Internal Structure, Invariance, and Rasch Analyses: A Work-Life Integration-Blurring Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Procedures
- Stage 1. Building and Validating Content of the Role Blurring Scale
- Scale Development
- Evidence of Validity of Role Blurring Scale Content; Expert Assessment
- Stage 2. Cross-Sectional Study (Applied for the Following Sections)
2.2. Participants
2.3. Instruments
2.4. Data Analysis
2.5. Reliability
2.6. Ethical Procedures
3. Results
3.1. Content Construction and Validity Stage
3.2. Internal Structure
3.3. Validity Tests of the Internal Structure of the Instrument (Comparison between Groups)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Cuando tengo dificultades para acceder a Internet, me preocupa tener problemas por no lograr responder a las exigencias del trabajo
- 2.
- El uso de tecnologías digitales en el apoyo de mi trabajo dificulta los momentos de descanso
- 3.
- Me siento agotada/o y no logro descansar, pues tengo que hacerme cargo de las exigencias del trabajo, incluso cuando estoy en casa
- 4.
- Utilizo parte del tiempo destinado a dormir o comer para trabajar, incluso cuando estoy en casa
- 5.
- Recibo correos electrónicos o mensajes de trabajo al móvil, incluso cuando estoy de vacaciones
- 6.
- Siento que mi móvil o mi ordenador me aproximan al trabajo, en casa durante la noche o los fines de semana
- 7.
- Cuando hay un problema urgente o un plazo límite en el trabajo tiendo a emplear tiempo del fin de semana para continuar trabajando a través de mi dispositivo móvil, tableta u ordenador
- 8.
- Siento presión con la exigencia de usar la tecnología como ayuda para resolver las tareas del trabajo
- 9.
- Me preocupo cuando no tengo acceso a internet para responder a las demandas del trabajo, aunque esté en mi tiempo libre
- 10.
- Me resulta difícil disfrutar plenamente mis momentos de ocio debido a preocupaciones relacionadas al trabajo
- 11.
- Mis actividades de trabajo se mezclan con mis actividades en el hogar
- 12.
- No logro diferenciar dónde terminan mis actividades laborales y dónde comienza mi vida personal
- 13.
- La falta de límites en el uso de la tecnología me hace mezclar las actividades de trabajo y mi vida personal
- 14.
- Considero que el uso de dispositivos digitales como apoyo en el trabajo (teléfono móvil y sus aplicaciones, portátil, correo electrónico) impacta negativamente mi vida personal
- 15.
- Cuando tengo tareas por hacer siento recelo de publicar fotos divirtiéndome en las redes sociales, aunque sean mientras aprovecho mi tiempo libre
- 16.
- Siento culpa cuando uso mi tiempo libre para divertirme y no para resolver las demandas del trabajo
- 17.
- Mis responsabilidades y tareas se mezclan, debido a los dispositivos digitales (teléfono móvil, ordenador portátil, correo electrónico, redes sociales y otras aplicaciones), y eso impacta mi rendimiento en el trabajo
- 18.
- Cuando trabajo desde casa, desaparece la sensación de haber cumplido con los deberes al final del día
- 19.
