Fat Oxidation during Exercise in People with Spinal Cord Injury, and Protocols Used: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Search Strategy
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Design of Studies
3.2. Sample Characteristics
3.3. Exercise Modalities
3.4. Test Protocols
3.5. PFO and Fatmax
4. Discussion
4.1. Sex
4.2. Level and Degree of Injury
4.3. Physical Condition
4.4. The Fatmax Test
4.5. PFO
4.6. Fatmax
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duckworth, W.C.; Solomon, S.S.; Jallepalli, P.; Heckemeyer, C.; Finnern, J.; Powers, A. Glucose intolerance due to insulin resistance in patients with spinal cord injuries. Diabetes 1980, 29, 906–910. [Google Scholar] [CrossRef] [PubMed]
- LaVela, S.L.; Weaver, F.M.; Goldstein, B.; Chen, K.; Miskevics, S.; Rajan, S.; Gater, M., Jr.; David, R. Diabetes mellitus in individuals with spinal cord injury or disorder. J. Spinal Cord Med. 2006, 29, 387–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Myers, J.; Hayes, A.; Madan, S.; Froelicher, V.F.; Perkash, I.; Kiratli, B.J. C-reactive protein, metabolic syndrome, and insulin resistance in individuals with spinal cord injury. J. Spinal Cord Med. 2005, 28, 20–25. [Google Scholar] [CrossRef] [PubMed]
- van Loon, L.J.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Saris, W.H.; Wagenmakers, A.J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001, 536, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Bauman, W.; Adkins, R.; Spungen, A.; Waters, R. The effect of residual neurological deficit on oral glucose tolerance in persons with chronic spinal cord injury. Spinal Cord 1999, 37, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Kocina, P. Body composition of spinal cord injured adults. Sports Med. 1997, 23, 48–60. [Google Scholar] [CrossRef]
- Maggioni, M.; Bertoli, S.; Margonato, V.; Merati, G.; Veicsteinas, A.; Testolin, G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003, 40, s183–s186. [Google Scholar] [CrossRef]
- Buse, M.G.; Buse, J.; Porter, E. Glucose uptake and response to insulin of the isolated rat diaphragm: The effect of denervation. Diabetes 1959, 8, 218–225. [Google Scholar] [CrossRef]
- Price, M. Energy expenditure and metabolism during exercise in persons with a spinal cord injury. Sports Med. 2010, 40, 681–696. [Google Scholar] [CrossRef]
- Bauman, W.A.; Spungen, A.M. Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: A model of premature aging. Metabolism 1994, 43, 749–756. [Google Scholar] [CrossRef]
- Bauman, W.; Kahn, N.; Grimm, D.; Spungen, A. Risk factors for atherogenesis and cardiovascular autonomic function in persons with spinal cord injury. Spinal Cord 1999, 37, 601–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cragg, J.J.; Noonan, V.K.; Krassioukov, A.; Borisoff, J. Cardiovascular disease and spinal cord injury: Results from a national population health survey. Neurology 2013, 81, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteneck, G.G.; Charlifue, S.; Frankel, H.; Fraser, M.; Gardner, B.; Gerhart, K.; Krishnan, K.; Menter, R.; Nuseibeh, I.; Short, D. Mortality, morbidity, and psychosocial outcomes of persons spinal cord injured more than 20 years ago. Spinal Cord 1992, 30, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Lavis, T.D.; Scelza, W.M.; Bockenek, W.L. Cardiovascular health and fitness in persons with spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 2007, 18, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.H.; Klein, S. Use of endogenous carbohydrate and fat as fuels during exercise. Proc. Nutr. Soc. 1998, 57, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romijn, J.A.; Coyle, E.; Sidossis, L.; Gastaldelli, A.; Horowitz, J.; Endert, E.; Wolfe, R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. Endocrinol. Metab. 1993, 265, E380–E391. [Google Scholar] [CrossRef] [Green Version]
