of second molars in the general population. J. Clin. Periodontol. 2018, 45, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Klemm, P.; Oeltze-Jafra, S.; Lawonn, K.; Hegenscheid, K.; Volzke, H.; Preim, B. Interactive Visual Analysis of Image-Centric Cohort Study Data. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1673–1682. [Google Scholar] [CrossRef]
- Mksoud, M.; Ittermann, T.; Daboul, A.; Schneider, P.; Bernhardt, O.; Koppe, T.; Bulow, R.; Metelmann, H.R.; Volzke, H.; Kindler, S. Are third molars associated with orofacial pain? Findings from the SHIP study. Community Dent. Oral 2020, 48, 364–370. [Google Scholar] [CrossRef]
- Chauhan, G.; Adams, H.H.H.; Satizabal, C.L.; Bis, J.C.; Teumer, A.; Sargurupremraj, M.; Hofer, E.; Trompet, S.; Hilal, S.; Smith, A.V.; et al. Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology 2019, 92, E486–E503. [Google Scholar] [CrossRef] [Green Version]
- Ahn, N.; Frenzel, S.; Wittfeld, K.; Bulow, R.; Volzke, H.; Lerch, M.M.; Chenot, J.F.; Schminke, U.; Nolde, M.; Amann, U.; et al. Lack of association between proton pump inhibitor use and brain aging: A cross-sectional study. Eur. J. Clin. Pharmacol. 2021, 77, 1039–1048. [Google Scholar] [CrossRef]
- Janova, H.; Arinrad, S.; Balmuth, E.; Mitjans, M.; Hertel, J.; Habes, M.; Bittner, R.A.; Pan, H.; Goebbels, S.; Begemann, M.; et al. Microglia ablation alleviates myelin-associated catatonic signs in mice. J. Clin. Investig. 2018, 128, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, H.U.; Weihs, A.; Habes, M.; Wittfeld, K.; Frenzel, S.; Rashid, T.; Stubbe, B.; Obst, A.; Szentkiralyi, A.; Bulow, R.; et al. Association Between Obstructive Sleep Apnea and Brain White Matter Hyperintensities in a Population-Based Cohort in Germany. JAMA Netw. Open 2021, 4, e2128225. [Google Scholar] [CrossRef]
- Daboul, A.; Schwahn, C.; Schaffner, G.; Soehnel, S.; Samietz, S.; Aljaghsi, A.; Habes, M.; Hegenscheid, K.; Puls, R.; Klinke, T.; et al. Reproducibility of Frankfort Horizontal Plane on 3D Multi-Planar Reconstructed MR Images. PLoS ONE 2012, 7, e48281. [Google Scholar] [CrossRef]
- Daboul, A.; Ivanovska, T.; Bulow, R.; Biffar, R.; Cardini, A. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets. PLoS ONE 2018, 13, e0197675. [Google Scholar] [CrossRef] [Green Version]
- Domin, M.; Grimm, N.K.; Klepzig, K.; Schmidt, C.O.; Kordass, B.; Lotze, M. Gray Matter Brain Alterations in Temporomandibular Disorder Tested in a Population Cohort and Three Clinical Samples. J. Pain 2021, 22, 739–747. [Google Scholar] [CrossRef]
- Eyme, K.M.; Domin, M.; Gerlach, F.H.; Hosten, N.; Schmidt, C.O.; Gaser, C.; Floel, A.; Lotze, M. Physically active life style is associated with increased grey matter brain volume in a medial parieto-frontal network. Behav. Brain Res. 2019, 359, 215–222. [Google Scholar] [CrossRef]
- Frenzel, S.; Wittfeld, K.; Habes, M.; Klinger-Konig, J.; Bulow, R.; Volzke, H.; Grabe, H.J.; Initia, A.D.N. A Biomarker for Alzheimer’s Disease Based on Patterns of Regional Brain Atrophy. Front. Psychiatry 2020, 10, 953. [Google Scholar] [CrossRef]
- Fritz, H.C.; Wittfeld, K.; Schmidt, C.O.; Domin, M.; Grabe, H.J.; Hegenscheid, K.; Hosten, N.; Lotze, M. Current Smoking and Reduced Gray Matter Volume-a Voxel-Based Morphometry Study. Neuropsychopharmacol 2014, 39, 2594–2600. [Google Scholar] [CrossRef] [Green Version]
- Fritz, H.C.; McAuley, J.H.; Wittfeld, K.; Hegenscheid, K.; Schmidt, C.O.; Langner, S.; Lotze, M. Chronic Back Pain Is Associated With Decreased Prefrontal and Anterior Insular Gray Matter: Results From a Population-Based Cohort Study. J. Pain 2016, 17, 111–118. [Google Scholar] [CrossRef]
- Grabe, H.J.; Wittfeld, K.; Van der Auwera, S.; Janowitz, D.; Hegenscheid, K.; Habes, M.; Homuth, G.; Barnow, S.; John, U.; Nauck, M.; et al. Effect of the interaction between childhood abuse and rs1360780 of the FKBP5 gene on gray matter volume in a general population sample. Hum. Brain Mapp. 2016, 37, 1602–1613. [Google Scholar] [CrossRef]
- Guadalupe, T.; Zwiers, M.P.; Teumer, A.; Wittfeld, K.; Vasquez, A.A.; Hoogman, M.; Hagoort, P.; Fernandez, G.; Buitelaar, J.; Hegenscheid, K.; et al. Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Hum. Brain Mapp. 2014, 35, 3277–3289. [Google Scholar] [CrossRef] [Green Version]
- Guadalupe, T.; Zwiers, M.P.; Wittfeld, K.; Teumer, A.; Vasquez, A.A.; Hoogman, M.; Hagoort, P.; Fernandez, G.; Buitelaar, J.; van Bokhoven, H.; et al. Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex 2015, 62, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Hertel, J.; Konig, J.; Homuth, G.; Van der Auwera, S.; Wittfeld, K.; Pietzner, M.; Kacprowski, T.; Pfeiffer, L.; Kretschmer, A.; Waldenberger, M.; et al. Evidence for Stress-like Alterations in the HPA-Axis in Women Taking Oral Contraceptives. Sci. Rep Uk 2017, 7, 14111. [Google Scholar] [CrossRef]