- Mezclar el trabajo y la vida personal afecta negativamente mi salud mental
References
- Murray, W.C.; Rostis, A. “Who’s Running the Machine?” A Theoretical Exploration of Work Stress and Burnout of Technologically Tethered Workers. J. Individ. Employ. Rights 2007, 12, 249–263. [Google Scholar] [CrossRef]
- Glavin, P.; Schieman, S.; Reid, S. Boundary-Spanning Work Demands and Their Consequences for Guilt and Psychological Distress. J. Health Soc. Behav. 2011, 52, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Ashforth, B.E.; Kreiner, G.E.; Fugate, M. All in a Day’s Work: Boundaries and Micro Role Transitions. Acad. Manag. Rev. 2000, 25, 472–491. [Google Scholar] [CrossRef]
- Ollier-Malaterre, A.; Jacobs, J.A.; Rothbard, N.P. Technology, Work, and Family: Digital Cultural Capital and Boundary Management. Annu. Rev. Sociol. 2019, 45, 425–447. [Google Scholar] [CrossRef]
- Schieman, S.; Glavin, P. Ironic Flexibility: When Normative Role Blurring Undermines the Benefits of Schedule Control. Sociol. Q. 2016, 58, 51–71. [Google Scholar] [CrossRef]
- Glavin, P.; Schieman, S. Work–Family Role Blurring and Work–Family Conflict. Work Occup. 2011, 39, 71–98. [Google Scholar] [CrossRef]
- Park, Y.; Liu, Y.; Headrick, L. When work is wanted after hours: Testing weekly stress of information communication technology demands using boundary theory. J. Organ. Behav. 2020, 41, 518–534. [Google Scholar] [CrossRef]
- Bakker, A.B.; Demerouti, E. La teoría de las demandas y los recursos laborales. Rev. Psicol. Trab. Organ. 2013, 29, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-Y.; Oh, S.; Lee, H.; Cha, K.J. Interferences Between Work and NonWork In the Context of Smartwork: The Role of Boundary Strength and Autonomy. Asia Pac. J. Inf. Syst. 2019, 29, 547–570. [Google Scholar] [CrossRef]
- Gutek, B.A.; Searle, S.; Klepa, L. Rational versus gender role explanations for work-family conflict. J. Appl. Psychol. 1991, 76, 560–568. [Google Scholar] [CrossRef]
- Matthews, R.A.; Barnes-Farrell, J.L. Development and initial evaluation of an enhanced measure of boundary flexibility for the work and family domains. J. Occup. Health Psychol. 2010, 15, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Bohen, H.H. Balancing Jobs and Family Life: Do Flexible Work Schedules Help? Temple University Press: Philadelphia, PA, USA, 1981. [Google Scholar]
- DesRochers, S.; Hilton, J.M.; Larwood, L. Preliminary Validation of the Work-Family Integration-Blurring Scale. J. Fam. Issues 2005, 26, 442–466. [Google Scholar] [CrossRef]
- Voydanoff, P. Work, Family, and Community: Exploring Interconnections; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2007. [Google Scholar]
- Clark, S.C. Work/Family Border Theory: A New Theory of Work/Family Balance. Hum. Relations 2000, 53, 747–770. [Google Scholar] [CrossRef]
- WHO|World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—3 March 2020. (2020, 3 de Março). Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---3-march-2020 (accessed on 21 June 2022).
- Tang, Y.; Serdan, T.D.A.; Masi, L.N.; Tang, S.; Gorjao, R.; Hirabara, S.M. Epidemiology of COVID-19 in Brazil: Using a mathematical model to estimate the outbreak peak and temporal evolution. Emerg. Microbes Infect. 2020, 9, 1453–1456. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.; Quintana, F.W.; Perez, G.; Sosa Liprandi, A.; Ponte-Negretti, C.; Mendoza, I.; Baranchuk, A. Personal Safety during the COVID-19 Pandemic: Realities and Perspectives of Healthcare Workers in Latin America. Int. J. Environ. Res. Public Health 2020, 17, 2798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Hernández, E.-J.; Barco-Llerena, E.; Villalba-Acevedo, J.-L. Preparación y reacción de los países del sur y norte global frente al COVID-19: Un análisis comparado. Hist. Rev. Hist. Reg. Local 2022, 14, 251–292. [Google Scholar] [CrossRef]
- Soares, S.; Bonnet, F.; Berg, J.; Labouriau, R. From Potential to Practice: Preliminary Findings on the Numbers of Workers Working from Home during the COVID-19 Pandemic. ILO Brief. 31 March 2021. Available online: https://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/---travail/documents/briefingnote/wcms_777896.pdf (accessed on 21 June 2022).
- Boateng, G.O.; Neilands, T.B.; Frongillo, E.A.; Melgar-Quiñonez, H.R.; Young, S.L. Best Practices for Developing and Validating Scales for Health, Social, and Behavioral Research: A Primer. Front. Public Health 2018, 6, 149. [Google Scholar] [CrossRef]
- Finn, R. A Note on Estimating the Reliability of Categorical Data. Educ. Psychol. Meas. 1970, 30, 71–76. [Google Scholar] [CrossRef]
- Linacre, J.M. WINSTEPS Rasch Measurement Computer Program (Version 3.72.2 [Computer Software]. Chicago. 2001. Available online: winsteps.com (accessed on 21 June 2022).
