Preventive Medicine via Lifestyle Medicine Implementation Practices Should Consider Individuals’ Complex Psychosocial Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. Sleep Quality
2.2.2. Profile of Mood Survey—Short Form (POMS—SF)
2.2.3. Mental and Physical State and Trait Energy and Fatigue Scales
2.2.4. Perceived Mental Workload
2.2.5. Self-Reported Physical Activity
2.2.6. Polyphenol Consumption
2.2.7. Caffeine Consumption
2.3. Statistical Analyses
2.3.1. Preliminary Analyses
2.3.2. Primary Analyses
3. Results
3.1. Trait vs. State Mental Fatigue
3.2. Trait vs. State Mental Energy
3.3. Trait vs. State Physical Fatigue
3.4. Trait vs. State Physical Energy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guthrie, G.E. What Is Lifestyle Medicine? Am. J. Lifestyle Med. 2018, 12, 363–364. [Google Scholar] [CrossRef] [PubMed]
- McGorrian, C.; Yusuf, S.; Islam, S.; Jung, H.; Rangarajan, S.; Avezum, A.; Prabhakaran, D.; Almahmeed, W.; Rumboldt, Z.; Budaj, A.; et al. Estimating modifiable coronary heart disease risk in multiple regions of the world: The INTERHEART Modifiable Risk Score. Eur. Heart J. 2011, 32, 581–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, L.D.; Zuelch, M.L.; Dimitratos, S.M.; Scherr, R.E. Adolescent Obesity: Diet Quality, Psychosocial Health, and Cardiometabolic Risk Factors. Nutrients 2019, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, R.N.; Connell, L.E.; Johnston, M.; Rothman, A.J.; de Bruin, M.; Kelly, M.P.; Michie, S. Behavior Change Techniques and Their Mechanisms of Action: A Synthesis of Links Described in Published Intervention Literature. Ann. Behav. Med. 2019, 53, 693–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezzati, M.; Riboli, E. Can noncommunicable diseases be prevented? Lessons from studies of populations and individuals. Science 2012, 337, 1482–1487. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.; Cullen, K.; Keeney, C.; Canning, C.; Mooney, O.; Chinseallaigh, E.; O’Dowd, A. Effectiveness of positive psychology interventions: A systematic review and meta-analysis. J. Posit. Psychol. 2020, 16, 749–769. [Google Scholar] [CrossRef]
- Levine, G.N.; Cohen, B.E.; Commodore-Mensah, Y.; Fleury, J.; Huffman, J.C.; Khalid, U.; Labarthe, D.R.; Lavretsky, H.; Michos, E.D.; Spatz, E.S.; et al. Psychological Health, Well-Being, and the Mind-Heart-Body Connection: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e763–e783. [Google Scholar] [CrossRef]
- Lianov, L.S.; Barron, G.C.; Fredrickson, B.L.; Hashmi, S.; Klemes, A.; Krishnaswami, J.; Lee, J.; Le Pertel, N.; Matthews, J.A.; Millstein, R.A.; et al. Positive psychology in health care: Defining key stakeholders and their roles. Transl. Behav. Med. 2020, 10, 637–647. [Google Scholar] [CrossRef]
- Lattie, E.G.; Cohen, A. Positive Approaches to Promote and Support Changesin Health Behavior. In The Wiley Handbook of Healthcare Treatment Engagement; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 259–273. [Google Scholar] [CrossRef]
- Lianov, L.S.; Fredrickson, B.L.; Barron, C.; Krishnaswami, J.; Wallace, A. Positive Psychology in Lifestyle Medicine and Health Care: Strategies for Implementation. Am. J. Lifestyle Med. 2019, 13, 480–486. [Google Scholar] [CrossRef]
- Rippe, J.M. Lifestyle Medicine: The Health Promoting Power of Daily Habits and Practices. Am. J. Lifestyle Med. 2018, 12, 499–512. [Google Scholar] [CrossRef]
- Firth, J.; Solmi, M.; Wootton, R.E.; Vancampfort, D.; Schuch, F.B.; Hoare, E.; Gilbody, S.; Torous, J.; Teasdale, S.B.; Jackson, S.E.; et al. A meta-review of “lifestyle psychiatry”: The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 2020, 19, 360–380. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Petersen, K.S.; Despres, J.P.; Anderson, C.A.M.; Deedwania, P.; Furie, K.L.; Lear, S.; Lichtenstein, A.H.; Lobelo, F.; Morris, P.B.; et al. Strategies for Promotion of a Healthy Lifestyle in Clinical Settings: Pillars of Ideal Cardiovascular Health: A Science Advisory From the American Heart Association. Circulation 2021, 144, e495–e514. [Google Scholar] [CrossRef] [PubMed]
- Baska, A.; Kurpas, D.; Kenkre, J.; Vidal-Alaball, J.; Petrazzuoli, F.; Dolan, M.; Sliz, D.; Robins, J. Social Prescribing and Lifestyle Medicine-A Remedy to Chronic Health Problems? Int. J. Environ. Res. Public Health 2021, 18, 10096. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Abe, H. Lifestyle medicine—An evidence based approach to nutrition, sleep, physical activity, and stress management on health and chronic illness. Pers. Med. Universe 2019, 8, 3–9. [Google Scholar] [CrossRef]
- Viner, R.; Christie, D. Fatigue and somatic symptoms. BMJ 2005, 330, 1012–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, T.C.; Majeroni, B.A.; Pretorius, R.; Malik, K. Fatigue: An overview. Am. Fam. Physician 2008, 78, 1173–1179. [Google Scholar] [PubMed]
- Miller, R.G. Fatigue and therapeutic exercise. J. Neurol. Sci. 2006, 242, 37–41. [Google Scholar] [CrossRef]
- Finsterer, J.; Mahjoub, S.Z. Fatigue in healthy and diseased individuals. Am. J. Hosp. Palliat. Care 2014, 31, 562–575. [Google Scholar] [CrossRef]
- Davis, M.P.; Walsh, D. Mechanisms of fatigue. J. Support Oncol. 2010, 8, 164–174. [Google Scholar]
- Fahlen, G.; Knutsson, A.; Peter, R.; Akerstedt, T.; Nordin, M.; Alfredsson, L.; Westerholm, P. Effort-reward imbalance, sleep disturbances and fatigue. Int. Arch. Occup. Environ. Health 2006, 79, 371–378. [Google Scholar] [CrossRef]
- ter Wolbeek, M.; van Doornen, L.J.; Kavelaars, A.; Heijnen, C.J. Severe fatigue in adolescents: A common phenomenon? Pediatrics 2006, 117, e1078–e1086. [Google Scholar] [CrossRef] [PubMed]
- Meeuwesen, L.; Bensing, J.; van den Brink-Muinen, A. Communicating fatigue in general practice and the role of gender. Patient Educ. Couns. 2002, 48, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Zdun-Ryżewska, A.; Nadrowska, N.; Basiński, K.; Walkiewicz, M.; Błażek, M. Who is a tired student? Fatigue and its predictors from a gender perspective. J. Univ. Teach. Learn. Pract. 2021, 18, 139–154. [Google Scholar] [CrossRef]