- Maunder, E.; Plews, D.J.; Kilding, A.E. Contextualising maximal fat oxidation during exercise: Determinants and normative values. Front. Physiol. 2018, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Venables, M.C.; Jeukendrup, A.E. Endurance training and obesity: Effect on substrate metabolism and insulin sensitivity. Med. Sci. Sports Exerc. 2008, 40, 495–502. [Google Scholar] [CrossRef]
- Robinson, S.L.; Hattersley, J.; Frost, G.S.; Chambers, E.S.; Wallis, G.A. Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J. Appl. Physiol. 2015, 118, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Randell, R.K.; Rollo, I.; Roberts, T.J.; Dalrymple, K.J.; Jeukendrup, A.E.; Carter, J.M. Maximal fat oxidation rates in an athletic population. Med. Sci. Sports Exerc. 2017, 49, 133–140. [Google Scholar] [CrossRef]
- Zimmer, M.B.; Nantwi, K.; Goshgarian, H.G. Effect of spinal cord injury on the respiratory system: Basic research and current clinical treatment options. J. Spinal Cord Med. 2007, 30, 319–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urrutia, G.; Bonfill, X. PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses. Med. Clin. 2010, 135, 507–511. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achten, J.; Gleeson, M.; Jeukendrup, A.E. Determination of the exercise intensity that elicits maximal fat oxidation. Med. Sci. Sports Exerc. 2002, 34, 92–97. [Google Scholar] [CrossRef]
- Sinovas-Alonso, I.; Gil-Agudo, Á.; Cano-de-la-Cuerda, R.; Del-Ama, A.J. Walking Ability Outcome Measures in Individuals with Spinal Cord Injury: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9517. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Bull. World Health Organ. 2007, 85, 867–872. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Kressler, J.; Cowan, R.; Ginnity, K.; Nash, M. Subjective measures of exercise intensity to gauge substrate partitioning in persons with paraplegia. Top. Spinal Cord Inj. Rehabil. 2012, 18, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Müller, G.; Willmann, F.; Eser, P.; Knecht, H. Comparison of fat oxidation in arm cranking in spinal cord-injured people versus ergometry in cyclists. Eur. J. Appl. Physiol. 2003, 90, 614–619. [Google Scholar] [CrossRef]
- Knechtle, B.; Müller, G.; Willmann, F.; Eser, P.; Knecht, H. Fat oxidation at different intensities in wheelchair racing. Spinal Cord 2004, 42, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Müller, G.; Knecht, H. Optimal exercise intensities for fat metabolism in handbike cycling and cycling. Spinal Cord 2004, 42, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, K.A.; Burns, P.; Kressler, J.; Nash, M.S. Heavy reliance on carbohydrate across a wide range of exercise intensities during voluntary arm ergometry in persons with paraplegia. J. Spinal Cord Med. 2013, 36, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Manjarrés, S.; Rodríguez-López, C.; Martín-García, M.; Vila-Maldonado, S.; Granados, C.; Mata, E.; Gil-Agudo, Á.; Rodríguez-Gómez, I.; Ara, I. Increased Fat Oxidation During Arm Cycling Exercise in Adult Men With Spinal Cord Injury Compared With Noninjured Controls. Int. J. Sport Nutr. Exerc. Metab. 2021, 32, 30–40. [Google Scholar] [CrossRef]