- Mîndrilă, D. Maximum Likelihood (ML) and Diagonally Weighted Least Squares (DWLS) Estimation Procedures: A Comparison of Estimation Bias with Ordinal and Multivariate Non-Normal Data. Int. J. Digit. Soc. 2010, 1, 60–66. [Google Scholar] [CrossRef]
- Gamer, M.; Fellows, I.; Singh, P. Various Coefficients of Interrater Reliability and Agreement. 2019. Available online: https://cran.r-project.org/web/packages/irr/irr.pdf (accessed on 24 August 2022).
- Mair, P.; Reinhold, H. Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R. J. Stat. Softw. 2007, 20, 1–20. [Google Scholar] [CrossRef]
- Revelle, W. An Introduction to the Psych Package: Part II Scale Construction and Psychometrics. Available online: https://cran.microsoft.com/snapshot/2019-11-29/web/packages/psychTools/vignettes/overview.pdf (accessed on 24 August 2022).
- Epskamp, S.; Cramer, A.O.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. Qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gana, K.; Broc, G. “Structural Equation Modeling”. In Structural Equation Modeling With Lavaan. Available online: https://www.wiley.com/en-us/Structural+Equation+Modeling+with+lavaan-p-9781786303691 (accessed on 21 June 2022).
- Jorgensen, T.D. Package ‘semTools’. Available online: https://cran.opencpu.org/web/packages/semTools/semTools.pdf (accessed on 24 August 2022).
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Zinbarg, R.E.; Yovel, I.; Revelle, W.; McDonald, R.P. Estimating Generalizability to a Latent Variable Common to All of a Scale’s Indicators: A Comparison of Estimators for ωh. Appl. Psychol. Meas. 2006, 30, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Svetina, D.; Rutkowski, L.; Rutkowski, D. Multiple-Group Invariance with Categorical Outcomes Using Updated Guidelines: An Illustration Using Mplus and the lavaan/semTools Packages. Struct. Equ. Model. A Multidiscip. J. 2019, 27, 111–130. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Millsap, R.E.; Yun-Tein, J. Assessing Factorial Invariance in Ordered-Categorical Measures. Multivar. Behav. Res. 2004, 39, 479–515. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-H. The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Psychol. Methods 2016, 21, 369–387. [Google Scholar] [CrossRef]
- Boone, W.J.; Staver, J.R.; Yale, M.S. Rasch Analysis in the Human Sciences; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Andrich, D. Application of a Psychometric Rating Model to Ordered Categories Which Are Scored with Successive Integers. Appl. Psychol. Meas. 1978, 2, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Linacre, J.M. What do infit and outfit, mean-square and standardized mean? Trans. Med. Rasch 2002, 16, 878. Available online: https://www.rasch.org/rmt/rmt162f.htm (accessed on 21 June 2022).
- Boone, W.J.; Staver, J.R.; Yale, M.S. What is rasch measurement and how can rasch measurement help me? In Rasch Analysis in the Human Sciences; Springer: Dordrecht, The Netherlands, 2013; pp. 1–19. [Google Scholar] [CrossRef]
- Sijtsma, K. On the Use, the Misuse, and the Very Limited Usefulness of Cronbach’s Alpha. Psychometrika 2008, 74, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trizano-Hermosilla, I.; Alvarado, J.M. Best Alternatives to Cronbach’s Alpha Reliability in Realistic Conditions: Congeneric and Asymmetrical Measurements. Front. Psychol. 2016, 7, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, L.A.; Watson, D. Constructing validity: New developments in creating objective measuring instruments. Psychol. Assess. 2019, 31, 1412–1427. [Google Scholar] [CrossRef] [PubMed]
- Dettmers, J. How extended work availability affects well-being: The mediating roles of psychological detachment and work-family-conflict. Work Stress 2017, 31, 24–41. [Google Scholar] [CrossRef]
- Haun, V.C.; Remmel, C.; Haun, S. Boundary management and recovery when working from home: The moderating roles of segmentation preference and availability demands. Ger. J. Hum. Resour. Manag. 2022, 36, 270–299. [Google Scholar] [CrossRef]
- Schieman, S.; Glavin, P. The Pressure-Status Nexus and Blurred Work–Family Boundaries. Work Occup. 2015, 43, 3–37. [Google Scholar] [CrossRef]
- Schieman, S.; Young, M.C. Are communications about work outside regular working hours associated with work-to-family conflict, psychological distress and sleep problems? Work Stress 2013, 27, 244–261. [Google Scholar] [CrossRef]
- Attorresi, H.F.; Lozzia, G.S.; Abal, F.J.P.; Galibert, M.S.; Aguerri, M.E. Teoría de Respuesta al Ítem. Conceptos básicos y aplicaciones para la medición de constructos psicológicos. Rev. Argent. De Clínica Psicológica 2009, 18, 179–188. Available online: https://www.redalyc.org/pdf/2819/281921792007.pdf (accessed on 21 June 2022).