- Gates, M.; Wingert, A.; Featherstone, R.; Samuels, C.; Simon, C.; Dyson, M.P. Impact of fatigue and insufficient sleep on physician and patient outcomes: A systematic review. BMJ Open 2018, 8, e021967. [Google Scholar] [CrossRef] [Green Version]
- Billones, R.; Liwang, J.K.; Butler, K.; Graves, L.; Saligan, L.N. Dissecting the fatigue experience: A scoping review of fatigue definitions, dimensions, and measures in non-oncologic medical conditions. Brain Behav. Immun. Health 2021, 15, 100266. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, J.M.; Starreveld, D.E.; Boekhout, A.; Bleiker, E.M. A questionable factor structure of the multidimensional fatigue inventory in the general Dutch population. J. Clin. Epidemiol. 2021, 137, 266–276. [Google Scholar] [CrossRef]
- Boolani, A.; Fuller, D.; Mondal, S.; Gumpricht, E. Trait Energy and Fatigue Modify Acute Ingestion of an Adaptogenic-Rich Beverage on Neurocognitive Performance. Appl. Sci. 2022, 12, 4466. [Google Scholar] [CrossRef]
- Boolani, A.; O’Connor, P.J.; Reid, J.; Ma, S.; Mondal, S. Predictors of feelings of energy differ from predictors of fatigue. Fatigue: Biomed. Health Behav. 2018, 7, 12–28. [Google Scholar] [CrossRef]
- Dupree, E.J.; Goodwin, A.; Darie, C.C.; Boolani, A. A pilot exploratory proteomics investigation of mental fatigue and mental energy. In Advancements of Mass Spectrometry in Biomedical Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 601–611. [Google Scholar]
- Boolani, A.; Ryan, J.; Vo, T.; Wong, B.; Banerjee, N.K.; Banerjee, S.; Fulk, G.; Smith, M.L.; Martin, R. Do changes in mental energy and fatigue impact functional assessments associated with fall risks? An exploratory study using machine learning. Phys. Occup. Ther. Geriatr. 2020, 38, 283–301. [Google Scholar] [CrossRef]
- Kadry, A.M.; Torad, A.; Elwan, M.A.; Kakar, R.S.; Bradley, D.; Chaudhry, S.; Boolani, A. Using Machine Learning to Identify Feelings of Energy and Fatigue in Single-Task Walking Gait: An Exploratory Study. Appl. Sci. 2022, 12, 3083. [Google Scholar] [CrossRef]
- Kowalski, K.L.; Boolani, A.; Christie, A.D. State and Trait Fatigue and Energy Predictors of Postural Control and Gait. Mot. Control. 2021, 25, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, G.; Martin, J.; Martin, R.; Yager, C.; Smith, M.L.; Grin, Z.; Vogel-Rosbrook, C.; Bradley, D.; Appiah-Kubi, K.O.; Boolani, A. Evidence that feelings of energy and fatigue are associated differently with gait characteristics and balance: An exploratory study. Fatigue-Biomed. Health Behav. 2021, 9, 125–138. [Google Scholar] [CrossRef]
- Barrios, N.; Sames, C.; Allen, A.; Vieira, E.R.; Boolani, A. Intensity of Aquatic Physical Activity Is Best When Tailored to the Participants’ Mental and Physical Capabilities: An Exploratory Study. J. Aquat. Phys. Ther. 2022, 30, 30–36. [Google Scholar] [CrossRef]
- Manierre, M.; Jansen, E.; Boolani, A. Sleep quality and sex modify the relationships between trait energy and fatigue on state energy and fatigue. PLoS ONE 2020, 15, e0227511. [Google Scholar] [CrossRef] [PubMed]
- Watson, D. Mood and Temperament; Guilford Press: New York, NY, USA, 2000. [Google Scholar]
- Boolani, A.; Allen, A.; Barrios, N.; Sames, C. Association between trait energy and fatigue and aquatic functional tests: An exploratory study. J. Aquat. Phys. Ther. 2022, 30, 8–11. [Google Scholar] [CrossRef]
- Boolani, A.; Bahr, B.; Milani, I.; Caswell, S.; Cortes, N.; Smith, M.L.; Martin, J. Physical activity is not associated with feelings of mental energy and fatigue after being sedentary for 8 hours or more. Ment. Health Phys. Act. 2021, 21, 100418. [Google Scholar] [CrossRef]
- Boolani, A.; Gallivan, K.M.; Ondrak, K.S.; Christopher, C.J.; Castro, H.F.; Campagna, S.R.; Taylor, C.M.; Luo, M.; Dowd, S.E.; Smith, M.L.; et al. Trait Energy and Fatigue May Be Connected to Gut Bacteria among Young Physically Active Adults: An Exploratory Study. Nutrients 2022, 14, 466. [Google Scholar] [CrossRef]
- Boolani, A.; Manierre, M. An exploratory multivariate study examining correlates of trait mental and physical fatigue and energy. Fatigue-Biomed. Health Behav. 2019, 7, 29–40. [Google Scholar] [CrossRef]
- Boolani, A.; Yager, C.; Reid, J.; Lackman, J.; Smith, M.L. Correlates of depressive mood among graduate-level allied health students: An exploratory study examining trait energy and fatigue. J. Am. Coll. Health 2021, 1–12. [Google Scholar] [CrossRef]
- Fuller, D.T.; Smith, M.L.; Boolani, A. Trait Energy and Fatigue Modify the Effects of Caffeine on Mood, Cognitive and Fine-Motor Task Performance: A Post-Hoc Study. Nutrients 2021, 13, 412. [Google Scholar] [CrossRef]
- Pastier, N.; Jansen, E.; Boolani, A. Sleep quality in relation to trait energy and fatigue: An exploratory study of healthy young adults. Sleep Sci. 2022, 15, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Cattell, R.B.; Scheier, I.H. The Meaning and Measurement of Neuroticism and Anxiety. Ronald: New York, NY, USA, 1961. [Google Scholar]
- Eysenck, H.J. Cicero and the State Trait Theory of Anxiety—Another Case of Delayed Recognition. Am. Psychol. 1983, 38, 114–115. [Google Scholar] [CrossRef]
- Spielberger, C.D. State-Trait Anxiety Inventory for Adults. APA Psyc Tests: Washington, DC, USA, 1983. [Google Scholar]
- Zuckerman, M.; Lubin, B.; Rinck, C.M. Multiple Affect Adjective Check List—Revised. APA Psyc Tests: Washington, DC, USA, 1985. [Google Scholar]
- Deckers, L. Motivation: Biological, Psychological, and Environmental; Routledge: London, UK, 2018. [Google Scholar]
- Forestier, C.; Sarrazin, P.; Allenet, B.; Gauchet, A.; Heuzé, J.-P.; Chalabaev, A. “Are you in full possession of your capacity?”. A mechanistic self-control approach at trait and state levels to predict different health behaviors. Personal. Individ. Differ. 2018, 134, 214–221. [Google Scholar] [CrossRef]
