Body Mass Index and Clinical Outcomes in Adult COVID-19 Patients of Diverse Ethnicities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design and Participants
2.3. Nasopharyngeal PCR Test of SARS-CoV-2
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Characteristics of Participants
3.2. Logistics Regression Analysis of the Relationship between BMI and COVID-19 and Outcomes
3.3. Time to Viral Clearance in Patients with Various BMIs
4. Discussion
4.1. Significance of the Results
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Lu, Y.; Huang, Y.M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.L. Obesity in Patients with COVID-19: A Systematic Review and Meta-Analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B.; Gu, T.; Mack, J.A.; Salvatore, M.; Prabhu Sankar, S.; Valley, T.S.; Singh, K.; Nallamothu, B.K.; Kheterpal, S.; Lisabeth, L.; et al. Characteristics Associated With Racial/Ethnic Disparities in COVID-19 Outcomes in an Academic Health Care System. JAMA Netw. Open 2020, 3, e2025197. [Google Scholar] [CrossRef]
- de Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk Factors for SARS-CoV-2 among Patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre Primary Care Network: A Cross-Sectional Study. Lancet Infect. Dis. 2020, 20, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Denova-Gutiérrez, E.; Lopez-Gatell, H.; Alomia-Zegarra, J.L.; López-Ridaura, R.; Zaragoza-Jimenez, C.A.; Dyer-Leal, D.D.; Cortés-Alcala, R.; Villa-Reyes, T.; Gutiérrez-Vargas, R.; Rodríguez-González, K.; et al. The Association of Obesity, Type 2 Diabetes, and Hypertension with Severe Coronavirus Disease 2019 on Admission Among Mexican Patients. Obesity 2020, 28, 1826–1832. [Google Scholar] [CrossRef]
- Hernández-Garduño, E. Obesity Is the Comorbidity More Strongly Associated for COVID-19 in Mexico. A Case-Control Study. Obes. Res. Clin. Pract. 2020, 14, 375–379. [Google Scholar] [CrossRef]
- Peng, M.; He, J.; Xue, Y.; Yang, X.; Liu, S.; Gong, Z. Role of Hypertension on the Severity of COVID-19: A Review. J. Cardiovasc. Pharmacol. 2021, 78, e648–e655. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.; Liu, M.; Nie, H.; Lu, H. Comorbid Chronic Diseases Are Strongly Correlated with Disease Severity among COVID-19 Patients: A Systematic Review and Meta-Analysis. Aging Dis. 2020, 11, 668–678. [Google Scholar] [CrossRef]
- Aouissi, H.A.; Belhaouchet, I. What about Rheumatic Diseases and COVID-19? New Microbes New Infect. 2021, 41, 100846. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Bahena-López, J.P.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; González-Díaz, A.; Márquez-Salinas, A.; Fermín-Martínez, C.A.; Naveja, J.J.; Aguilar-Salinas, C.A. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J. Clin. Endocrinol. Metab. 2020, 105, 2752–2761. [Google Scholar] [CrossRef]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK Patients in Hospital with COVID-19 Using the ISARIC WHO Clinical Characterisation Protocol: Prospective Observational Cohort Study. Br. Med. J. 2020, 369, m1985. [Google Scholar] [CrossRef]
- Kim, T.S.; Roslin, M.; Wang, J.J.; Kane, J.; Hirsch, J.S.; Kim, E.J. BMI as a Risk Factor for Clinical Outcomes in Patients Hospitalized with COVID-19 in New York. Obesity 2021, 29, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, E.J.; de Nooijer, A.H.; Claassen, W.J.; Grondman, I.; Janssen, N.A.F.; Netea, M.G.; van de Veerdonk, F.L.; van der Hoeven, J.G.; Kox, M.; Pickkers, P.; et al. A Higher BMI Is Not Associated with a Different Immune Response and Disease Course in Critically Ill COVID-19 Patients. Int. J. Obes. 2021, 45, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Defining Adult Overweight & Obesity|Overweight & Obesity|CDC. Available online: https://www.cdc.gov/obesity/adult/defining.html (accessed on 20 March 2022).