- Jacobs, K.A.; McMillan, D.W.; Maher, J.L.; Bilzon, J.L.; Nash, M.S. Neither Postabsorptive Resting Nor Postprandial Fat Oxidation Are Related to Peak Fat Oxidation in Men with Chronic Paraplegia. Front. Nutr. 2021, 8, 703652. [Google Scholar] [CrossRef] [PubMed]
- Kressler, J.; Jacobs, K.; Burns, P.; Betancourt, L.; Nash, M. Effects of circuit resistance training and P timely protein supplementation on exercise-induced fat oxidation in tetraplegic adults. Top. Spinal Cord Inj. Rehabil. 2014, 20, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications in Brief: American Spinal Injury Association (ASIA) Impairment Scale; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Abel, T.; Vega, S.; Bleicher, I.; Platen, P. Handbiking: Physiological responses to synchronous and asynchronous crank montage. Eur. J. Sport Sci. 2003, 3, 1–9. [Google Scholar] [CrossRef]
- Schneider, D.A.; Sedlock, D.A.; Gass, E.; Gass, G. V˙ O2peak and the gas-exchange anaerobic threshold during incremental arm cranking in able-bodied and paraplegic men. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 292–297. [Google Scholar] [CrossRef]
- Ordonez, F.J.; Rosety, M.A.; Camacho, A.; Rosety, I.; Diaz, A.J.; Fornieles, G.; Bernardi, M.; Rosety-Rodriguez, M. Arm-cranking exercise reduced oxidative damage in adults with chronic spinal cord injury. Arch. Phys. Med. Rehabil. 2013, 94, 2336–2341. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, I.; Martín-Manjarrés, S.; Martín-García, M.; Vila-Maldonado, S.; Gil-Agudo, Á.; Alegre, L.M.; Ara, I. Cardiorespiratory fitness and arm bone mineral health in young males with spinal cord injury: The mediator role of lean mass. J. Sports Sci. 2019, 37, 717–725. [Google Scholar] [CrossRef]
- Keyser, R.E.; Rodgers, M.M.; Gardner, E.R.; Russell, P.J. Oxygen uptake during peak graded exercise and single-stage fatigue tests of wheelchair propulsion in manual wheelchair users and the able-bodied. Arch. Phys. Med. Rehabil. 1999, 80, 1288–1292. [Google Scholar] [CrossRef]
- Desroches, G.; Aissaoui, R.; Bourbonnais, D. Effect of system tilt and seat-to-backrest angles on load sustained by shoulder during wheelchair propulsion. J. Rehabil. Res. Dev. 2006, 43, 871–882. [Google Scholar] [CrossRef] [PubMed]
- De Groot, P.; Hjeltnes, N.; Heijboer, A.; Stal, W.; Birkeland, K. Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord 2003, 41, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Devillard, X.; Calmels, P.; Sauvignet, B.; Belli, A.; Denis, C.; Simard, C.; Gautheron, V. Validation of a new ergometer adapted to all types of manual wheelchair. Eur. J. Appl. Physiol. 2001, 85, 479–485. [Google Scholar] [CrossRef]
- Dela, F.; Mohr, T.; Jensen, C.M.; Haahr, H.L.; Secher, N.H.; Biering-Sørensen, F.; Kjaer, M. Cardiovascular control during exercise: Insights from spinal cord–injured humans. Circulation 2003, 107, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, R.S. Catecholamine responses to acute and chronic exercise. Med. Sci. Sports Exerc. 1991, 23, 839–845. [Google Scholar] [CrossRef]
- Bauman, W.; Spungen, A.; Zhong, Y.-G.; Rothstein, J.; Petry, C.; Gordon, S. Depressed serum high density lipoprotein cholesterol levels in veterans with spinal cord injury. Spinal Cord 1992, 30, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Apple, D.F., Jr. Physical Fitness: A Guide for Individuals with Spinal Cord Injury; DIANE Publishing: Darby, PA, USA, 2004. [Google Scholar]