- Boisgontier, M.P.; Iversen, M.D. Physical Inactivity: A Behavioral Disorder in the Physical Therapist′s Scope of Practice. Phys Ther 2020, 100, 743–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. ICD-11 for Mortality and Morbidity Statistics (2018); WTO: Geneva, Switzerland, 2018. [Google Scholar]
- De Ridder, D.T.; Lensvelt-Mulders, G.; Finkenauer, C.; Stok, F.M.; Baumeister, R.F. Taking stock of self-control: A meta-analysis of how trait self-control relates to a wide range of behaviors. In Self-Regulation and Self-Control; Routledge: London, UK, 2018; pp. 213–255. [Google Scholar]
- Wells, A.S.; Read, N.W.; Uvnas-Moberg, K.; Alster, P. Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol. Behav. 1997, 61, 679–686. [Google Scholar] [CrossRef]
- Ashton, K.; Bellis, M.A.; Davies, A.R.; Hughes, K.; Winstock, A. Do emotions related to alcohol consumption differ by alcohol type? An international cross-sectional survey of emotions associated with alcohol consumption and influence on drink choice in different settings. BMJ Open 2017, 7, e016089. [Google Scholar] [CrossRef]
- Massee, L.A.; Ried, K.; Pase, M.; Travica, N.; Yoganathan, J.; Scholey, A.; Macpherson, H.; Kennedy, G.; Sali, A.; Pipingas, A. The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: A randomized, controlled trial. Front. Pharm. 2015, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Scholey, A.; Owen, L. Effects of chocolate on cognitive function and mood: A systematic review. Nutr. Rev. 2013, 71, 665–681. [Google Scholar] [CrossRef]
- Jordan, C.H.; Wang, W.; Donatoni, L.; Meier, B.P. Mindful eating: Trait and state mindfulness predict healthier eating behavior. Personal. Individ. Differ. 2014, 68, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Dawson-Hughes, B. Seasonal mood changes in 250 normal women. Psychiatry Res. 1993, 49, 77–87. [Google Scholar] [CrossRef]
- Pilcher, J.J.; Walters, A.S. How sleep deprivation affects psychological variables related to college students’ cognitive performance. J. Am. Coll. Health 1997, 46, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Cheval, B.; Boisgontier, M.P.; Sieber, S.; Ihle, A.; Orsholits, D.; Forestier, C.; Sander, D.; Chalabaev, A. Cognitive functions and physical activity in aging when energy is lacking. Eur. J. Ageing 2022, 19, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Brahms, M.; Heinzel, S.; Rapp, M.; Muckstein, M.; Hortobagyi, T.; Stelzel, C.; Granacher, U. The acute effects of mental fatigue on balance performance in healthy young and older adults—A systematic review and meta-analysis. Acta Psychol. 2022, 225, 103540. [Google Scholar] [CrossRef]
- Heatherton, T.; Tice, D.M. Losing Control: How and Why People Fail at Self-Regulation; Academic Press: New Yore, NY, USA, 1994. [Google Scholar]
- Baumeister, R.F.; Tice, D.M.; Vohs, K.D. The Strength Model of Self-Regulation: Conclusions From the Second Decade of Willpower Research. Perspect. Psychol. Sci. 2018, 13, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Auerbach, M.V.; Lobel, M. Failed Control of Health Behavior. In The Wiley Encyclopedia of Health Psychology (eds K. Sweeny, M.L. Robbins, and L.M. Cohen; John Wiley & Sons, Inc.: New York, NY, USA, 2020; pp. 159–166. [Google Scholar] [CrossRef]
- Kok, A. Cognitive control, motivation and fatigue: A cognitive neuroscience perspective. Brain Cogn. 2022, 160, 105880. [Google Scholar] [CrossRef] [PubMed]
- Balagué, N.; Hristovski, R.; García-Retortillo, S. Perceived Exertion: Dynamic Psychobiological Model of Exercise-Induced Fatigue. In Handbook of Sport Psychology; John Wiley & Sons, Inc.: New York, NY, USA, 2020; pp. 950–965. [Google Scholar]
- Sun, H.; Soh, K.G.; Roslan, S.; Wazir, M.R.W.N.; Soh, K.L. Does mental fatigue affect skilled performance in athletes? A systematic review. PLoS ONE 2021, 16, e0258307. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, C. The Assessment and Measurement of Fatigue. In Fatigue as a Window to the Brain; MIT Press: Cambridge, MA, USA, 2005; pp. 19–35. [Google Scholar]
- Sharpe, M.; Wilks, D. ABC of psychological medicine—Fatigue. Br. Med. J. 2002, 325, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, J.N.; Adewuyi, O.; Merck, S.J.; Ali, M.; Ravindran, M.K.; Timbol, C.R.; Rayhan, R.; Zheng, Y.; Le, U.; Esteitie, R.; et al. A Chronic Fatigue Syndrome (CFS) severity score based on case designation criteria. Am. J. Transl. Res. 2013, 5, 53–68. [Google Scholar] [PubMed]
- Nijrolder, I.; van der Horst, H.; van der Windt, D. Prognosis of fatigue. A systematic review. J. Psychosom. Res. 2008, 64, 335–349. [Google Scholar] [CrossRef]
- Fatt, S.J.; Cvejic, E.; Lloyd, A.R.; Vollmer-Conna, U.; Beilharz, J.E. The Invisible Burden of Chronic Fatigue in the Community: A Narrative Review. Curr. Rheumatol. Rep. 2019, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Sandler, C.X.; Lloyd, A.R. Chronic fatigue syndrome: Progress and possibilities. Med. J. Aust. 2020, 212, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Bateman, L.; Bested, A.C.; Bonilla, H.F.; Chheda, B.V.; Chu, L.; Curtin, J.M.; Dempsey, T.T.; Dimmock, M.E.; Dowell, T.G.; Felsenstein, D. Myalgic encephalomyelitis/chronic fatigue syndrome: Essentials of diagnosis and management. In Mayo Clinic Proceedings; Elsevier: Amsterdam, Netherlands, 2021; Volume 96, pp. 2861–2878. [Google Scholar] [CrossRef] [PubMed]