- Nair, S.C.; Gasmelseed, H.I.; Khan, A.A.; Khafagy, I.N.; Sreedharan, J.; Saleem, A.A.; Abdrhman, H.I.; Alhosani, A.H.; Siddiqua, A.R.; Ahmed, A.R.; et al. Assessment of Mortality from COVID-19 in a Multicultural Multi-Ethnic Patient Population. BMC Infect. Dis. 2021, 21, 1115. [Google Scholar] [CrossRef] [PubMed]
- Al Heialy, S.; Hachim, M.Y.; Hachim, I.Y.; Bin Naeem, K.; Hannawi, H.; Lakshmanan, J.; Al Salmi, I.; Hannawi, S. Combination of Obesity and Co-Morbidities Leads to Unfavorable Outcomes in COVID-19 Patients. Saudi J. Biol. Sci. 2021, 28, 1445–1450. [Google Scholar] [CrossRef]
- SolGent. Molecular Diagnostic, The DiaPlexQ™ Novel Coronavirus (2019-nCoV) Detection Kit. Available online: http://www.solgent.com/english/sub03020102/view/id/45?ckattempt=1 (accessed on 27 November 2022).
- MOHAP ICU Team Clinical Management of the Critically Ill COVID-19 Patient; MOHAP ICU Team: Dubai, United Arab Emirates, 2020.
- Aouissi, H.A.; Kechebar, M.S.A.; Ababsa, M.; Roufayel, R.; Neji, B.; Petrisor, A.-I.; Hamimes, A.; Epelboin, L.; Ohmagari, N. The Importance of Behavioral and Native Factors on COVID-19 Infection and Severity: Insights from a Preliminary Cross-Sectional Study. Healthcare 2022, 10, 1341. [Google Scholar] [CrossRef]
- Azzouzi, S.; Stratton, C.; Muñoz-Velasco, L.P.; Wang, K.; Fourtassi, M.; Hong, B.-Y.; Cooper, R.; Balikuddembe, J.K.; Palomba, A.; Peterson, M.; et al. The Impact of the COVID-19 Pandemic on Healthy Lifestyle Behaviors and Perceived Mental and Physical Health of People Living with Non-Communicable Diseases: An International Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 8023. [Google Scholar] [CrossRef]
- Scapaticci, S.; Neri, C.R.; Marseglia, G.L.; Staiano, A.; Chiarelli, F.; Verduci, E. The Impact of the COVID-19 Pandemic on Lifestyle Behaviors in Children and Adolescents: An International Overview. Ital. J. Pediatr. 2022, 48, 22. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Yang, T.; Wang, M.; Xi, X. Is Body Mass Index Associated with Outcomes of Mechanically Ventilated Adult Patients in Intensive Critical Units? A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0198669. [Google Scholar] [CrossRef] [Green Version]
- Svensson, P.; Hofmann, R.; Häbel, H.; Jernberg, T.; Nordberg, P. Association between Cardiometabolic Disease and Severe COVID-19: A Nationwide Case–Control Study of Patients Requiring Invasive Mechanical Ventilation. BMJ Open 2021, 11, e044486. [Google Scholar] [CrossRef]
- Hegde, S.G.; Dhareshwar, S.; Bandyopadhyay, S.; Kuriyan, R.R.; Idiculla, J.; Ghosh, S.; Kurpad, A.V.; Shivakumar, N. Central Obesity in Low BMI as a Risk Factor for COVID-19 Severity in South Indians. Asia Pac. J. Clin. Nutr. 2022, 31, 142–146. [Google Scholar] [CrossRef]
- Leong, A.; Cole, J.B.; Brenner, L.N.; Meigs, J.B.; Florez, J.C.; Mercader, J.M. Cardiometabolic Risk Factors for COVID-19 Susceptibility and Severity: A Mendelian Randomization Analysis. PLoS Med. 2021, 18, e1003553. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Colón, G.J.; Ratnasiri, K.; Chen, H.; Jiang, S.; Zanley, E.; Rustagi, A.; Verma, R.; Chen, H.; Andrews, J.R.; Mertz, K.D.; et al. SARS-CoV-2 Infects Human Adipose Tissue and Elicits an Inflammatory Response Consistent with Severe COVID-19. bioRxiv 2021. [Google Scholar] [CrossRef]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors Associated with Hospital Admission and Critical Illness among 5279 People with Coronavirus Disease 2019 in New York City: Prospective Cohort Study. Br. Med. J. 2020, 369, m1966. [Google Scholar] [CrossRef] [PubMed]