- Ittermann, T.; Wittfeld, K.; Nauck, M.; Blow, R.; Hosten, N.; Vlzke, H.; Grabe, H.J. High Thyrotropin Is Associated with Reduced Hippocampal Volume in a Population-Based Study from Germany. Thyroid 2018, 28, 1434–1442. [Google Scholar] [CrossRef]
- Jochem, C.; Baumeister, S.E.; Wittfeld, K.; Leitzmann, M.F.; Bahls, M.; Schminke, U.; Markus, M.R.P.; Felix, S.B.; Volzke, H.; Hegenscheid, K.; et al. Domains of physical activity and brain volumes: A population-based study. Neuroimage 2017, 156, 101–108. [Google Scholar] [CrossRef]
- Kromrey, M.L.; Liedtke, K.R.; Ittermann, T.; Langner, S.; Kirsch, M.; Weitschies, W.; Kuhn, J.P. Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years. Eur. Radiol. 2016, 27, 772–777. [Google Scholar] [CrossRef]
- Liu, F.; van der Lijn, F.; Schurmann, C.; Zhu, G.; Chakravarty, M.M.; Hysi, P.G.; Wollstein, A.; Lao, O.; de Bruijne, M.; Ikram, M.A.; et al. A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans. PLoS Genet. 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Lotze, M.; Domin, M.; Gerlach, F.H.; Gaser, C.; Lueders, E.; Schmidt, C.O.; Neumann, N. Novel findings from 2,838 Adult Brains on Sex Differences in Gray Matter Brain Volume. Sci. Rep. 2019, 9, 1671. [Google Scholar] [CrossRef]
- Lotze, M.; Domin, M.; Schmidt, C.O.; Hosten, N.; Grabe, H.J.; Neumann, N. Income is associated with hippocampal/amygdala and education with cingulate cortex grey matter volume. Sci. Rep. 2020, 10, 18786. [Google Scholar] [CrossRef]
- Markus, M.R.P.; Ittermann, T.; Wittfeld, K.; Schipf, S.; Siewert-Markus, U.; Bahls, M.; Bulow, R.; Werner, N.; Janowitz, D.; Baumeister, S.E.; et al. Prediabetes is associated with lower brain gray matter volume in the general population. The Study of Health in Pomerania (SHIP). Nutr. Metab. Cardiovas 2017, 27, 1114–1122. [Google Scholar] [CrossRef]
- Salti, L.; Holtfreter, B.; Pink, C.; Habes, M.; Biffar, R.; Kiliaridis, S.; Krey, K.F.; Bulow, R.; Volzke, H.; Kocher, T.; et al. Estimating effects of craniofacial morphology on gingival recession and clinical attachment loss. J. Clin. Periodontol. 2017, 44, 363–371. [Google Scholar] [CrossRef]
- Schmidt, P.; Kempin, R.; Langner, S.; Beule, A.; Kindler, S.; Koppe, T.; Volzke, H.; Ittermann, T.; Jurgens, C.; Tost, F. Association of anthropometric markers with globe position: A population-based MRI study. PLoS ONE 2019, 14, e0211817. [Google Scholar] [CrossRef] [Green Version]
- Schwahn, C.; Frenzel, S.; Holtfreter, B.; van der Auwera, S.; Pink, C.; Bulow, R.; Friedrich, N.; Volzke, H.; Biffar, R.; Kocher, T.; et al. Effect of periodontal treatment on preclinical Alzheimer’s disease-Results of a trial emulation approach. Alzheimers Dement 2021. [Google Scholar] [CrossRef]
- Teipel, S.J.; Grothe, M.J.; Wittfeld, K.; Hoffmann, W.; Hegenscheid, K.; Volzke, H.; Homuth, G.; Grabe, H.J. Association of a neurokinin 3 receptor polymorphism with the anterior basal forebrain. Neurobiol. Aging 2015, 36, 2060–2067. [Google Scholar] [CrossRef] [PubMed]
- Terock, J.; Frenzel, S.; Wittfeld, K.; Klinger-Konig, J.; Janowitz, D.; Bulow, R.; Hosten, N.; Volzke, H.; Grabe, H.J. Alexithymia Is Associated with Altered Cortical Thickness Networks in the General Population. Neuropsychobiology 2020, 79, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Weihs, A.; Frenzel, S.; Wittfeld, K.; Obst, A.; Stubbe, B.; Habes, M.; Szentkiralyi, A.; Berger, K.; Fietze, I.; Penzel, T.; et al. Associations between sleep apnea and advanced brain aging in a large-scale population study. Sleep 2021, 44, zsaa204. [Google Scholar] [CrossRef] [PubMed]
- Wittfeld, K.; Jochem, C.; Dorr, M.; Schminke, U.; Glaser, S.; Bahls, M.; Markus, M.R.P.; Felix, S.B.; Leitzmann, M.F.; Ewert, R.; et al. Cardiorespiratory Fitness and Gray Matter Volume in the Temporal, Frontal, and Cerebellar Regions in the General Population. Mayo Clin. Proc. 2020, 95, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Ittermann, T.; Lorbeer, R.; Dorr, M.; Schneider, T.; Quadrat, A.; Hesselbarth, L.; Wenzel, M.; Lehmphul, I.; Kohrle, J.; Mensel, B.; et al. High levels of thyroid-stimulating hormone are associated with aortic wall thickness in the general population. Eur. Radiol. 2016, 26, 4490–4496. [Google Scholar] [CrossRef]
- Ivanovska, T.; Hegenscheid, K.; Laqua, R.; Kuhn, J.P.; Glaser, S.; Ewert, R.; Hosten, N.; Puls, R.; Volzke, H. A fast and accurate automatic lung segmentation and volumetry method for MR data used in epidemiological studies. Comput. Med. Imag. Graph. 2012, 36, 281–293. [Google Scholar] [CrossRef]
- Blum, S.F.U.; Ittermann, T.; Kromrey, M.L.; Dreyer, C.M.; Seppelt, D.; Hoffmann, R.T.; Volzke, H.; Kuhn, J.P. Long-term outcome of incidental cystic liver tumors in the general population. Sci. Rep. 2021, 11, 11661. [Google Scholar] [CrossRef]
- Gloger, O.; Tonnies, K.; Mensel, B.; Volzke, H. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data. Phys. Med. Biol. 2015, 60, 8675–8693. [Google Scholar] [CrossRef]