- Kizilbash, S.J.; Ahrens, S.P.; Bruce, B.K.; Chelimsky, G.; Driscoll, S.W.; Harbeck-Weber, C.; Lloyd, R.M.; Mack, K.J.; Nelson, D.E.; Ninis, N.; et al. Adolescent fatigue, POTS, and recovery: A guide for clinicians. Curr. Probl. Pediatr. Adolesc. Health Care 2014, 44, 108–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, Y.; Serafimova, T.; Anderson, N.; King, H.; Richards, A.; Brigden, A.; Sinai, P.; Higgins, J.; Ascough, C.; Clery, P.; et al. Recovery from chronic fatigue syndrome: A systematic review-heterogeneity of definition limits study comparison. Arch. Dis. Child. 2021, 106, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Engberg, I.; Segerstedt, J.; Waller, G.; Wennberg, P.; Eliasson, M. Fatigue in the general population- associations to age, sex, socioeconomic status, physical activity, sitting time and self-rated health: The northern Sweden MONICA study 2014. BMC Public Health 2017, 17, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulme, K.; Safari, R.; Thomas, S.; Mercer, T.; White, C.; Van der Linden, M.; Moss-Morris, R. Fatigue interventions in long term, physical health conditions: A scoping review of systematic reviews. PLoS ONE 2018, 13, e0203367. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.; Jones, S.L.; Kelly, R.M. Patient perspectives on self-management technologies for chronic fatigue syndrome. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–13. [Google Scholar]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [Green Version]
- Cella, M.; Chalder, T. Measuring fatigue in clinical and community settings. J. Psychosom. Res. 2010, 69, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Boolani, A.; Fuller, D.T.; Mondal, S.; Wilkinson, T.; Darie, C.C.; Gumpricht, E. Caffeine-Containing, Adaptogenic-Rich Drink Modulates the Effects of Caffeine on Mental Performance and Cognitive Parameters: A Double-Blinded, Placebo-Controlled, Randomized Trial. Nutrients 2020, 12, 1922. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Curran, S.L.; Andrykowski, M.A.; Studts, J.L. Short-Form of the Profile of Mood States (Poms-Sf)—Psychometric Information. Psychol. Assess. 1995, 7, 80–83. [Google Scholar] [CrossRef]
- McNair, D.; Lorr, M.; Heuchert, J.; Droppleman, L. Profile of mood states-brief form. In North Tonawanda: Multi-Health Systems; Multi-Health Systems Inc.: North Tonawanda, NY, USA, 2003. [Google Scholar]
- O’Connor, P.J. Mental energy: Developing a model for examining nutrition-related claims. Nutr. Rev. 2006, 64, S2–S6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boolani, A.; Lindheimer, J.B.; Loy, B.D.; Crozier, S.; O’Connor, P.J. Acute effects of brewed cocoa consumption on attention, motivation to perform cognitive work and feelings of anxiety, energy and fatigue: A randomized, placebo-controlled crossover experiment. BMC Nutr. 2017, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Terry, P.C.; Lane, A.M.; Fogarty, G.J. Construct validity of the Profile of Mood States—Adolescents for use with adults. Psychol. Sport Exerc. 2003, 4, 125–139. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, P. Mental and physical state and trait energy and fatigue scales; University of Georgia: Athens, GA, USA, 2006. [Google Scholar]
- Ohl, A.; Schelly, D.; Reid, J.; Boolani, A. Sleep Quality and Quantity of Occupational Therapy and Other Allied Health Students. Occup. Ther. Ment. Health 2019, 35, 407–421. [Google Scholar] [CrossRef]
- Motl, R.W.; O’Connor, P.J.; Tubandt, L.; Puetz, T.; Ely, M.R. Effect of caffeine on leg muscle pain during cycling exercise among females. Med. Sci. Sport. Exerc. 2006, 38, 598–604. [Google Scholar] [CrossRef]
- Tukey, J.W. The future of data analysis. Ann. Math. Stat. 1962, 33, 1–67. [Google Scholar] [CrossRef]
- Kohler, U.; Kreuter, F. Conditional-Effects Plots; Stata Press: College Station, TX, USA, 2012; pp. 321–324. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J.P. Regression Models for Categorical, Count, and Related Variables: An Applied Approach; University of California Press: Oakland, CA, USA, 2016. [Google Scholar]
- Clogg, C.C.; Petkova, E.; Haritou, A. Statistical-Methods for Comparing Regression-Coefficients between Models. Am. J. Sociol. 1995, 100, 1261–1293. [Google Scholar] [CrossRef] [Green Version]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Frederick, G.M.; Bub, K.L.; Boudreaux, B.D.; O’Connor, P.J.; Schmidt, M.D.; Evans, E.M. Associations among sleep quality, sedentary behavior, physical activity, and feelings of energy and fatigue differ for male and female college students. Fatigue-Biomed. Health Behav. 2022, 10, 40–53. [Google Scholar] [CrossRef]
- Corfield, E.C.; Martin, N.G.; Nyholt, D.R. Co-occurrence and symptomatology of fatigue and depression. Compr. Psychiatry 2016, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hass, U.; Herpich, C.; Norman, K. Anti-Inflammatory Diets and Fatigue. Nutrients 2019, 11, 2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorist, M.M.; Tops, M. Caffeine, fatigue, and cognition. Brain Cogn. 2003, 53, 82–94. [Google Scholar] [CrossRef]
- Akerstedt, T.; Discacciati, A.; Miley-Akerstedt, A.; Westerlund, H. Aging and the Change in Fatigue and Sleep—A Longitudinal Study Across 8 Years in Three Age Groups. Front. Psychol. 2018, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Junghaenel, D.U.; Christodoulou, C.; Lai, J.S.; Stone, A.A. Demographic correlates of fatigue in the US general population: Results from the patient-reported outcomes measurement information system (PROMIS) initiative. J. Psychosom. Res. 2011, 71, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Wylie, G.R.; Pra Sisto, A.J.; Genova, H.M.; DeLuca, J. Fatigue Across the Lifespan in Men and Women: State vs. Trait. Front. Hum. Neurosci. 2022, 16, 790006. [Google Scholar] [CrossRef]
- Noakes, T.D. Fatigue is a Brain-Derived Emotion that Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis. Front. Physiol. 2012, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Kobilo, T.; van Praag, H. Muscle Fatigue and Cognition: What is the Link? Front. Physiol. 2012, 3, 14. [Google Scholar] [CrossRef]
- Pascarella, E.T.; Terenzini, P.T. How College Affects Students: A Third Decade of Research; ERIC: Jossey-Bass: Hoboken, NJ, USA, 2005; Volume 2. [Google Scholar]
- Cook, D.B.; O’Connor, P.J.; Lange, G.; Steffener, J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage 2007, 36, 108–122. [Google Scholar] [CrossRef]
- de Lange, F.P.; Kalkman, J.S.; Bleijenberg, G.; Hagoort, P.; van der Werf, S.P.; van der Meer, J.W.; Toni, I. Neural correlates of the chronic fatigue syndrome—An fMRI study. Brain 2004, 127, 1948–1957. [Google Scholar] [CrossRef] [Green Version]