- Ebinger, J.E.; Achamallah, N.; Ji, H.; Claggett, B.L.; Sun, N.; Botting, P.; Nguyen, T.-T.; Luong, E.; Kim, E.H.; Park, E.; et al. Pre-Existing Traits Associated with COVID-19 Illness Severity. PLoS ONE 2020, 15, e0236240. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Chen, F.; Wang, T.; Luo, F.; Liu, X.; Wu, Q.; He, Q.; Wang, Z.; Liu, Y.; Liu, L.; et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care 2020, 43, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Chiumello, D.; Pozzi, T.; Storti, E.; Caccioppola, A.; Pontiroli, A.E.; Coppola, S. Body Mass Index and Acute Respiratory Distress Severity in Patients with and without SARS-CoV-2 Infection. Br. J. Anaesth. 2020, 125, e376–e377. [Google Scholar] [CrossRef] [PubMed]
- Moriconi, D.; Masi, S.; Rebelos, E.; Virdis, A.; Manca, M.L.; De Marco, S.; Taddei, S.; Nannipieri, M. Obesity Prolongs the Hospital Stay in Patients Affected by COVID-19, and May Impact on SARS-COV-2 Shedding. Obes. Res. Clin. Pract. 2020, 14, 205–209. [Google Scholar] [CrossRef]
- Breland, J.Y.; Wong, M.S.; Steers, W.N.; Yuan, A.H.; Haderlein, T.P.; Washington, D.L. BMI and Risk for Severe COVID-19 Among Veterans Health Administration Patients. Obesity 2021, 29, 825–828. [Google Scholar] [CrossRef]
- Schmidt, M.; Hajage, D.; Demoule, A.; Pham, T.; Combes, A.; Dres, M.; Lebbah, S.; Kimmoun, A.; Mercat, A.; Beduneau, G.; et al. Clinical Characteristics and Day-90 Outcomes of 4244 Critically Ill Adults with COVID-19: A Prospective Cohort Study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef]
- Rodrigues, G.U.; Bueno Campos Canella, P.R.; de Cássia dos Santos, R.; Razolli, D.S. Obesity Contributes to Mortality and Displays Alterations in Calcium, Urea and Hemoglobin Levels in SARS-CoV-2 Infected Individuals. Clin. Nutr. ESPEN 2022, 50, 326–329. [Google Scholar] [CrossRef]
- Du, Y.; Lv, Y.; Zha, W.; Zhou, N.; Hong, X. Association of Body Mass Index (BMI) with Critical COVID-19 and in-Hospital Mortality: A Dose-Response Meta-Analysis. Metabolism 2021, 117, 154373. [Google Scholar] [CrossRef] [PubMed]
- Sacco, V.; Rauch, B.; Gar, C.; Haschka, S.; Potzel, A.L.; Kern-Matschilles, S.; Banning, F.; Benz, I.; Meisel, M.; Seissler, J.; et al. Overweight/Obesity as the Potentially Most Important Lifestyle Factor Associated with Signs of Pneumonia in COVID-19. PLoS ONE 2020, 15, e0237799. [Google Scholar] [CrossRef] [PubMed]
- Lévy, P.; Kohler, M.; McNicholas, W.T.; Barbé, F.; McEvoy, R.D.; Somers, V.K.; Lavie, L.; Pépin, J.L. Obstructive Sleep Apnoea Syndrome. Nat. Rev. Dis. Primers 2015, 1, 15015. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef]
- Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection|Endocrinology|Oxford Academic. Available online: https://academic.oup.com/endo/article/161/11/bqaa154/5900580?login=true (accessed on 16 December 2021).
- Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe Obesity, Increasing Age and Male Sex Are Independently Associated with Worse in-Hospital Outcomes, and Higher in-Hospital Mortality, in a Cohort of Patients with COVID-19 in the Bronx, New York. Metabolism 2020, 108, 154262. [Google Scholar] [CrossRef]
- Sattar, N.; McInnes, I.B.; McMurray, J.J.V. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation 2020, 142, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Campos Mayoral, L.; Matias-Cervantes, C.A.; Pérez-Campos, E.; Romero Díaz, C.; Laguna Barrios, L.Á.; del Socorro Pina Canseco, M.; Martínez Cruz, M.; Pérez-Campos Mayoral, E.; Solórzano Mata, C.J.; Rodal Canales, F.J.; et al. Associations of Dynapenic Obesity and Sarcopenic Obesity with the Risk of Complications in COVID-19. Int. J. Mol. Sci. 2022, 23, 8277. [Google Scholar] [CrossRef]
BMI Categories | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total | Underweight (<18.5) N = 33 (1.9%) | Normal (18.5–24.9) N = 625 (35.3%) | Overweight (25–29.9) N = 767 (43.3%) | Obese Class I (30–34.9) N = 263 (14.9%) | Obese Class II (35–39.9) N = 66 (3.7%) | Obese Class III (≥ 40) N = 16 (0.9%) | |||
Age (years) | Mean (SD) | 36.7 (9.6) | 31.5 (7.6) | 35.0 (9.7) | 37.2 (9.2) | 38.7 (9.7) | 39.0 (9.7) | 43.9 (11.4) | <0.001 |
Gender | Female | 245 (13.8) | 11 (4.5) | 90 (36.7) | 88 (35.9) | 39 (15.9) | 10 (4.1) | 7 (2.9) | 0.002 |
Male | 1525 (86.2) | 22 (1.4) | 535 (35.1) | 679 (44.5) | 224 (14.7) | 56 (3.7) | 9 (0.6) | ||
HTN | No | 1729 (97.7) | 33 (1.9) | 616 (35.6) | 757 (43.8) | 247 (14.3) | 63 (3.6) | 13 (0.8) | <0.001 |
Yes | 41 (2.3) | 0 (0.0) | 9 (22.0) | 10 (24.4) | 16 (39.0) | 3 (7.3) | 3 (7.3) | ||
DM | No | 1722 (97.3) | 33 (1.9) | 616 (35.8) | 751 (43.6) | 250 (14.5) | 60 (3.5) | 12 (0.7) | <0.001 |
Yes | 48 (2.7) | 0 (0.0) | 9 (18.8) | 16 (33.3) | 13 (27.1) | 6 (12.5) | 4 (8.3) | ||
CVS/CKD | No | 1757 (99.3) | 33 (1.9) | 622 (35.4) | 763 (43.4) | 260 (14.8) | 65 (3.7) | 14 (0.8) | 0.013 |
Yes | 13 (0.7) | 0 (0.0) | 3 (23.1) | 4 (30.8) | 3 (23.1) | 1 (7.7) | 2 (15.4) | ||
Race | American Indian/Alaska Native | 8 (0.5) | 0 (0.0) | 3 (37.5) | 4 (50.0) | 1 (12.5) | 0 (0.0) | 0 (0.0) | <0.001 |
Black/African American | 51 (2.9) | 2 (3.9) | 13 (25.5) | 17 (33.3) | 12 (23.5) | 6 (11.8) | 1 (2.0) | ||
East Asians | 117 (6.6) | 4 (3.4) | 41 (35.0) | 56 (47.9) | 13 (11.1) | 2 (1.7) | 1 (0.9) | ||
Middle Eastern | 266 (15.0) | 4 (1.5) | 71 (26.7) | 99 (37.2) | 57 (21.4) | 27 (10.2) | 8 (3.0) | ||
South Asian | 1304 (73.7) | 23 (1.8) | 492 (37.7) | 581 (44.6) | 173 (13.3) | 29 (2.2) | 6 (0.5) | ||
White European | 24 (1.4) | 0 (0.0) | 5 (20.8) | 10 (41.7) | 7 (29.2) | 2 (8.3) | 0 (0.0) |
Risk Factors | COVID-19 Severity | ||
---|---|---|---|
OR (Univariable) | OR (Multivariable) | ||
BMI categories | Normal | - | - |
Underweight | 1.60 (0.09–8.49, p = 0.658) | 2.82 (0.14–17.16, p = 0.349) | |
Overweight | 1.37 (0.67–2.90, p = 0.396) | 1.13 (0.54–2.48, p = 0.745) | |