- Savic, D. Covid 19 and work from home: Digital transformation of the workforce. Grey J. 2020, 16, 101–104. [Google Scholar]
- Waizenegger, L.; McKenna, B.; Cai, W.; Bendz, T. An affordance perspective of team collaboration and enforced working from home during COVID-19. Eur. J. Inf. Syst. 2020, 29, 429–442. [Google Scholar] [CrossRef]
- Bakker, A.B.; Demerouti, E. The Job Demands-Resources model: State of the art. J. Manag. Psychol. 2007, 22, 309–328. [Google Scholar] [CrossRef]
Item | Half (SD) Overall | Total λ | Half (SD) BR | λ BR | Half (SD) SP | λ SP |
---|---|---|---|---|---|---|
1 | 2.23 (0.98) | 0.63 | 2.41 (1.48) | 0.61 | 2.11 (0.92) | 0.62 |
2 | 2.18 (0.97) | 0.74 | 2.46 (1.00) | 0.78 | 1.98 (0.89) | 0.66 |
3 | 2.25 (1.05) | 0.82 | 2.53 (1.09) | 0.86 | 2.06 (0.97) | 0.74 |
4 | 1.99 (1.00) | 0.75 | 2.21 (1.07) | 0.79 | 1.84 (0.92) | 0.68 |
5 | 2.10 (1.09) | 0.56 | 2.23 (1.10) | 0.57 | 2.00 (1.07) | 0.55 |
6 | 2.32 (1.03) | 0.76 | 2.61 (1.68) | 0.78 | 2.12 (0.97) | 0.72 |
7 | 2.80 (1.12) | 0.68 | 2.86 (1.13) | 0.76 | 2.76 (1.11) | 0.65 |
8 | 2.15 (1.10) | 0.75 | 2.42 (1.14) | 0.81 | 1.97 (1.04) | 0.67 |
9 | 2.22 (1.06) | 0.75 | 2.29 (1.12) | 0.82 | 2.17 (1.03) | 0.73 |
10 | 2.08 (1.00) | 0.8 | 2.34 (1.05) | 0.83 | 1.90 (0.92) | 0.76 |
11 | 2.19 (1.01) | 0.82 | 2.51 (1.08) | 0.85 | 1.97 (0.90) | 0.76 |
12 | 1.91 (1.01) | 0.85 | 2.21 (1.04) | 0.86 | 1.70 (0.94) | 0.81 |
13 | 2.08 (1.02) | 0.89 | 2.39 (1.06) | 0.92 | 1.87 (0.94) | 0.84 |
14 | 1.91 (0.92) | 0.74 | 2.15 (0.98) | 0.78 | 1.74 (0.85) | 0.66 |
15 | 1.87 (1.08) | 0.62 | 2.31 (1.21) | 0.68 | 1.56 (0.86) | 0.46 |
16 | 2.01 (1.03) | 0.72 | 2.15 (1.12) | 0.79 | 1.90 (0.94) | 0.66 |
17 | 1.97 (0.96) | 0.8 | 2.21 (1.02) | 0.81 | 1.79 (0.89) | 0.76 |
18 | 2.00 (1.05) | 0.61 | 2.23 (1.09) | 0.65 | 1.84 (0.99) | 0.53 |
19 | 2.35 (1.06) | 0.71 | 2.72 (1.03) | 0.74 | 2.09 (1.00) | 0.63 |
Total country score | 49.7 (14.8) | 41.8 (11.4) |
Standard | Robust | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
X2 | df | CFI | TLI | RMSEA | X2 | df | CFI | TLI | RMSEA | |
baseline model | 575.73 | 152 | 0.99 | 0.99 | 0.06 | 935.74 | 152 | 0.96 | 0.95 | 0.09 |
configuration | 672.97 | 304 | 0.99 | 0.99 | 0.06 | 1005.7 | 304 | 0.96 | 0.95 | 0.08 |