- Lorist, M.M.; Boksem, M.A.; Ridderinkhof, K.R. Impaired cognitive control and reduced cingulate activity during mental fatigue. Brain Res. Cogn. Brain Res. 2005, 24, 199–205. [Google Scholar] [CrossRef]
- Nakagawa, S.; Sugiura, M.; Akitsuki, Y.; Hosseini, S.M.; Kotozaki, Y.; Miyauchi, C.M.; Yomogida, Y.; Yokoyama, R.; Takeuchi, H.; Kawashima, R. Compensatory effort parallels midbrain deactivation during mental fatigue: An fMRI study. PLoS ONE 2013, 8, e56606. [Google Scholar] [CrossRef] [PubMed]
- Loy, B.D.; Cameron, M.H.; O’Connor, P.J. Perceived fatigue and energy are independent unipolar states: Supporting evidence. Med. Hypotheses 2018, 113, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Loy, B.D.; O’Connor, P.J.; Dishman, R.K. The effect of a single bout of exercise on energy and fatigue states: A systematic review and meta-analysis. Fatigue: Biomed. Health Behav. 2013, 1, 223–242. [Google Scholar] [CrossRef]
- Kumar, N.; Wheaton, L.A.; Snow, T.K.; Millard-Stafford, M. Exercise and caffeine improve sustained attention following fatigue independent of fitness status. Fatigue: Biomed. Health Behav. 2015, 3, 104–121. [Google Scholar] [CrossRef]
- Ellingson, L.D.; Kuffel, A.E.; Vack, N.J.; Cook, D.B. Active and sedentary behaviors influence feelings of energy and fatigue in women. Med. Sci. Sports Exerc. 2014, 46, 192–200. [Google Scholar] [CrossRef]
- Pasman, W.J.; Blokdijk, V.M.; Bertina, F.M.; Hopman, W.P.; Hendriks, H.F. Effect of two breakfasts, different in carbohydrate composition, on hunger and satiety and mood in healthy men. Int. J. Obes. 2003, 27, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Knutson, K.L.; Spiegel, K.; Penev, P.; Van Cauter, E. The metabolic consequences of sleep deprivation. Sleep Med. Rev. 2007, 11, 163–178. [Google Scholar] [CrossRef]
- Gong, S.; Sheng, P.; Jin, H.; He, H.; Qi, E.; Chen, W.; Dong, Y.; Hou, L. Effect of methylphenidate in patients with cancer-related fatigue: A systematic review and meta-analysis. PLoS ONE 2014, 9, e84391. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, S.; Tanaka, M.; Mizuno, K.; Ataka, S.; Mizuma, H.; Tahara, T.; Sugino, T.; Shirai, T.; Eguchi, A.; Okuyama, K.; et al. Mental and physical fatigue-related biochemical alterations. Nutrition 2009, 25, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Puetz, T.W.; O’Connor, P.J.; Dishman, R.K. Effects of chronic exercise on feelings of energy and fatigue: A quantitative synthesis. Psychol. Bull. 2006, 132, 866–876. [Google Scholar] [CrossRef]
- Lederer, A.M.; Hoban, M.T. The development of the American College Health Association-National College Health Assessment III: An improved tool to assess and enhance the health and well-being of college students. J. Am. Coll. Health 2022, 70, 1606–1610. [Google Scholar] [CrossRef] [PubMed]
- Wilks, C.R.; Auerbach, R.P.; Alonso, J.; Benjet, C.; Bruffaerts, R.; Cuijpers, P.; Ebert, D.D.; Green, J.G.; Mellins, C.A.; Mortier, P.; et al. The importance of physical and mental health in explaining health-related academic role impairment among college students. J. Psychiatr. Res. 2020, 123, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.P.; Jarrett, M.A.; Luebbe, A.M.; Garner, A.A.; Burns, G.L.; Kofler, M.J. Sleep in a large, multi-university sample of college students: Sleep problem prevalence, sex differences, and mental health correlates. Sleep Health 2018, 4, 174–181. [Google Scholar] [CrossRef]
- Miaskowski, C. Gender differences in pain, fatigue, and depression in patients with cancer. J. Natl. Cancer Inst. Monogr. 2004, 2004, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Pickard, S. Embodying the gender regime: Health, illness and disease across the life course. In Ageing, the Body and the Gender Regime; Routledge: London, UK, 2019; pp. 1–23. [Google Scholar]
- Carr, M.J.; Ashcroft, D.M.; White, P.D.; Kapur, N.; Webb, R.T. Prevalence of comorbid mental and physical illnesses and risks for self-harm and premature death among primary care patients diagnosed with fatigue syndromes. Psychol. Med. 2020, 50, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Strober, L.B.; Bruce, J.M.; Arnett, P.A.; Alschuler, K.N.; DeLuca, J.; Chiaravalloti, N.; Lebkuecher, A.; Di Benedetto, M.; Cozart, J.; Thelen, J.; et al. Tired of not knowing what that fatigue score means? Normative data of the Modified Fatigue Impact Scale (MFIS). Mult. Scler. Relat. Disord. 2020, 46, 102576. [Google Scholar] [CrossRef]
- Herring, M.P.; Monroe, D.C.; Kline, C.E.; O’Connor, P.J.; MacDonncha, C. Sleep quality moderates the association between physical activity frequency and feelings of energy and fatigue in adolescents. Eur. Child Adolesc. Psychiatry 2018, 27, 1425–1432. [Google Scholar] [CrossRef]
- Miller, M.; Lee-Chambers, J.; Cooper, B.; Boolani, A.; Jansen, E. Associations between physical activity and energy and fatigue depend on sleep quality. Fatigue-Biomed. Health Behav. 2020, 8, 193–204. [Google Scholar] [CrossRef]
- Jackson, P.A.; Haskell-Ramsay, C.; Forster, J.; Khan, J.; Veasey, R.; Kennedy, D.O.; Wilson, A.R.; Saunders, C.; Wightman, E.L. Acute cognitive performance and mood effects of coffee berry and apple extracts: A randomised, double blind, placebo controlled crossover study in healthy humans. Nutr. Neurosci. 2022, 25, 2335–2343. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.; Hodgson, L.; Bussu, A.; Farhat, G.; Al-Dujaili, E. Effect of Polyphenol-Rich Dark Chocolate on Salivary Cortisol and Mood in Adults. Antioxidants 2019, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Scholey, A.B.; French, S.J.; Morris, P.J.; Kennedy, D.O.; Milne, A.L.; Haskell, C.F. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J. Psychopharmacol. 2010, 24, 1505–1514. [Google Scholar] [CrossRef]