- Aghdassi, A.A.; Schauer, B.; Duscha, D.; Ittermann, T.; Pickartz, T.; Budde, C.; Simon, P.; Moskwa, P.; Kromrey, M.L.; Bulow, R.; et al. Comparability of size measurements of the pancreas in magnetic resonance imaging and transabdominal ultrasound. Clin. Anat. 2020, 33, 431–439. [Google Scholar] [CrossRef]
- Bulow, R.; Simon, P.; Thiel, R.; Thamm, P.; Messner, P.; Lerch, M.M.; Mayerle, J.; Volzke, H.; Hosten, N.; Kuhn, J.P. Anatomic variants of the pancreatic duct and their clinical relevance: An MR-guided study in the general population. Eur. Radiol. 2014, 24, 3142–3149. [Google Scholar] [CrossRef]
- Frost, F.; Kacprowski, T.; Ruhlemann, M.; Bulow, R.; Kuhn, J.P.; Franke, A.; Heinsen, F.A.; Pietzner, M.; Nauck, M.; Volker, U.; et al. Impaired Exocrine Pancreatic Function Associates With Changes in Intestinal Microbiota Composition and Diversity. Gastroenterology 2019, 156, 1010–1015. [Google Scholar] [CrossRef]
- Gloger, O.; Bulow, R.; Tonnies, K.; Volzke, H. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences. Magn. Reson. Mater. Phy. 2018, 31, 383–397. [Google Scholar] [CrossRef]
- Mensel, B.; Messner, P.; Mayerle, J.; Fluhr, G.; Volzke, H.; Lerch, M.M.; Ittermann, T.; Kuhn, J.P. Secretin-Stimulated MRCP in Volunteers: Assessment of Safety, Duct Visualization, and Pancreatic Exocrine Function. Am. J. Roentgenol. 2014, 202, 102–108. [Google Scholar] [CrossRef]
- Gloger, O.; Tonnies, K.; Bulow, R.; Volzke, H. Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors. Phys. Med. Biol. 2017, 62, 5861–5883. [Google Scholar] [CrossRef]
- Mensel, B.; Hesselbarth, L.; Wenzel, M.; Kuhn, J.P.; Dorr, M.; Volzke, H.; Lieb, W.; Hegenscheid, K.; Lorbeer, R. Thoracic and abdominal aortic diameters in a general population: MRI-based reference values and association with age and cardiovascular risk factors. Eur. Radiol. 2016, 26, 969–978. [Google Scholar] [CrossRef]
- Roloff, A.M.; Heiss, P.; Schneider, T.P.; Quadrat, A.; Kromrey, M.L.; Zeman, F.; Stroszczynski, C.; Mensel, B.; Kuhn, J.P. Accuracy of simple approaches to assessing liver volume in radiological imaging. Abdom. Radiol. 2016, 41, 1293–1299. [Google Scholar] [CrossRef]
- Seyfart, T.; Friedrich, N.; Kische, H.; Bulow, R.; Wallaschofski, H.; Volzke, H.; Nauck, M.; Keevil, B.G.; Haring, R. Association of sex hormones with physical, laboratory, and imaging markers of anthropometry in men and women from the general population. PLoS ONE 2018, 13, e0189042. [Google Scholar] [CrossRef] [Green Version]
- Berg, R.M.; Wallaschofski, H.; Nauck, M.; Rettig, R.; Markus, M.R.P.; Laqua, R.; Friedrich, N.; Hannemann, A. Positive Association Between Adipose Tissue and Bone Stiffness. Calcif. Tissue Int. 2015, 97, 40–49. [Google Scholar] [CrossRef]
- Genske, F.; Kuhn, P.; Pietzner, M.; Homuth, G.; Rathmann, W.; Grabe, H.; Volzke, H.; Wallaschofski, H.; Friedrich, N. Abdominal fat deposits determined by magnetic resonance imaging in relation to leptin and vaspin levels as well as insulin resistance in the general adult population. Int. J. Obes. 2018, 42, 183–189. [Google Scholar] [CrossRef]
- Hernando, D.; Kuhn, J.P.; Mensel, B.; Volzke, H.; Puls, R.; Hosten, N.; Reeder, S.B. R2*estimation using “in-phase” echoes in the presence of fat: The effects of complex spectrum of fat. J. Magn. Reson. Imaging 2013, 37, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Kasza, I.; Kuhn, J.P.; Volzke, H.; Hernando, D.; Xu, Y.H.G.; Siebert, J.W.; Gibson, A.L.F.; Yen, C.L.E.; Nelson, D.W.; MacDougald, O.A.; et al. Contrasting recruitment of skin-associated adipose depots during cold challenge of mouse and human. J. Physiol. 2021. [Google Scholar] [CrossRef]
- Kromrey, M.L.; Ittermann, T.; von Wahsen, C.; Plodeck, V.; Seppelt, D.; Hoffmann, R.T.; Heiss, P.; Kuhn, J.P. Reference values of liver volume in Caucasian population and factors influencing liver size. Eur. J. Radiol. 2018, 106, 32–37. [Google Scholar] [CrossRef]
- Kromrey, M.L.; Friedrich, N.; Hoffmann, R.T.; Bulow, R.; Volzke, H.; Weiss, F.U.; Lerch, M.M.; Motosugi, U.; Kuhn, J.P. Pancreatic Steatosis Is Associated With Impaired Exocrine Pancreatic Function. Investig. Radiol. 2019, 54, 403–408. [Google Scholar] [CrossRef]
- Kromrey, M.L.; Ittermann, T.; Berning, M.; Kolb, C.; Hoffmann, R.T.; Lerch, M.M.; Volzke, H.; Kuhn, J.P. Accuracy of ultrasonography in the assessment of liver fat compared with MRI. Clin. Radiol. 2019, 74, 539–546. [Google Scholar] [CrossRef]
- Kromrey, M.L.; Röhnert, A.; Blum, S.; Winzer, R.; Hoffman, R.T.; Völzke, H.; Kacprowski, T.; Kühn, J.P. Whole-body R2∗ mapping to quantify tissue iron in iron storage organs: Reference values and a genotype. Clin. Radiol. 2021, 76, 863.e11–863.e17. [Google Scholar] [CrossRef]