metric | 715.2 | 323 | 0.99 | 0.99 | 0.06 | 1028.3 | 323 | 0.96 | 0.96 | 0.08 |
scale | 810.33 | 341 | 0.99 | 0.99 | 0.06 | 873.19 | 341 | 0.97 | 0.97 | 0.07 |
strict | 810.33 | 360 | 0.99 | 0.99 | 0.06 | 906.82 | 360 | 0.97 | 0.97 | 0.07 |
Cronbach’s Alpha 0.94; McDonald’s Omega 0.94 |
Item | Infit | Outfit | Location |
---|---|---|---|
1 | 1.17 | 1.19 | 0.07 |
2 | 0.9 | 0.94 | 0.21 |
3 | 0.76 | 0.74 | 0.09 |
4 | 0.9 | 0.96 | 0.51 |
5 | 1.4 | 1.61 | 0.28 |
6 | 0.87 | 0.91 | 0.03 |
7 | 1.17 | 1.15 | −0.77 |
8 | 0.94 | 0.92 | 0.2 |
9 | 0.92 | 0.9 | 0.1 |
10 | 0.78 | 0.76 | 0.35 |
11 | 0.79 | 0.74 | 0.16 |
12 | 0.82 | 0.81 | 0.65 |
13 | 0.67 | 0.63 | 0.37 |
14 | 0.92 | 0.89 | 0.69 |
15 | 1.25 | 1.49 | 0.65 |
16 | 0.98 | 0.97 | 0.49 |
17 | 0.77 | 0.77 | 0.61 |
18 | 1.27 | 1.44 | 0.51 |
19 | 1.03 | 1.21 | −0.03 |
Category | Infit | Outfit | Percentage % |
---|---|---|---|
0 | 1.07 | 1.05 | 35 |
1 | 0.93 | 0.93 | 32 |
2 | 0.95 | 1 | 18 |
3 | 1.06 | 1.13 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hincapié Pinzón, J.; da Silva, A.M.B.; da Silva, M.C.S.; de Lara Machado, W.; Moret-Tatay, C.; de Oliveira, M.Z. Internal Structure, Invariance, and Rasch Analyses: A Work-Life Integration-Blurring Scale. Healthcare 2022, 10, 2142. https://doi.org/10.3390/healthcare10112142
Hincapié Pinzón J, da Silva AMB, da Silva MCS, de Lara Machado W, Moret-Tatay C, de Oliveira MZ. Internal Structure, Invariance, and Rasch Analyses: A Work-Life Integration-Blurring Scale. Healthcare. 2022; 10(11):2142. https://doi.org/10.3390/healthcare10112142
Chicago/Turabian StyleHincapié Pinzón, Juanita, Andressa Melina Becker da Silva, Monique Cristielle Silva da Silva, Wagner de Lara Machado, Carmen Moret-Tatay, and Manoela Ziebell de Oliveira. 2022. "Internal Structure, Invariance, and Rasch Analyses: A Work-Life Integration-Blurring Scale" Healthcare 10, no. 11: 2142. https://doi.org/10.3390/healthcare10112142
APA StyleHincapié Pinzón, J., da Silva, A. M. B., da Silva, M. C. S., de Lara Machado, W., Moret-Tatay, C., & de Oliveira, M. Z. (2022). Internal Structure, Invariance, and Rasch Analyses: A Work-Life Integration-Blurring Scale. Healthcare, 10(11), 2142. https://doi.org/10.3390/healthcare10112142