- Safe, S.; Jayaraman, A.; Chapkin, R.S.; Howard, M.; Mohankumar, K.; Shrestha, R. Flavonoids: Structure-function and mechanisms of action and opportunities for drug development. Toxicol. Res. 2021, 37, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Wightman, E.; Kennedy, D. The effects of polyphenols on cognition: How mechanisms pertaining to cardiovascular health relate to improved neurocognitive function. In The Routledge International Handbook of Psychobiology; Routledge: London, UK, 2018; pp. 251–267. [Google Scholar]
- Garcia-Yu, I.A.; Garcia-Ortiz, L.; Gomez-Marcos, M.A.; Alonso-Dominguez, R.; Gonzalez-Sanchez, J.; Mora-Simon, S.; Gonzalez-Manzano, S.; Rodriguez-Sanchez, E.; Maderuelo-Fernandez, J.A.; Recio-Rodriguez, J.I. Vascular and cognitive effects of cocoa-rich chocolate in postmenopausal women: A study protocol for a randomised clinical trial. BMJ Open 2018, 8, e024095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M.A.; Ramos, S. Impact of cocoa flavanols on human health. Food Chem. Toxicol. 2021, 151, 112121. [Google Scholar] [CrossRef]
- Maridakis, V.; O’Connor, P.J.; Tomporowski, P.D. Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to morning caffeine alone or in combination with carbohydrate. Int. J. Neurosci. 2009, 119, 1239–1258. [Google Scholar] [CrossRef]
- Maridakis, V.; Herring, M.P.; O’Connor, P.J. Sensitivity to change in cognitive performance and mood measures of energy and fatigue in response to differing doses of caffeine or breakfast. Int. J. Neurosci. 2009, 119, 975–994. [Google Scholar] [CrossRef]
- Childs, E.; de Wit, H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology 2006, 185, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.J.; Hohoff, C.; Heatherley, S.V.; Mullings, E.L.; Maxfield, P.J.; Evershed, R.P.; Deckert, J.; Nutt, D.J. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology 2010, 35, 1973–1983. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childs, E.; Hohoff, C.; Deckert, J.; Xu, K.; Badner, J.; de Wit, H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2008, 33, 2791–2800. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Carvalho, A.; Dutra-Tavares, A.C.; Filgueiras, C.C.; Manhães, A.C.; Abreu-Villaça, Y. Caffeine and Anxiety-Like Behavior. In Handbook of Substance Misuse and Addictions: From Biology to Public Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–18. [Google Scholar]
- Tennent, R.; Ali, A.; Wham, C.; Rutherfurd-Markwick, K. Narrative Review: Impact of Genetic Variability of CYP1A2, ADORA2A, and AHR on Caffeine Consumption and Response. J. Caffeine Adenosine Res. 2020, 10, 125–134. [Google Scholar] [CrossRef]
- Fulton, J.L.; Dinas, P.C.; Carrillo, A.E.; Edsall, J.R.; Ryan, E.J.; Ryan, E.J. Impact of Genetic Variability on Physiological Responses to Caffeine in Humans: A Systematic Review. Nutrients 2018, 10, 1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekkekakis, P. The Measurement of Affect, Mood, and Emotion: A Guide for Health-Behavioral Research; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hoffman, M.D.; Hoffman, D.R. Exercisers achieve greater acute exercise-induced mood enhancement than nonexercisers. Arch. Phys. Med. Rehabil. 2008, 89, 358–363. [Google Scholar] [CrossRef]
- Bryan, A.; Hutchison, K.E.; Seals, D.R.; Allen, D.L. A transdisciplinary model integrating genetic, physiological, and psychological correlates of voluntary exercise. Health Psychol. 2007, 26, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.J.; Stevens, L.C.; Coast, J.R. Exercise duration and mood state: How much is enough to feel better? Health Psychol. 2001, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Yeung, R.R. The acute effects of exercise on mood state. J. Psychosom. Res. 1996, 40, 123–141. [Google Scholar] [CrossRef]
- McNair, D.M.; Lorr, M.; Droppleman, L.F. Manual Profile of Mood States; Educational and Industrial Testing Services: San Diego, CA, USA, 1971. [Google Scholar]
- Matranga, D.; Restivo, V.; Maniscalco, L.; Bono, F.; Pizzo, G.; Lanza, G.; Gaglio, V.; Mazzucco, W.; Miceli, S. Lifestyle Medicine and Psychological Well-Being toward Health Promotion: A Cross-Sectional Study on Palermo (Southern Italy) Undergraduates. Int. J. Environ. Res. Public Health 2020, 17, 5444. [Google Scholar] [CrossRef]
- Gray, I.D.; Kross, A.R.; Renfrew, M.E.; Wood, P. Precision Medicine in Lifestyle Medicine: The Way of the Future? Am. J. Lifestyle Med. 2020, 14, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Kushner, R.F. Why Lifestyle Medicine? In Lifestyle Medicine; Mechanick, J.I., Kushner, R.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Lorr, M.; Shea, T.M. Are mood states bipolar? J. Pers. Assess. 1979, 43, 468–472. [Google Scholar] [CrossRef] [PubMed]
- MeAuley, E.; Courneya, K.S. The subjective exercise experiences scale (SEES): Development and preliminary validation. J. Sport Exerc. Psychol. 1994, 16, 163–177. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Petruzzello, S.J. Analysis of the affect measurement conundrum in exercise psychology: I. Fundamental issues. Psychol. Sport Exerc. 2000, 1, 71–88. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Petruzzello, S.J. Analysis of the affect measurement conundrum in exercise psychology. III. A conceptual and methodological critique of the Subjective Exercise Experiences Scale. Psychol. Sport Exerc. 2001, 2, 205–232. [Google Scholar] [CrossRef]
- Dang, J.; King, K.M.; Inzlicht, M. Why Are Self-Report and Behavioral Measures Weakly Correlated? Trends Cogn. Sci. 2020, 24, 267–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, M.; Suner-Keklik, S.; Cobanoglu, G. The Comparison of Physical Activity, Fatigue and Quality of Life in Different Age Groups. Clin. Exp. Health Sci. 2022, 12, 150–154. [Google Scholar] [CrossRef]
- Kakinami, L.; O’Loughlin, E.K.; Brunet, J.; Dugas, E.N.; Constantin, E.; Sabiston, C.M.; O’Loughlin, J. Associations between physical activity and sedentary behavior with sleep quality and quantity in young adults. Sleep Health 2017, 3, 56–61. [Google Scholar] [CrossRef]