- Kuhn, J.P.; Hernando, D.; Munoz del Rio, A.; Evert, M.; Kannengiesser, S.; Volzke, H.; Mensel, B.; Puls, R.; Hosten, N.; Reeder, S.B. Effect of multipeak spectral modeling of fat for liver iron and fat quantification: Correlation of biopsy with MR imaging results. Radiology 2012, 265, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, J.P.; Hernando, D.; Mensel, B.; Kruger, P.C.; Ittermann, T.; Mayerle, J.; Hosten, N.; Reeder, S.B. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J. Magn. Reson. Imaging 2014, 39, 1494–1501. [Google Scholar] [CrossRef] [Green Version]
- Levin, L.M.; Volzke, H.; Lerch, M.M.; Kuhn, J.P.; Nauck, M.; Friedrich, N.; Zylla, S. Associations of circulating chemerin and adiponectin concentrations with hepatic steatosis. Endocr. Connect. 2019, 8, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Bulow, R.; Schipf, S.; Werner, N.; Dorr, M.; Lerch, M.M.; Kuhn, J.P.; Rathmann, W.; Nauck, M.; Markus, M.R.P.; et al. Association of hepatic steatosis derived from ultrasound and quantitative MRI with prediabetes in the general population. Sci. Rep. 2021, 11, 13276. [Google Scholar] [CrossRef]
- Otto, L.; Budde, K.; Kastenmuller, G.; Kaul, A.; Volker, U.; Volzke, H.; Adamski, J.; Kuhn, J.P.; Krumsiek, J.; Artati, A.; et al. Associations between adipose tissue volume and small molecules in plasma and urine among asymptomatic subjects from the general population. Sci. Rep. 2020, 10, 1487. [Google Scholar] [CrossRef] [Green Version]
- Pietzner, M.; Budde, K.; Homuth, G.; Kastenmuller, G.; Henning, A.K.; Artati, A.; Krumsiek, J.; Volzke, H.; Adamski, J.; Lerch, M.M.; et al. Hepatic Steatosis Is Associated With Adverse Molecular Signatures in Subjects Without Diabetes. J. Clin. Endocr. Metab. 2018, 103, 3856–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitchika, A.; Kuhn, J.P.; Schipf, S.; Nauck, M.; Dorr, M.; Lerch, M.M.; Kromrey, M.L.; Felix, S.B.; Markus, M.R.P.; Rathmann, W.; et al. Hepatic steatosis and hepatic iron overload modify the association of iron markers with glucose metabolism disorders and metabolic syndrome. Liver Int. 2021, 41, 1841–1852. [Google Scholar] [CrossRef] [PubMed]
- Zylla, S.; Pietzner, M.; Kuhn, J.P.; Volzke, H.; Dorr, M.; Nauck, M.; Friedrich, N. Serum Chemerin is Associated with Inflammatory and Metabolic Parameters-Results of a Population-Based Study. Obesity 2017, 25, 468–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habes, M.; Schiller, T.; Rosenberg, C.; Burchardt, M.; Hoffmann, W. Automated prostate segmentation in whole-body MRI scans for epidemiological studies. Phys. Med. Biol. 2013, 58, 5899–5915. [Google Scholar] [CrossRef] [PubMed]
- Bulow, R.; Ittermann, T.; Dorr, M.; Poesch, A.; Langner, S.; Volzke, H.; Hosten, N.; Dewey, M. Reference ranges of left ventricular structure and function assessed by contrast-enhanced cardiac MR and changes related to ageing and hypertension in a population-based study. Eur. Radiol. 2018, 28, 3996–4005. [Google Scholar] [CrossRef] [PubMed]
- Drzyzga, C.J.; Bahls, M.; Ittermann, T.; Völzke, H.; Bülow, R.; Hammer, F.; Ewert, R.; Gläser, S.; Felix, S.B.; Dörr, M.; et al. Lower Cardiorespiratory Fitness Is Associated With Right Ventricular Geometry and Function - The Sedentary’s Heart: SHIP. J. Am. Heart Assoc. 2021, 10, e021116. [Google Scholar] [CrossRef]
- Markus, M.R.P.; Rospleszcz, S.; Ittermann, T.; Baumeister, S.E.; Schipf, S.; Siewert-Markus, U.; Lorbeer, R.; Storz, C.; Ptushkina, V.; Peters, A.; et al. Glucose and insulin levels are associated with arterial stiffness and concentric remodeling of the heart. Cardiovasc. Diabetol. 2019, 18, 145. [Google Scholar] [CrossRef]
- Markus, M.R.P.; Ittermann, T.; Kim, S.; Schipf, S.; Siewert-Markus, U.; Santana, C.C.; Buchmann, N.; Völzke, H.; Bülow, R.; Felix, S.B.; et al. Lower muscular strength is associated with smaller left and right chambers and lower cardiac mass in the general population - The Sedentary’s Heart The Study of Health in Pomerania (SHIP). Prog. Cardiovasc. Dis. 2021, 68, 36–51. [Google Scholar] [CrossRef]
- Markus, M.R.P.; Ittermann, T.; Drzyzga, C.J.; Bahls, M.; Schipf, S.; Siewert-Markus, U.; Baumeister, S.E.; Schumacher, P.; Ewert, R.; Völzke, H.; et al. Cardiac MRI shows an association of lower cardiorespiratory fitness with decreased myocardial mass and higher cardiac stiffness in the general population - The sedentary’s heart: The Study of Health in Pomerania (SHIP). Prog. Cardiovasc. Dis. 2021, 68, 25–35. [Google Scholar] [CrossRef]
- Lorbeer, R.; Schneider, T.; Quadrat, A.; Kuhn, J.P.; Dorr, M.; Volzke, H.; Lieb, W.; Hegenscheid, K.; Mensel, B. Cardiovascular Risk Factors and Thoracic Aortic Wall Thickness in a General Population. J. Vasc. Interv. Radiol. 2015, 26, 635–641. [Google Scholar] [CrossRef]
- Mensel, B.; Quadrat, A.; Schneider, T.; Kuhn, J.P.; Dorr, M.; Volzke, H.; Lieb, W.; Hegenscheid, K.; Lorbeer, R. MRI-based Determination of Reference Values of Thoracic Aortic Wall Thickness in a General Population. Eur. Radiol. 2014, 24, 2038–2044. [Google Scholar] [CrossRef]