- Haisma, J.; Van Der Woude, L.; Stam, H.; Bergen, M.; Sluis, T.; Bussmann, J. Physical capacity in wheelchair-dependent persons with a spinal cord injury: A critical review of the literature. Spinal Cord 2006, 44, 642–652. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Optimizing fat oxidation through exercise and diet. Nutrition 2004, 20, 716–727. [Google Scholar] [CrossRef]
- Franklin, B.A. Exercise testing, training and arm ergometry. Sports Med. 1985, 2, 100–119. [Google Scholar] [CrossRef]
- SAWKA, M.N. 6 Physiology of Upper Body Exercise. Exerc. Sport Sci. Rev. 1986, 14, 175–212. [Google Scholar] [CrossRef]
- Bhambhani, Y. Physiology of wheelchair racing in athletes with spinal cord injury. Sports Med. 2002, 32, 23–51. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Ara, I.; Rabøl, R.; Andersen, J.; Boushel, R.; Dela, F.; Helge, J.W. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 2009, 52, 1400–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achten, J.; Venables, M.C.; Jeukendrup, A.E. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metabolism 2003, 52, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Ara, I.; Larsen, S.; Stallknecht, B.; Guerra, B.; Morales-Alamo, D.; Andersen, J.; Ponce-Gonzalez, J.; Guadalupe-Grau, A.; Galbo, H.; Calbet, J. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int. J. Obes. 2011, 35, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Robertson, R.J.; Goss, F.L.; Dasilva, S.G.; Suminski, R.R.; Utter, A.C.; Zoeller, R.F.; Metz, K.F. Metabolic efficiency during arm and leg exercise at the same relative intensities. Med. Sci. Sports Exerc. 1997, 29, 377–382. [Google Scholar] [CrossRef]
- Calbet, J.A.; Holmberg, H.-C.; Rosdahl, H.; van Hall, G.; Jensen-Urstad, M.; Saltin, B. Why do arms extract less oxygen than legs during exercise? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1448–R1458. [Google Scholar] [CrossRef]
(a) | |||||||
Martín-Manjarrés et al., 2021 | Jacobs et al., 2013 | Kressler et al., 2012 | Knechtle et al., 2004a | Knechtle et al., 2004b | Knechtle et al., 2003 | ||
1 | a | 0 | 1 | 0 | 0 | 0 | 0 |
b | 1 | 1 | 1 | 1 | 1 | 1 | |
2 | 1 | 1 | 1 | 1 | 1 | 1 | |
3 | 1 | 1 | 1 | 1 | 1 | 1 | |
4 | 1 | 1 | 0 | 1 | 1 | 1 | |
5 | 1 | 1 | 1 | 1 | 1 | 1 | |
6 | a | 1 | 1 | 1 | 1 | 1 | 1 |
b | 0 | 0 | 0 | 0 | 0 | 0 | |
7 | 1 | 1 | 1 | 1 | 1 | 1 | |
8 | 1 | 1 | 1 | 1 | 1 | 1 | |
9 | 1 | 0 | 0 | 0 | 0 | 0 | |
10 | 0 | 0 | 0 | 0 | 0 | 0 | |
11 | 1 | 1 | 1 | 1 | 1 | 1 | |
12 | a | 1 | 1 | 1 | 1 | 1 | 1 |
b | 1 | 1 | 1 | 0 | 1 | 1 | |
c | 0 | 0 | 0 | 0 | 0 | 0 | |
d | 0 | 0 | 0 | 0 | 0 | 0 | |
e | 1 | 0 | 0 | 0 | 0 | 0 | |
13 | a | 0 | 0 | 0 | 0 | 0 | 0 |
b | 0 | 0 | 0 | 0 | 0 | 0 | |
c | 0 | 0 | 0 | 0 | 0 | 0 | |
14 | a | 1 | 1 | 1 | 1 | 1 | 1 |
b | 1 | 0 | 0 | 0 | 0 | 0 | |
c | 0 | 0 | 0 | 0 | 0 | 0 | |
15 | 1 | 1 | 1 | 1 | 1 | 1 | |
16 | a | 1 | 1 | 1 | 1 | 1 | 1 |
b | 0 | 0 | 0 | 0 | 0 | 0 | |
c | 0 | 0 | 0 | 0 | 0 | 0 | |
17 | 1 | 1 | 1 | 1 | 1 | 1 | |
18 | 1 | 1 | 1 | 1 | 1 | 1 | |
19 | 1 | 1 | 1 | 0 | 0 | 0 | |
20 | 1 | 1 | 1 | 1 | 1 | 1 | |
21 | 1 | 1 | 1 | 1 | 1 | 1 | |
22 | 1 | 0 | 1 | 0 | 0 | 0 | |
Total | 23 | 20 | 19 | 17 | 18 | 18 | |
(b) | |||||||
Jacobs et al., 2021 | Kressler et al., 2014 | ||||||
1 | 1 | 1 | |||||
2 | 0 | 1 | |||||
3 | 1 | 1 | |||||
4 | 1 | 0 | |||||
5 | 0 | 1 | |||||
6 | 0 | 1 | |||||
7 | 0 | 0 | |||||
8 | 1 | 1 | |||||
9 | 1 | 0 | |||||
