Are Non-Contact Thermometers an Option in Anaesthesia? A Narrative Review on Thermometry for Perioperative Medicine
Abstract
:1. Introduction
2. Methods
2.1. Body Temperature and Perioperative Monitoring
Monitoring Sites and Influences
2.2. Overview of Thermometry
2.2.1. Common Sensing Unit
2.2.2. Common Clinical Thermometers
3. Standards for Thermometers
4. Perioperative Thermometers vs. COVID-19 Fever Screening IRT
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kellett, J.; Sebat, F. Make vital signs great again—A call for action. Eur. J. Intern. Med. 2017, 45, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Mok, W.Q.; Wang, W.; Liaw, S.Y. Vital signs monitoring to detect patient deterioration: An integrative literature review. Int. J. Nurs. Pract. 2015, 21, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I. Perioperative temperature monitoring. Anesthesiology 2021, 134, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.P.; Freeman, G.; Cheng, M.; Brown, L.; de la Hoz Siegler, H.; Conly, J. Clinical relevance of home monitoring of vital signs and blood glucose levels: A narrative review. Int. J. Technol. Assess. Health Care 2019, 35, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, S.H.; Chen, T.C.; Chien, H.C.; Yang, C.J.; Chen, Y.H. Measurement of body temperature to prevent pandemic COVID-19 in hospitals in Taiwan: Repeated measurement is necessary. J. Hosp. Infect. 2020, 105, 360–361. [Google Scholar] [CrossRef]
- Vilke, G.M.; Brennan, J.J.; Cronin, A.O.; Castillo, E.M. Clinical features of patients with COVID-19: Is temperature screening useful? J. Emerg. Med. 2020, 59, 952–956. [Google Scholar] [CrossRef]
- Frank, S.M.; Nguyen, J.M.; Garcia, C.M.; Barnes, R.A. Temperature monitoring practices during regional anesthesia. Anesth. Analg. 1999, 88, 373–377. [Google Scholar] [CrossRef]
- Sessler, D.I.; Warner, D.S.; Warner, M.A. Temperature monitoring and perioperative thermoregulation. Anesthesiology 2008, 109, 318–338. [Google Scholar] [CrossRef] [Green Version]
- Sessler, D.I. Complications and treatment of mild hypothermia. Anesthesiology 2001, 95, 531–543. [Google Scholar] [CrossRef]
- Gerry, S.; Bonnici, T.; Birks, J.; Kirtley, S.; Virdee, P.S.; Watkinson, P.J.; Collins, G. Early warning scores for detecting deterioration in adult hospital patients: Systematic review and critical appraisal of methodology. BMJ 2020, 369, m1501. [Google Scholar] [CrossRef]
- Bindu, B.; Bindra, A.; Rath, G. Temperature management under general anesthesia: Compulsion or option. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 306. [Google Scholar] [PubMed]
- McSwain, J.R.; Yared, M.; Doty, J.W.; Wilson, S.H. Perioperative hypothermia: Causes, consequences and treatment. World J. Anesthesiol. 2015, 4, 58–65. [Google Scholar] [CrossRef]
- Lee, J.; Lim, H.; Son, K.-G.; Ko, S. Optimal nasopharyngeal temperature probe placement. Anesth. Analg. 2014, 119, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I. Perioperative Temperature Management. Available online: https://www.uptodate.com/contents/perioperative-temperature-management/print (accessed on 27 April 2021).