- Lorbeer, R.; Grotz, A.; Dorr, M.; Volzke, H.; Lieb, W.; Kuhn, J.P.; Mensel, B. Reference values of vessel diameters, stenosis prevalence, and arterial variations of the lower limb arteries in a male population sample using contrast-enhanced MR angiography. PLoS ONE 2018, 13, e0197559. [Google Scholar] [CrossRef]
- Ivanovska, T.; Laqua, R.; Wang, L.; Liebscher, V.; Volzke, H.; Hegenscheid, K. A Level Set Based Framework for Quantitative Evaluation of Breast Tissue Density from MRI Data. PLoS ONE 2014, 9, e112709. [Google Scholar] [CrossRef] [Green Version]
- Hegenscheid, K.; Schmidt, C.O.; Seipel, R.; Laqua, R.; Ohlinger, R.; Hosten, N.; Puls, R. Contrast enhancement kinetics of normal breast parenchyma in dynamic MR mammography: Effects of menopausal status, oral contraceptives, and postmenopausal hormone therapy. Eur. Radiol. 2012, 22, 2633–2640. [Google Scholar] [CrossRef]
- Hegenscheid, K.; Schmidt, C.O.; Seipel, R.; Laqua, R.; Ohlinger, R.; Kuhn, J.P.; Hosten, N.; Puls, R. Normal Breast Parenchyma: Contrast Enhancement Kinetics at Dynamic MR Mammography-Influence of Anthropometric Measures and Menopausal Status. Radiology 2013, 266, 72–80. [Google Scholar] [CrossRef]
- Ivanovska, T.; Jentschke, T.G.; Daboul, A.; Hegenscheid, K.; Volzke, H.; Worgotter, F. A deep learning framework for efficient analysis of breast volume and fibroglandular tissue using MR data with strong artifacts. Int. J. Comput. Assist. Radiol. 2019, 14, 1627–1633. [Google Scholar] [CrossRef]
- Kanda, T.; Ishii, K.; Kawaguchi, H.; Kitajima, K.; Takenaka, D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014, 270, 834–841. [Google Scholar] [CrossRef]
- McDonald, R.J.; McDonald, J.S.; Kallmes, D.F.; Jentoft, M.E.; Murray, D.L.; Thielen, K.R.; Williamson, E.E.; Eckel, L.J. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology 2015, 275, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.J.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [Green Version]
- Klemm, P.; Lawonn, K.; Glasser, S.; Niemann, U.; Hegenscheid, K.; Volzke, H.; Preim, B. 3D Regression Heat Map Analysis of Population Study Data. IEEE Trans. Comput. Graph. 2016, 22, 81–90. [Google Scholar] [CrossRef]
- Hahm, S.; Lotze, M.; Domin, M.; Schmidt, S. The association of health-related quality of life and cerebral gray matter volume in the context of aging: A voxel-based morphometry study with a general population sample. Neuroimage 2019, 191, 470–480. [Google Scholar] [CrossRef]
- Fischer, J.; Volzke, H.; Kassubek, J.; Muller, H.P.; Kuhn, J.P.; Nauck, M.; Friedrich, N.; Zylla, S. Associations of a Panel of Adipokines with Fat Deposits and Metabolic Phenotypes in a General Population. Obesity 2020, 28, 1550–1559. [Google Scholar] [CrossRef]
- Mensel, B.; Vogel, S.; Streufert, A.; Kuhn, J.P.; Volzke, H.; Lieb, W.; Dabers, T.; Lorbeer, R. Prevalence and risk factors of perirenal hyperintensities on T2-weighted MR imaging. Abdom. Radiol. 2020, 45, 2518–2525. [Google Scholar] [CrossRef]
- Kunin, M. Bridging Septa of the Perinephric Space-Anatomic, Pathological, and Diagnostic Considerations. Radiology 1986, 158, 361–365. [Google Scholar] [CrossRef]
- Hannemann, A.; Thuesen, B.H.; Friedrich, N.; Volzke, H.; Steveling, A.; Ittermann, T.; Hegenscheid, K.; Nauck, M.; Linneberg, A.; Wallaschofski, H. Adiposity measures and vitamin D concentrations in Northeast Germany and Denmark. Nutr. Metab. 2015, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Psaty, B.M.; O’Donnell, C.J.; Gudnason, V.; Lunetta, K.L.; Folsom, A.R.; Rotter, J.I.; Uitterlinden, A.G.; Harris, T.B.; Witteman, J.C.M.; Boerwinkle, E.; et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Design of Prospective Meta-Analyses of Genome-Wide Association Studies From 5 Cohorts. Circ. Cardiovasc. Gene 2009, 2, U73–U128. [Google Scholar] [CrossRef]
- Opel, N.; Thalamuthu, A.; Milaneschi, Y.; Grotegerd, D.; Flint, C.; Leenings, R.; Goltermann, J.; Richter, M.; Hahn, T.; Woditsch, G.; et al. Brain structural abnormalities in obesity: Relation to age, genetic risk, and common psychiatric disorders Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group. Mol. Psychiatr. 2020, 26, 4839–4852. [Google Scholar] [CrossRef]
- Satizabal, C.L.; Adams, H.H.H.; Hibar, D.P.; White, C.C.; Knol, M.J.; Stein, J.L.; Scholz, M.; Sargurupremraj, M.; Jahanshad, N.; Roshchupkin, G.V.; et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet. 2019, 51, 1624. [Google Scholar] [CrossRef] [Green Version]
- Grasby, K.L.; Jahanshad, N.; Painter, J.N.; Colodro-Conde, L.; Bralten, J.; Hibar, D.P.; Lind, P.A.; Pizzagalli, F.; Ching, C.R.K.; McMahon, M.A.B.; et al. The genetic architecture of the human cerebral cortex. Science 2020, 367, 1340. [Google Scholar] [CrossRef] [Green Version]
- Wierenga, L.M.; Doucet, G.E.; Dima, D.; Agartz, I.; Aghajani, M.; Akudjedu, T.N.; Albajes-Eizagirre, A.; Alnaes, D.; Alpert, K.I.; Andreassen, O.A.; et al. Greater male than female variability in regional brain structure across the lifespan. Hum. Brain Mapp. 2020, 43, 470–499. [Google Scholar] [CrossRef]