10 | 1 | 1 | |||||
11 | 1 | 1 | |||||
Total | 7 | 8 |
Study | Design | Demographic Data | Exercise Modality | Test Protocol | VO2peak (L·min−1) | PFO (g·min−1) | Fatmax (%VO2peak) | Conclusions | |
---|---|---|---|---|---|---|---|---|---|
1 | Martín-Manjarrés et al., 2021 | Cross-sectional study | N = 41 (21 SCI, 20 non-injured) Sex: 41 men Age *: 32 ± 6 LOI: Th1 to Th12 16 AIS A, 2 AIS B, 3 AIS C | Arm cycle ergometer | Continuous graded exercise:
| 2.16 | 0.22 | 34.51% |
|
2 | Jacobs et al., 2021 | Partially randomized, repeated-measures, crossover design | N = 10 SCI Sex: 10 men Age: 39 ± 10 LOI: Th2 to Th10 7 AIS A, 2 AIS B, 1 AIS C | Arm cycle ergometer | Continuous graded exercise:
| 19.2 mL∙kg−1∙min−1 (relative to body mass) | 0.30 | 50.7% |
|
3 | Kressler et al., 2014 | Randomized, double-blinded, placebo-controlled, parallel-group study | N = 11 SCI Sex: 9 men, 2 women Age (2 groups): 37 ± 11; 42 ± 11 LOI: C5 to C8 5 AIS A, 3 AIS C, 3 AIS D | Arm cycle ergometer | Continuous graded exercise:
| 0.54 | 0.065 |
| |
4 | Jacobs et al., 2013 | Cross-sectional study | N = 17 (10 SCI, 7 non-injured) Sex: 16 men, 1 woman Age: 45 ± 10 LOI: Th4 to Th12 AIS A or B | Arm cycle ergometer | Continuous graded exercise:
| 1.45 17.0 mL∙kg−1∙min−1 (relative to body mass) | 0.13 | 41% |
|
5 | Kressler et al., 2012 | Cross-sectional study | N = 12 SCI Sex: 9 men, 3 women Age: 29 ± 7 LOI: Th1 or lower AIS not specified | Arm cycle ergometer | Continuous graded exercise:
| 1.29–1.40 | 0.13 | 38–41% |
|
6 | Knechtle et al., 2004 (a) | Cross-sectional study | N = 9 (6 SCI, 2 spina bifida, 1 poliomyelitis) Sex: 7 men, 2 women Age: 38 ± 6 LOI: C5 to Th12 6 AIS A, 1 AIS B | Racing wheelchair propulsion on treadmill |
| 2.39 | 0.22 | 55% |
|
7 | Knetchle et al., 2004 (b) | Cross-sectional study | N = 16 (6 SCI, 2 amputees, 8 non-injured) Sex: 8 men Age: 38 ± 5 LOI: Th5 to L1 AIS: 4 A, 2 B | SCI: handcycle on a treadmill Non-injured: cycle ergometer |
| 2.60 | 0.28 | 55% |
|
8 | Knechtle et al., 2003 | Cross-sectional study | N = 20 (8 SCI, 1 spina bifida, 1 amputee, 10 non-injured) Sex: 20 men Age: 42 ± 9 LOI C7 to Th11 AIS: 7 A, 1 B | SCI: handcycle on a treadmill Non-injured: cycle ergometer |
| 2.35 | 0.22 | 75% |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Manjarrés, S.; Leal-Martín, J.; Granados, C.; Mata, E.; Gil-Agudo, Á.; Rodríguez-Gómez, I.; Ara, I. Fat Oxidation during Exercise in People with Spinal Cord Injury, and Protocols Used: A Systematic Review. Healthcare 2022, 10, 2402. https://doi.org/10.3390/healthcare10122402
Martín-Manjarrés S, Leal-Martín J, Granados C, Mata E, Gil-Agudo Á, Rodríguez-Gómez I, Ara I. Fat Oxidation during Exercise in People with Spinal Cord Injury, and Protocols Used: A Systematic Review. Healthcare. 2022; 10(12):2402. https://doi.org/10.3390/healthcare10122402
Chicago/Turabian StyleMartín-Manjarrés, Soraya, Javier Leal-Martín, Cristina Granados, Esmeralda Mata, Ángel Gil-Agudo, Irene Rodríguez-Gómez, and Ignacio Ara. 2022. "Fat Oxidation during Exercise in People with Spinal Cord Injury, and Protocols Used: A Systematic Review" Healthcare 10, no. 12: 2402. https://doi.org/10.3390/healthcare10122402
APA StyleMartín-Manjarrés, S., Leal-Martín, J., Granados, C., Mata, E., Gil-Agudo, Á., Rodríguez-Gómez, I., & Ara, I. (2022). Fat Oxidation during Exercise in People with Spinal Cord Injury, and Protocols Used: A Systematic Review. Healthcare, 10(12), 2402. https://doi.org/10.3390/healthcare10122402