- Lindberg, C.M.; Srinivasan, K.; Gilligan, B.; Razjouyan, J.; Lee, H.; Najafi, B.; Canada, K.J.; Mehl, M.R.; Currim, F.; Ram, S.; et al. Effects of office workstation type on physical activity and stress. Occup. Env. Med. 2018, 75, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.M.; Kim, C.J. The effect of the type of physical activity on the perceived stress level in people with activity limitations. J. Exerc. Rehabil. 2018, 14, 361–366. [Google Scholar] [CrossRef]
- LaSorda, K.R.; Gmelin, T.; Kuipers, A.L.; Boudreau, R.M.; Santanasto, A.J.; Christensen, K.; Renner, S.W.; Wojczynski, M.K.; Andersen, S.L.; Cosentino, S.; et al. Epidemiology of Perceived Physical Fatigability in Older Adults: The Long Life Family Study. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, e81–e88. [Google Scholar] [CrossRef]
- Allet, L.; Knols, R.H.; Shirato, K.; de Bruin, E.D. Wearable systems for monitoring mobility-related activities in chronic disease: A systematic review. Sensors 2010, 10, 9026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takei, K.; Honda, W.; Harada, S.; Arie, T.; Akita, S. Toward flexible and wearable human-interactive health-monitoring devices. Adv. Healthc. Mater. 2015, 4, 487–500. [Google Scholar] [CrossRef]
- Dittner, A.J.; Wessely, S.C.; Brown, R.G. The assessment of fatigue: A practical guide for clinicians and researchers. J. Psychosom. Res. 2004, 56, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F. Fatigue assessments in rheumatoid arthritis: Comparative performance of visual analog scales and longer fatigue questionnaires in 7760 patients. J. Rheumatol. 2004, 31, 1896–1902. [Google Scholar] [PubMed]
- Barsevick, A.M.; Cleeland, C.S.; Manning, D.C.; O’Mara, A.M.; Reeve, B.B.; Scott, J.A.; Sloan, J.A. ASCPRO recommendations for the assessment of fatigue as an outcome in clinical trials. J. Pain Symptom Manag. 2010, 39, 1086–1099. [Google Scholar] [CrossRef]
- Hewlett, S.; Dures, E.; Almeida, C. Measures of fatigue: Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF MDQ), Bristol Rheumatoid Arthritis Fatigue Numerical Rating Scales (BRAF NRS) for severity, effect, and coping, Chalder Fatigue Questionnaire (CFQ), Checklist Individual Strength (CIS20R and CIS8R), Fatigue Severity Scale (FSS), Functional Assessment Chronic Illness Therapy (Fatigue) (FACIT-F), Multi-Dimensional Assessment of Fatigue (MAF), Multi-Dimensional Fatigue Inventory (MFI), Pediatric Quality Of Life (PedsQL) Multi-Dimensional Fatigue Scale, Profile of Fatigue (ProF), Short Form 36 Vitality Subscale (SF-36 VT), and Visual Analog Scales (VAS). Arthritis Care Res. (Hoboken) 2011, 63 (Suppl. 11), S263–S286. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | Min | Max | |
---|---|---|---|---|
Outcomes | ||||
Sqrt(Mental Fatigue Trait) | 2.02 | 0.6 | 0 | 3.46 |
Sqrt(Mental Fatigue State) | 3.37 | 0.94 | 1.73 | 5.74 |
Mental Energy Trait | 5.82 | 2.02 | 0 | 12 |
Mental Energy State | 17.35 | 5.98 | 3 | 33 |
Sqrt(Physical Fatigue Trait) | 2.19 | 0.46 | 1 | 3.61 |
Sqrt(Physical Fatigue State) | 3.31 | 0.89 | 1.73 | 5.48 |
Physical Energy Trait | 6.5 | 2.16 | 0 | 12 |
Physical Energy State | 18.01 | 5.71 | 4 | 33 |
Covariates | ||||
% 22 or younger | 83 | |||
% Female | 38 | |||
BMI | 24.15 | 4.39 | 14.8 | 39.62 |
Physical activity score | 225.85 | 36.24 | 168 | 310 |
8oz Caffeine servings/week | 12.54 | 9.78 | 1 | 41 |
Polyphenol consumption | 95.45 | 61.3 | 5 | 299 |
Work days mental load | 115.63 | 59.91 | 9 | 240 |
Off-work days mental load | 18.76 | 14.52 | 0 | 56 |
Sleep Quality Score | 5.03 | 2.54 | 0 | 17 |
POMS Anger | 6.69 | 1.97 | 5 | 12 |
POMS Confusion | 5.73 | 1.74 | 4 | 10 |
POMS Tension | 7.8 | 2.69 | 5 | 14 |
POMS Depression | 6.86 | 2.31 | 5 | 13 |
Mental Fatigue (N = 666) | Mental Energy (N = 664) | |||||||
---|---|---|---|---|---|---|---|---|
Sqrt(Trait) | Sqrt(State) | Trait | State | |||||
Variables | Coef | β | Coef | β | Coef | β | Coef | β |
22 or younger (ref: 23 or older) | 0.101 * | 0.069 | 0.247 ** | 0.101 | 0.019 | 0.004 | −0.908 | −0.057 |
Female (ref: male) | 0.049 | 0.042 | 0.107 | 0.056 | −0.456 ** | −0.110 | −1.626 *** | −0.132 |
Physical Activity Score | 0.001 | 0.063 | 0.000 | 0.006 | 0.000 | 0.005 | 0.007 | 0.043 |
BMI | −0.001 | −0.012 | 0.008 | 0.040 | 0.037 * | 0.080 | 0.063 | 0.046 |
Polyphenol Consumption | 0.000 | 0.020 | −0.000 | −0.032 | 0.006 *** | 0.190 | 0.013 *** | 0.133 |
Caffeine Consumption | 0.002 | 0.042 | 0.003 | 0.035 | −0.006 | −0.029 | 0.000 | 0.000 |
Work Day Mental Load | 0.001 * | 0.085 | 0.002 ** | 0.110 | 0.003 * | 0.080 | 0.009 * | 0.092 |
Off-work Day Mental Load | 0.001 | 0.026 | 0.002 | 0.028 | 0.009 | 0.061 | −0.003 | −0.008 |
Sleep Quality Score | 0.075 *** | 0.327 | 0.093 *** | 0.245 | −0.210 *** | −0.250 | −0.704 *** | −0.284 |
POMS Anger | −0.027 * | −0.096 | −0.017 | −0.037 | 0.093 | 0.090 | 0.263 | 0.087 |
POMS Confusion | 0.067 *** | 0.207 | 0.089 *** | 0.166 | −0.112 | −0.096 | −0.063 | −0.018 |
POMS Tension | 0.012 | 0.055 | 0.040 * | 0.114 | −0.027 | −0.036 | −0.154 | −0.069 |
POMS Depression | 0.040 ** | 0.165 | 0.052 * | 0.130 | −0.060 | −0.069 | −0.170 | −0.066 |
Constant | 0.642 *** | 1.111 *** | 5.719 *** | 17.870 *** | ||||
R-squared | 0.304 | 0.265 | 0.155 | 0.148 |
Physical Fatigue (N= 674) | Physical Energy (N= 659) | |||||||
---|---|---|---|---|---|---|---|---|
Sqrt(Trait) | Sqrt(State) | Trait | State | |||||
Variables | Coef | β | Coef | β | Coef | β | Coef | β |
22 or younger (ref: 23 or older) | 0.095 * | 0.080 | 0.233 ** | 0.100 | 0.058 | 0.010 | −1.889 *** | −0.128 |
Female (ref: male) | 0.059 | 0.063 | 0.170 ** | 0.093 | −0.344 * | −0.078 | −1.325 ** | −0.115 |
Physical Activity Score | 0.000 | 0.011 | 0.000 | 0.017 | 0.018 *** | 0.304 | 0.035 *** | 0.225 |
BMI | 0.003 | 0.028 | 0.011 | 0.053 | −0.021 | −0.043 | 0.010 | 0.008 |
Polyphenol Consumption | −0.001 * | −0.072 | −0.000 | −0.024 | 0.002 | 0.058 | 0.008 * | 0.088 |
Caffeine Consumption | 0.004 * | 0.090 | 0.003 | 0.036 | −0.008 | −0.036 | −0.043 * | −0.076 |
Work Day Mental Load | 0.001 * | 0.075 | 0.001 * | 0.091 | 0.002 | 0.065 | 0.010 ** | 0.108 |