- Frangou, S.; Modabbernia, A.; Williams, S.C.R.; Papachristou, E.; Doucet, G.E.; Agartz, I.; Aghajani, M.; Akudjedu, T.N.; Albajes-Eizagirre, A.; Alnaes, D.; et al. Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Hum. Brain Mapp. 2021, 43, 431–451. [Google Scholar] [CrossRef] [PubMed]
- Dima, D.; Modabbernia, A.; Papachristou, E.; Doucet, G.E.; Agartz, I.; Aghajani, M.; Akudjedu, T.N.; Albajes-Eizagirre, A.; Alnaes, D.; Alpert, K.I.; et al. Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Hum. Brain Mapp. 2021, 43, 452–469. [Google Scholar] [CrossRef] [PubMed]
- Han, L.K.M.; Dinga, R.; Hahn, T.; Ching, C.R.K.; Eyler, L.T.; Aftanas, L.; Aghajani, M.; Aleman, A.; Baune, B.T.; Berger, K.; et al. Brain aging in major depressive disorder: Results from the ENIGMA major depressive disorder working group. Mol. Psychiatry 2021, 26, 5124–5139. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Gutman, B.; Pozzi, E.; Grabe, H.J.; Hosten, N.; Wittfeld, K.; Volzke, H.; Baune, B.; Dannlowski, U.; Forster, K.; et al. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Hum. Brain Mapp. 2020, 43, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Franke, B.; Stein, J.L.; Ripke, S.; Anttila, V.; Hibar, D.P.; van Hulzen, K.J.E.; Arias-Vasquez, A.; Smoller, J.W.; Nichols, T.E.; Neale, M.C.; et al. Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept. Nat. Neurosci. 2016, 19, 420. [Google Scholar] [CrossRef]
- Hofer, E.; Roshchupkin, G.V.; Adams, H.H.H.; Knol, M.J.; Lin, H.H.; Li, S.; Zare, H.; Ahmad, S.; Armstrong, N.J.; Satizabal, C.L.; et al. Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat. Commun. 2020, 11, 4796. [Google Scholar] [CrossRef]
- Thompson, P.M.; Andreassen, O.A.; Arias-Vasquez, A.; Bearden, C.E.; Boedhoe, P.S.; Brouwer, R.M.; Buckner, R.L.; Buitelaar, J.K.; Bulayeva, K.B.; Cannon, D.M.; et al. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. Neuroimage 2017, 145, 389–408. [Google Scholar] [CrossRef]
- Steensma, B.R.; Luttje, M.; Voogt, I.J.; Klomp, D.W.J.; Luijten, P.R.; van den Berg, C.A.T.; Raaijmakers, A.J.E. Comparing signal-to-noise ratio for prostate imaging at 7T and 3T. J. Magn. Reson. Imaging 2019, 49, 1446–1455. [Google Scholar] [CrossRef]
- Sonderby, I.E.; van der Meer, D.; Moreau, C.; Kaufmann, T.; Walters, G.B.; Ellegaard, M.; Abdellaoui, A.; Ames, D.; Amunts, K.; Andersson, M.; et al. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Transl. Psychiat. 2021, 11, 182. [Google Scholar] [CrossRef]
- Schlett, C.L.; Hendel, T.; Weckbach, S.; Reiser, M.; Kauczor, H.U.; Nikolaou, K.; Gunther, M.; Forsting, M.; Hosten, N.; Volzke, H.; et al. Population-Based Imaging and Radiomics: Rationale and Perspective of the German National Cohort MRI Study. Rofo Fortschr. Rontg. 2016, 188, 652–661. [Google Scholar] [CrossRef] [Green Version]
- Bamberg, F.; Kauczor, H.U.; Weckbach, S.; Schlett, C.L.; Forsting, M.; Ladd, S.C.; Greiser, K.H.; Weber, M.A.; Schulz-Menger, J.; Niendorf, T.; et al. Whole-Body MR Imaging in the German National Cohort:Rationale, Design, and Technical Background. Radiology 2015, 277, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Hegedus, P.; von Stackelberg, O.; Neumann, C.; Selder, S.; Werner, N.; Erdmann, P.; Granitza, A.; Volzke, H.; Bamberg, F.; Kaaks, R.; et al. How to report incidental findings from population whole-body MRI: View of participants of the German National Cohort. Eur. Radiol. 2019, 29, 5873–5878. [Google Scholar] [CrossRef]
Area of Research Referenced in (Number) Papers | UMG/External | Participant N | Relevant Publications | Main Findings (Verbal Quotations!) |
---|---|---|---|---|
Neuro, association study (237) | UMG | 2367 | Habes M 2016 [14] | “White matter hyperintensities also contribute independently to brain atrophy patterns in regions related to Alzheimer’s disease dementia,” |
MR imaging in Population based studies, methodology (127) | UMG | 194 | Hegenscheid K 2009 [4] | “a large prospective, population-based study using wb-MRI is feasible and that the results of image analysis are reproducible.” |
Abdomen, natural history (120) | UMG | 2333 | Kromrey ML 2018 [15] | “The prevalence of pancreatic cysts in the general population is unexpectedly high, and their number and size increase with age. Overall, no pancreatic cancer was observed in this collective during a 5-year follow-up.” |
MR imaging in Population based studies, methodology (107) | UMG | 2500 | Hegenscheid K 2013 [5] | “Potentially relevant incidental findings are very common in wb-MRI research but the nature of these findings remains unclear in most cases. This requires dedicated management to protect subjects’ welfare and research integrity.” |