Obese Class I | 4.20 (2.05–8.98, p < 0.001) | 3.72 (1.73–8.31, p = 0.001) | |
Obese Class II | 3.30 (0.90–9.79, p = 0.044) | 2.65 (0.64–9.07, p = 0.142) | |
Obese Class III | 30.65 (9.21–97.67, p < 0.001) | 21.51 (5.16–84.23, p < 0.001) | |
Age (years) | Mean (SD) | 1.13 (1.10–1.15, p < 0.001) | 1.13 (1.10–1.16, p < 0.001) |
Gender | Female | - | - |
Male | 0.75 (0.40–1.53, p = 0.396) | 0.90 (0.41–2.18, p = 0.808) | |
Race | American Indian/Alaska Native | - | - |
Black/African American | 2,659,050.77 (0.00-NA, p = 0.992) | 1,287,271.01 (0.00-NA, p = 0.991) | |
East Asians | 2,279,186.37 (0.00-NA, p = 0.992) | 3,515,161.02 (0.00-NA, p = 0.990) | |
Middle Eastern | 2,858,742.33 (0.00-NA, p = 0.992) | 1,230,728.79 (0.00-NA, p = 0.991) | |
South Asian | 1,224,073.14 (0.00-NA, p = 0.992) | 1,597,262.47 (0.00-NA, p = 0.991) | |
White European | 1.00 (0.00-Inf, p = 1.000) | 0.42 (0.00-Inf, p = 1.000) |
Risk Factors | Mortality | ||
---|---|---|---|
OR (Univariable) | OR (Multivariable) | ||
BMI categories | Normal | - | - |
Underweight | 0.00 (NA-Inf, p = 0.994) | 0.00 (0.0–Inf, p = 0.997) | |
Overweight | 2.04 (0.44–14.31, p = 0.394) | 1.37 (0.24–7.88, p = 0.728) | |
Obese Class I | 7.27 (1.66–49.86, p = 0.016) | 4.94 (0.92–26.7, p = 0.063) | |
Obese Class II | 0.00 (NA-Inf, p = 0.992) | 0.00 (0.0–Inf, p = 0.996) | |
Obese Class III | 20.77 (0.94–228.64, p = 0.015) | 4.44 (0.24–80.89, p = 0.314) | |
Age (years) | Mean (SD) | 1.17 (1.12–1.24, p < 0.001) | 1.17 (1.1–1.24, p < 0.001) |
Gender | Female | - | - |
Male | 0.59 (0.18–2.60, p = 0.413) | 0.55 (0.1–2.9, p = 0.477) | |
Race | American Indian/Alaska Native | - | - |
Black/African American | 34,878,997.12 (0.00-NA, p = 0.998) | 53,549,043.87 (0.0–Inf, p = 0.999) | |
East Asians | 1.00 (NA-Inf, p = 1.000) | 2.11 (0.00–Inf, p = 1.000) | |
Middle Eastern | 16,123,309.99 (0.00-NA, p = 0.998) | 12,997,425.08 (0.0–Inf, p = 0.999) | |
South Asian | 4,545,401.22 (0.00-NA, p = 0.998) | 17,456,381.76 (0.0–Inf, p = 0.999) | |
White European | 1.00 (NA-Inf, p = 1.000) | 0.34 (0.00–Inf, p = 1.000) |
Risk Factors | ICU Admission | ||
---|---|---|---|
OR (Univariable) | OR (Multivariable) | ||
BMI categories | Normal | - | - |
Underweight | 3.22 (0.17–19.66, p = 0.285) | 5.59 (0.57–54.46, p = 0.138) | |
Overweight | 0.68 (0.19–2.26, p = 0.521) | 0.51 (0.15–1.76, p = 0.288) | |
Obese Class I | 3.66 (1.30–11.00, p = 0.015) | 2.97 (1.00–8.83, p = 0.0496) | |
Obese Class II | 4.91 (1.02–19.10, p = 0.027) | 3.96 (0.82–19.05, p = 0.086) | |
Obese Class III | 0.00 (NA-Inf, p = 0.990) | 0.00 (0.0–Inf, p = 0.992) | |
Age (years) | Mean (SD) | 1.11 (1.08–1.15, p < 0.001) | 1.13 (1.08–1.17, p < 0.001) |
Gender | Female | - | - |
Male | 1.12 (0.38–4.79, p = 0.850) | 0.82 (0.22–3.12, p = 0.772) | |
Race | American Indian/Alaska Native | - | - |
Black/African American | 7,228,049.56 (0.00-NA, p = 0.995) | 3,906,650 (0.00–Inf, p = 0.994) | |
East Asians | 988,451.22 (0.00-NA, p = 0.995) | 1,422,229 (0.00–Inf, p = 0.995) | |