Off-work Day Mental Load | −0.000 | −0.004 | −0.001 | −0.019 | 0.014 * | 0.091 | −0.007 | −0.017 |
Sleep Quality Score | 0.042 *** | 0.224 | 0.087 *** | 0.240 | −0.176 *** | −0.198 | −0.627 *** | −0.270 |
POMS Anger | −0.023 * | −0.100 | 0.007 | 0.015 | 0.028 | 0.026 | 0.072 | 0.025 |
POMS Confusion | 0.060 *** | 0.228 | 0.104 *** | 0.203 | −0.025 | −0.020 | −0.126 | −0.039 |
POMS Tension | −0.001 | −0.004 | 0.011 | 0.032 | 0.019 | 0.024 | 0.009 | 0.004 |
POMS Depression | 0.035 *** | 0.176 | 0.046 * | 0.119 | −0.071 | −0.077 | −0.184 | −0.076 |
Constant | 1.285 *** | 1.062 *** | 3.629 *** | 15.378 *** | ||||
R-squared | 0.222 | 0.248 | 0.197 | 0.206 |
Mental Fatigue (N= 651) | Mental Energy (N= 649) | |||||||
---|---|---|---|---|---|---|---|---|
Sqrt(Trait) | Sqrt(State) | Trait | State | |||||
Variables | Coef | β | Coef | β | Coef | β | Coef | β |
22 or younger (ref: 23 or older) | 0.073 | 0.049 | 0.201 * | 0.082 | 0.124 | 0.023 | −0.645 | −0.040 |
Female (ref: male) | 0.079 * | 0.068 | 0.127 | 0.066 | −0.545 *** | −0.131 | −1.887 *** | −0.153 |
Physical Activity Score | 0.001 | 0.067 | −0.000 | −0.000 | 0.001 | 0.012 | 0.010 | 0.058 |
BMI | −0.001 | −0.012 | 0.010 | 0.049 | 0.037 * | 0.081 | 0.054 | 0.040 |
Polyphenol Consumption | 0.000 | 0.017 | −0.000 | −0.022 | 0.006 *** | 0.191 | 0.010 ** | 0.107 |
Caffeine Consumption | 0.002 | 0.029 | 0.003 | 0.035 | −0.002 | −0.012 | 0.005 | 0.008 |
Work Day Mental Load | 0.001 ** | 0.091 | 0.002 *** | 0.117 | 0.003 * | 0.093 | 0.011 ** | 0.109 |
Off-work Day Mental Load | 0.001 | 0.019 | 0.001 | 0.021 | 0.007 | 0.053 | −0.004 | −0.009 |
PSQI categorical | ||||||||
Subjective Quality | 0.070 | 0.071 | 0.270 *** | 0.165 | −0.279 | −0.080 | −1.944 *** | −0.188 |
Sleep Latency | 0.074 ** | 0.115 | 0.041 | 0.038 | −0.282 ** | −0.119 | −0.782 ** | −0.111 |
Sleep Duration | 0.059 | 0.070 | 0.012 | 0.009 | −0.248 * | −0.081 | −0.410 | −0.045 |
Sleep Efficiency | −0.045 | −0.046 | −0.133 * | −0.081 | 0.085 | 0.023 | 0.297 | 0.027 |
Sleep Disturbance | 0.019 | 0.015 | 0.146 | 0.069 | 0.265 | 0.057 | 0.480 | 0.035 |
Use of Sleep Medication | 0.039 | 0.043 | 0.060 | 0.039 | 0.055 | 0.017 | 0.189 | 0.019 |
Daytime Dysfunctions | 0.192 *** | 0.270 | 0.238 *** | 0.202 | −0.458 *** | −0.182 | −1.203 *** | −0.162 |
POMS Anger | −0.018 | −0.063 | −0.002 | −0.005 | 0.075 | 0.073 | 0.204 | 0.067 |
POMS Confusion | 0.055 *** | 0.170 | 0.073 ** | 0.135 | −0.091 | −0.078 | −0.023 | −0.007 |
POMS Tension | 0.011 | 0.051 | 0.028 | 0.081 | −0.031 | −0.042 | −0.162 | −0.073 |
POMS Depression | 0.033 ** | 0.133 | 0.044 * | 0.107 | −0.041 | −0.047 | −0.084 | −0.032 |
Constant | 0.715 *** | 1.070 ** | 5.185 *** | 16.923 *** | ||||
R-squared | 0.336 | 0.315 | 0.181 | 0.185 |
Physical Fatigue (N= 659) | Physical Energy (N= 644) | |||||||
---|---|---|---|---|---|---|---|---|
Sqrt(Trait) | Sqrt(State) | Trait | State | |||||
Variables | Coef | β | Coef | β | Coef | β | Coef | β |
22 or younger (ref: 23 or older) | 0.086 * | 0.073 | 0.208 * | 0.090 | 0.075 | 0.013 | −1.742 ** | −0.118 |
Female (ref: male) | 0.064 | 0.068 | 0.179 ** | 0.098 | −0.404 * | −0.091 | −1.509 *** | −0.131 |
Physical Activity Score | 0.000 | 0.010 | 0.000 | 0.015 | 0.019 *** | 0.318 | 0.036 *** | 0.235 |
BMI | 0.003 | 0.029 | 0.011 | 0.052 | −0.022 | −0.045 | 0.011 | 0.008 |
Polyphenol Consumption | −0.001 | −0.070 | −0.000 | −0.012 | 0.002 | 0.044 | 0.006 | 0.068 |
Caffeine Consumption | 0.004 * | 0.081 | 0.003 | 0.029 | −0.006 | −0.029 | −0.039 | −0.067 |
Work Day Mental Load | 0.001 * | 0.080 | 0.001 ** | 0.100 | 0.003* | 0.080 | 0.011 ** | 0.119 |
Off-work Day Mental Load | −0.000 | −0.006 | −0.002 | −0.026 | 0.014* | 0.092 | −0.005 | −0.014 |
PSQI categorical | ||||||||
Subjective Quality | 0.083 * | 0.106 | 0.213 *** | 0.139 | −0.550 *** | −0.145 | −1.589 *** | −0.161 |
Sleep Latency | 0.064 ** | 0.124 | 0.100 * | 0.099 | −0.350 *** | −0.141 | −0.979 *** | −0.152 |
Sleep Duration | 0.025 | 0.037 | 0.010 | 0.008 | −0.155 | −0.047 | −0.509 | −0.059 |
Sleep Efficiency | −0.014 | −0.017 | −0.076 | −0.049 | −0.109 | −0.028 | 0.422 | 0.042 |
Sleep Disturbance | 0.007 | 0.007 | 0.138 | 0.069 | 0.298 | 0.062 | −0.017 | −0.001 |
Use of Sleep Medication | 0.009 | 0.012 | 0.019 | 0.013 | 0.260 * | 0.073 | −0.019 | −0.002 |
Daytime Dysfunctions | 0.053* | 0.093 | 0.143 ** | 0.129 | −0.074 | −0.028 | −0.648 * | −0.092 |
POMS Anger | −0.020 | −0.089 | 0.014 | 0.031 | 0.027 | 0.025 | 0.024 | 0.008 |
POMS Confusion | 0.058 *** | 0.221 | 0.094 *** | 0.184 | −0.031 | −0.025 | −0.118 | −0.037 |
POMS Tension | −0.001 | −0.008 | 0.007 | 0.020 | 0.020 | 0.026 | 0.027 | 0.013 |
POMS Depression | 0.031 ** | 0.158 | 0.036 | 0.093 | −0.079 | −0.084 | −0.127 | −0.052 |
Constant | 1.297 *** | 1.037 ** | 3.351 *** | 14.910 *** | 1.297 *** | |||
R-squared | 0.236 | 0.273 | 0.235 | 0.234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadakis, Z.; Stamatis, A.; Manierre, M.; Boolani, A. Preventive Medicine via Lifestyle Medicine Implementation Practices Should Consider Individuals’ Complex Psychosocial Profile. Healthcare 2022, 10, 2560. https://doi.org/10.3390/healthcare10122560
Papadakis Z, Stamatis A, Manierre M, Boolani A. Preventive Medicine via Lifestyle Medicine Implementation Practices Should Consider Individuals’ Complex Psychosocial Profile. Healthcare. 2022; 10(12):2560. https://doi.org/10.3390/healthcare10122560
Chicago/Turabian StylePapadakis, Zacharias, Andreas Stamatis, Matthew Manierre, and Ali Boolani. 2022. "Preventive Medicine via Lifestyle Medicine Implementation Practices Should Consider Individuals’ Complex Psychosocial Profile" Healthcare 10, no. 12: 2560. https://doi.org/10.3390/healthcare10122560
APA StylePapadakis, Z., Stamatis, A., Manierre, M., & Boolani, A. (2022). Preventive Medicine via Lifestyle Medicine Implementation Practices Should Consider Individuals’ Complex Psychosocial Profile. Healthcare, 10(12), 2560. https://doi.org/10.3390/healthcare10122560