Abdomen, epidemiology (83) | UMG | 1367 | Kühn JP 2015 [16] | “The presence of pancreatic fat is not related to prediabetes or diabetes, which suggests that it has little clinical relevance for an individual’s glycemic status.” |
Neuro, association study (74) | UMG | 2344 | Janowitz D 2015 [17] | “VBM (“voxel-based morphometry”) in SHIP-2 and TREND indicated distinct associations of obesity-related factors (waist circumference and BMI) with loss of gray matter volume in mediofrontal areas.” |
Neuro, association study (65) | UMG | 2589 | Grabe HJ 2014 [18] | “Alexiythymia was associated with areas represent(ing) language and semantic processing which might be involved in the cognitive processing of emotions and the conscious identification of feelings.” |
MR imaging in Population based studies, methodology (65) | UMG | 471 | Schmidt CO 2013 [8] | “Despite the high satisfaction of most participants, there were numerous adverse consequences concerning the communication of incidental findings and false expectations about the likely potential benefits of whole-body-MRI.” |
Abdomen, epidemiology (64) | UMG | 2561 | Kühn JP 2017 [19] | “In a white German population, the prevalence of fatty liver diseases and liver iron overload is 42.2% (1082 of 2561) and 17.4% (447 of 2561). Whereas liver fat is associated with predictors related to the metabolic syndrome, liver iron content is mainly associated with mean serum corpuscular hemoglobin.” |
Sequence | TR (ms) | TE (ms) | Flip Angle | Voxel Size | Scan Time (min) | Publication | |
---|---|---|---|---|---|---|---|
Whole body | cor TIRM (5 stations) | 4900 | 67 | 180° | 1.6 × 1.6 × 5.0 | 12:09 | Baraliakos et al., 2020 [20] Baraliakos et al., 2020 [21] Daboul et al., 2018 [22] Fischer et al., 2018 [23] Fischer et al., 2020 [24] Ivanovska et al., 2016 [25] Kasch et al., 2019 [26] Kasch et al., 2021 [27] Kindler et al., 2019 [28] Kindler et al., 2019 [29] Mensel et al., 2018 [30] Witte et al., 2017 [31] 12 |
Spine | sag T2 TSE (2 stations) | 3760 | 106 | 180° | 1.1 × 1.1 × 4.0 | 2:04 | Baraliakos et al., 2020 [20] Baraliakos et al., 2020 [21] Hecker et al., 2016 [32] Ivanovska et al., 2021 [33] Kasch et al., 2019 [26] Kasch et al., 2021 [27] Nell et al., 2019 [34] 7 |
sag T1 TSE (2 stations) | 676 | 12 | 180° | 1.1 × 1.1 × 4.0 | 2:42 | Baraliakos et al., 2020 [20] Baraliakos et al., 2020 [21] Ivanovska et al., 2021 [33] Kasch et al., 2019 [26] Kasch et al., 2021 [27] Kindler et al., 2018 [35] Kindler et al., 2019 [28] Kindler et al., 2019 [29] Klemm et al., 2014 [36] Mksoud et al., 2020 [37] Nell et al., 2019 [34] 11 | |
sag T2* | 4330 | 9.0/13.6/18.3/22.9/27.6 | 60° | 1.6 × 1.6 × 5.0 | 1:14 | 0 | |
Brain | sag T2 TSE | 2610 | 102 | 180° | 1.2 × 0.9 × 3.0 | 0:46 | Chauhan et al., 2019 [38] 1 |
ax T2 FLAIR | 5000 | 325 | 0.9 × 0.9 × 3.0 | 3:47 | Ahn et al., 2021 [39] Chauhan et al., 2019 [38] Habes et al., 2016 [14] Janova et al., 2018 [40] Zacharias et al., 2021 [41] 5 | ||
ax T1 MPR | 1900 | 3.4 | 15° | 1.0 × 1.0 × 1.0 | 3:38 | Ahn et al., 2021 [39] Chauhan et al., 2019 [38] Daboul et al., 2012 [42] Daboul et al., 2018 [22] Daboul et al., 2018 [43] Domin et al., 2021 [44] Eyme et al., 2019 [45] Frenzel et al., 2020 [46] Fritz et al., 2014 [47] Fritz et al., 2016 [48] Grabe et al., 2014 [18] Grabe et al., 2016 [49] Guadalupe et al., 2014 [50] Guadalupe et al., 2015 [51] Habes et al., 2016 [14] Hertel et al., 2017 [52] Ittermann et al., 2018 [53] Janova et al., 2018 [40] Janowitz et al., 2015 [17] Jochem et al., 2017 [54] Kromrey et al., 2016 [55] Liu et al., 2012 [56] Lotze et al., 2019 [57] Lotze et al., 2020 [58] Markus et al., 2017 [59] Salti et al., 2017 [60] Schmidt et al., 2019 [61] Schwahn et al., 2021 [62] Teipel et al., 2015 [63] Terock et al., 2020 [64] Weihs et al., 2021 [65] Wittfeld et al., 2020 [66] Zacharias et al., 2021 [41] 33 | |
ax DWI | 3600 | 89 | 90° | 1.2 × 1.2 × 5.0 | 1:10 | 0 | |
ax T2 SWI 3D | 49 | 40 | 15° | 1.1 × 0.9 × 3.0 | 2:35 | 0 | |
ax TOF angiography | 23 | 7 | 25° | 0.7 × 0.7 × 0.7 | 3:23 | 0 | |
Neck | ax T1 TSE | 587 | 11 | 150° | 1.0 × 0.8 × 4.0 | 2:02 | Daboul et al., 2018 [22] Kindler et al., 2018 [35] Kindler et al., 2019 [28] Kindler et al., 2019 [29] Mksoud et al., 2020 [37] 5 |
Chest | ax T1 VIBE | 3.1 | 1.1 | 8° | 1.8 × 1.8 × 3.0 | 0:21 | Ittermann et al., 2016 [67] Ivanovska et al., 2012 [68] 2 |
ax T2 HASTE | 550 | 22 | 150° | 2.3 × 1.8 × 5.0 | 0:40 | Hecker et al., 2016 [32] Ivanovska et al., 2012 [68] 2 | |
Abdomen | ax T2 FS (BLADE) | 2720 | 116 | 150° | 1.6 × 1.6 × 6.0 | 1:16 | Blum et al., 2021 [69] Gloger et al., 2015 [70] Mensel et al., 2018 [30] 3 |
ax T1 FLASH FS | 251 | 4.1 | 70° | 2.3 × 1.8 × 6.0 | 1:17 | Aghdassi et al., 2020 [71] Mensel et al., 2018 [30] 2 | |
cor T2 TSE 3D (MRCP) | 957 | 622 | 180° | 1.0 × 1.0 × 1.5 | 1:42 | Bülow et al., 2014 [72] Frost et al., 2019 [73] Gloger et al., 2018 [74] Kromrey et al., 2018 [15] Mensel et al., 2014 [75] Witte et al., 2017 [31] 6 | |