Middle Eastern | 1,739,079.59 (0.00-NA, p = 0.995) | 687,170.6 (0.00–Inf, p = 0.995) | |
South Asian | 1,415,746.51 (0.00-NA, p = 0.995) | 1,756,078 (0.00–Inf, p = 0.994) | |
White European | 1.00 (0.00-Inf, p = 1.000) | 0.43 (0.00–Inf, p = 1.000) |
Risk Factors | Radiological Finding: Pneumonia | ||
---|---|---|---|
OR (Univariable) | OR (Multivariable) | ||
BMI categories | Normal | - | - |
Underweight | 0.50 (0.17–1.23, p = 0.169) | 0.61 (0.20–1.56, p = 0.341) | |
Overweight | 1.57 (1.24–1.98, p < 0.001) | 1.43 (1.12–1.83, p = 0.004) | |
Obese Class I | 1.97 (1.45–2.68, p < 0.001) | 1.66 (1.20–2.31, p = 0.002) | |
Obese Class II | 3.58 (2.11–6.16, p < 0.001) | 3.25 (1.86–5.75, p < 0.001) | |
Obese Class III | 5.54 (1.98–17.80, p = 0.002) | 3.87 (1.30–13.00, p = 0.018) | |
Age (years) | Mean (SD) | 1.07 (1.06–1.09, p < 0.001) | 1.07 (1.06–1.08, p < 0.001) |
Gender | Female | - | - |
Male | 1.14 (0.85–1.55, p = 0.393) | 1.08 (0.77–1.53, p = 0.643) | |
Race | American Indian/Alaska Native | - | - |
Black/African American | 0.95 (0.19–5.28, p = 0.952) | 0.80 (0.15–4.84, p = 0.795) | |
East Asians | 0.98 (0.21–5.20, p = 0.983) | 0.90 (0.18–5.14, p = 0.903) | |
Middle Eastern | 0.84 (0.18–4.32, p = 0.817) | 0.58 (0.12–3.21, p = 0.499) | |
South Asian | 0.71 (0.16–3.63, p = 0.658) | 0.65 (0.13–3.58, p = 0.595) | |
White European | 1.22 (0.22–7.40, p = 0.818) | 0.78 (0.13–5.21, p = 0.789) |
BMI | Median Time to Clearance (Days) | 95% CI (Days) | p-Value | Log-Rank |
---|---|---|---|---|
Normal | 24 | 23–26 | 0.1 | 8.7 |
Underweight | 24 | 21–37 | ||
Overweight | 23 | 22–25 | ||
Obese Class I | 25 | 22–27 | ||
Obese Class II | 24 | 21–32 | ||
Obese Class III | 30 | 20–NA |
BMI | Median Time to Clearance (Days) | 95% CI (Days) | p-Value | Log-Rank |
---|---|---|---|---|
Less than 40 | 24 | 23–25 | 0.1 | 2.4 |
More than 40 | 30 | 20–NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafez, W.; Abdelshakor, M.; Kishk, S.; Gebril, A.; Gador, M.; Osman, S.; Abuelsaoud, H.M.; Abdelrahman, A. Body Mass Index and Clinical Outcomes in Adult COVID-19 Patients of Diverse Ethnicities. Healthcare 2022, 10, 2575. https://doi.org/10.3390/healthcare10122575
Hafez W, Abdelshakor M, Kishk S, Gebril A, Gador M, Osman S, Abuelsaoud HM, Abdelrahman A. Body Mass Index and Clinical Outcomes in Adult COVID-19 Patients of Diverse Ethnicities. Healthcare. 2022; 10(12):2575. https://doi.org/10.3390/healthcare10122575
Chicago/Turabian StyleHafez, Wael, Mahmoud Abdelshakor, Samy Kishk, Amr Gebril, Muneir Gador, Sana Osman, Hesham Mohamed Abuelsaoud, and Ahmed Abdelrahman. 2022. "Body Mass Index and Clinical Outcomes in Adult COVID-19 Patients of Diverse Ethnicities" Healthcare 10, no. 12: 2575. https://doi.org/10.3390/healthcare10122575
APA StyleHafez, W., Abdelshakor, M., Kishk, S., Gebril, A., Gador, M., Osman, S., Abuelsaoud, H. M., & Abdelrahman, A. (2022). Body Mass Index and Clinical Outcomes in Adult COVID-19 Patients of Diverse Ethnicities. Healthcare, 10(12), 2575. https://doi.org/10.3390/healthcare10122575