ax DWI | 7160 | 72 | 90° | 2.5 × 2.0 × 6.0 | 2:55 | 0 | |
ax T1 VIBE (4 stations) | 7.5 | 2.4 | 10° | 2.4 × 1.6 × 4.0 | 0:38 | Gloger et al., 2017 [76] Mensel et al., 2016 [77] Roloff et al., 2016 [78] Seyfart et al., 2018 [79] 4 | |
3D three-echo-complex chemical shift (out-phase, in-phase, in-phase), multi-echo 2D-GRE including 5 in-phase TEs (R2* mapping) (WIP) | 11 | 2.4/4.8/9.6 | 10° | 2.24 × 1.68 × 3.0 | Berg et al., 2015 [80] Blum et al., 2021 [69] Fischer et al., 2020 [24] Genske et al., 2018 [81] Hernando et al., 2013 [82] Kasza et al., 2021 [83] Kromrey et al., 2018 [84] Kromrey et al., 2019 [85] Kromrey et al., 2019 [86] Kromrey et al., 2021 [87] Kühn et al., 2012 [88] Kühn et al., 2014 [89] Kühn et al., 2015 [16] џKühn et al., 2017 [19] Levin et al., 2019 [90] Naeem et al., 2021 [91] Otto et al., 2020 [92] Pietzner et al., 2018 [93] Pitchika et al., 2021 [94] Zylla et al., 2017 [95] 20 | ||
Pelvis | ax PD TSE FS | 3230 | 34 | 180° | 1.6 × 1.6 × 3.0 | 2:43 | Fischer et al., 2018 [23] Fischer et al., 2020 [24] Habes et al., 2013 [96] 3 |
Heart MRI Protocol | |||||||
Sequence | TR (mse | TE (ms) | Flip Angle | Voxel Size | Scan Time (min) | Publication | |
Cardiac MRI pre-contrast medium | 4-ChV Cine SSFP | 2.7 | 1.1 | 66° | 2.2 × 1.8 × 6.0 | 0:60 | Bülow et al., 2018 [97] Drzyzga et al., 2021 [98] Markus et al., 2019 [99] Markus et al., 2021 [100] Markus et al., 2021 [101] 5 |
3-ChV Cine SSFP | 2.7 | 1.1 | 66° | 2.2 × 1.8 × 6.0 | 0:10 | 0 | |
2-ChV Cine SSFP | 2.7 | 1.1 | 66° | 2.2 × 1.8 × 6.0 | 0:60 | Bülow et al., 2018 [97] Drzyzga et al., 2021 [98] Markus et al., 2019 [99] Markus et al., 2021 [100] Markus et al., 2021 [101] 5 | |
Cardiac short- axis Cine SSFP | 2.8 | 1.2 | 68° | 2.0 × 1.4 × 7.0 | 0:54 | Bülow et al., 2018 [97] Drzyzga et al., 2021 [98] Markus et al., 2019 [99] Markus et al., 2021 [100] Markus et al., 2021 [101] 5 | |
Cardiac axial Cine SSFP | 2.8 | 1.2 | 68° | 2.0 × 1.4 × 6.0 | 1:17 | Ittermann et al., 2016 [67] Lorbeer et al., 2015 [102] Mensel et al., 2014 [103] 3 | |
Cardiac MRI post-contrast medium | PSIR single shot | 2.4 | 1.0 | 40° | 3.0 × 2.1 × 6.0 | 0:35 | Bülow et al., 2018 [97] 1 |
MR Angiography Protocol for Male Subjects | |||||||
Sequence | TR (msec) | TE (msec) | Flip Angle | Voxel Size | Scan Time (min) | Publication | |
MR angiography pre-contrast medium | T1 FLASH 3D feet | 2.5 | 0.9 | 25° | 1.4 × 1.0 × 1.5 | 0:16 | 0 |
T1 FLASH 3D head, abdomen, legs | 2.4 | 0.9 | 25° | 2.0 × 1.0 × 1.5 | 0:12 | 0 | |
MR angiography post-contrast medium | care bolus | 3354 | 119 | 30° | 2.0 × 1.6 × 18.0 | 1:29 | |
T1 FLASH 3D head, abdomen, legs | 248 | 90 | 25° | 2.0 × 1.0 × 1.5 | 0:12 | Lorbeer et al., 2018 [104] 1 | |
T1 FLASH 3D feet | 255 | 90 | 25° | 1.4 × 1.0 × 1.5 | 0:16 | 0 | |
MR Mammography Protocol for Female Subjects | |||||||
Sequence | TR (msec) | TE (msec) | Flip Angle | Voxel Size | Scan Time (min) | Publication | |
MR mammography pre-contrast medium | ax TIRM | 5800 | 56 | 150° | 1.1 × 1.1 × 4.0 | 3:01 | Ivanovska et al., 2014 [105] 1 |
ax T2 TSE | 4660 | 67 | 180° | 0.9 × 0.9 × 4.0 | 3:17 | Ivanovska et al., 2014 [105] 1 | |
ax DWI | 7900 | 91 | 90° | 1.8 × 1.8 × 4.0 | 4:05 | Ivanovska et al., 2014 [105] 1 | |
3D TWIST (ax T 1 FLASH 3D) | 8.9 | 4.5 | 25° | 0.9 × 0.7 × 1.5 | Hegenscheid et al., 2012 [106] Hegenscheid et al., 2013 [107] Ivanovska et al., 2014 [105] Ivanovska et al., 2016 [25] Ivanovska et al., 2019 [108] 5 | ||
MR mammography post-contrast medium | ax T 1 FLASH 3D (dynamic) | 8.9 | 4.5 | 25° | 0.9 × 0.7 × 1.5 | 7:03 | Hegenscheid et al., 2012 [106] Hegenscheid et al., 2013 [107] Ivanovska et al., 2014 [105] 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosten, N.; Bülow, R.; Völzke, H.; Domin, M.; Schmidt, C.O.; Teumer, A.; Ittermann, T.; Nauck, M.; Felix, S.; Dörr, M.; et al. SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center. Healthcare 2022, 10, 33. https://doi.org/10.3390/healthcare10010033
Hosten N, Bülow R, Völzke H, Domin M, Schmidt CO, Teumer A, Ittermann T, Nauck M, Felix S, Dörr M, et al. SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center. Healthcare. 2022; 10(1):33. https://doi.org/10.3390/healthcare10010033
Chicago/Turabian StyleHosten, Norbert, Robin Bülow, Henry Völzke, Martin Domin, Carsten Oliver Schmidt, Alexander Teumer, Till Ittermann, Matthias Nauck, Stephan Felix, Marcus Dörr, and et al. 2022. "SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center" Healthcare 10, no. 1: 33. https://doi.org/10.3390/healthcare10010033
APA StyleHosten, N., Bülow, R., Völzke, H., Domin, M., Schmidt, C. O., Teumer, A., Ittermann, T., Nauck, M., Felix, S., Dörr, M., Markus, M. R. P., Völker, U., Daboul, A., Schwahn, C., Holtfreter, B., Mundt, T., Krey, K. -F., Kindler, S., Mksoud, M., ... Kromrey, M. -L. (2022). SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center. Healthcare, 10(1), 33. https://doi.org/10.3390/healthcare10010033