- Childs, C. Body temperature and clinical thermometry. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 157, pp. 467–482. [Google Scholar]
- Lees, D.; Kim, Y.; Macnamara, T. Noninvasive determination of core temperature during anesthesia. South. Med. J. 1980, 73, 1322–1324. [Google Scholar] [CrossRef]
- Muravchick, S. Deep body thermometry during general anesthesia. Anesthesiology 1983, 58, 271–274. [Google Scholar] [CrossRef]
- Sahin, S.H.; Duran, R.; Sut, N.; Colak, A.; Acunas, B.; Aksu, B. Comparison of temporal artery, nasopharyngeal, and axillary temperature measurement during anesthesia in children. J. Clin. Anesth. 2012, 24, 647–651. [Google Scholar] [CrossRef]
- Eyelade, O.R.; Orimadegun, A.E.; Akinyemi, O.A.; Tongo, O.O.; Akinyinka, O.O. Esophageal, tympanic, rectal, and skin temperatures in children undergoing surgery with general anesthesia. J. Periop. Nurs. 2011, 26, 151–159. [Google Scholar] [CrossRef]
- Carvalho, H.; Najafi, N.; Poelaert, J. Intra-operative temperature monitoring with cutaneous zero-heat-flux-thermometry in comparison with oesophageal temperature: A prospective study in the paediatric population. Ped. Anesth. 2019, 29, 865–871. [Google Scholar] [CrossRef]
- Kimberger, O.; Cohen, D.; Illievich, U.; Lenhardt, R. Temporal artery versus bladder thermometry during perioperative and intensive care unit monitoring. Anesth. Analg. 2007, 105, 1042–1047. [Google Scholar] [CrossRef]
- Suleman, M.-I.; Doufas, A.G.; Akça, O.; Ducharme, M.; Sessler, D.I. Insufficiency in a new temporal-artery thermometer for adult and pediatric patients. Anesth. Analg. 2002, 95, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Chaglla, E.J.S.; Celik, N.; Balachandran, W. Measurement of core body temperature using graphene-inked infrared thermopile sensor. Sensors 2018, 18, 3315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunderlich, B. Thermal analysis. In Encyclopedia of Materials: Science and Technology; Elsevier: Oxford, UK, 2001; pp. 9134–9141. [Google Scholar]
- Chen, W. Thermometry and interpretation of body temperature. Biomed. Eng. Lett. 2019, 9, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Andrew, T. Thermometer. In National Geographic Encyclopedia; Caryl, S., Ed.; National Geographic: Washington, DC, USA; Available online: https://www.nationalgeographic.org/encyclopedia/thermometer/2014 (accessed on 27 April 2021).
- Machin, G.; Simpson, R.; McEvoy, H.C.; Whittam, A. NPL contributions to the standardisation and validation of contemporary medical thermometry methods. Physiol. Meas. 2019, 40, 05TR01. [Google Scholar] [CrossRef] [PubMed]
- Crossley, B. Troubleshoot It: Accuracy of various thermometer types is important to consider during the COVID-19 pandemic. Biomed. Instrum. Technol. 2020, 54, 228–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Chen, A.; Chen, C. Investigation of the impact of infrared sensors on core body temperature monitoring by comparing measurement sites. Sensors 2020, 20, 2885. [Google Scholar] [CrossRef] [PubMed]
- Ostadfar, A. Chapter 8—Real time measurement techniques of biofluids. In Biofluid Mechanics; Ostadfar, A., Ed.; Academic Press: Cambrige, MA, USA, 2016; pp. 295–322. [Google Scholar]
- Yamanoor, N.S.; Yamanoor, S. (Eds.) Low-cost contact thermometry for screening and monitoring during the COVID-19 pandemic. In Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 9–12 September 2020. [Google Scholar] [CrossRef]
- Aw, J. The non-contact handheld cutaneous infra-red thermometer for fever screening during the COVID-19 global emergency. J. Hosp. Inf. 2020, 104, 451. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, A.G.; Selem, E.; Abd El-kader, S.M. Early detection of COVID-19 using a non-contact forehead thermometer. Adv. Intel. Syst. Comput. 2021, 1261, 314–323. [Google Scholar]
- Geijer, H.; Udumyan, R.; Lohse, G.; Nilsagård, Y. Temperature measurements with a temporal scanner: Systematic review and meta-analysis. BMJ Open 2016, 6, e009509. [Google Scholar] [CrossRef] [Green Version]
- Brites, C.D.; Lima, P.P.; Silva, N.J.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. Thermometry at the nanoscale. Nanoscale 2012, 4, 4799–4829. [Google Scholar] [CrossRef] [Green Version]
- Bock, M.; Hohlfeld, U.; Engeln, K.V.; Meier, P.A.; Motsch, J.; Tasman, A.J. The accuracy of a new infrared ear thermometer in patients undergoing cardiac surgery. Can. J. Anesth. 2005, 52, 1083. [Google Scholar] [CrossRef] [Green Version]
- Buoite Stella, A.; Manganotti, P.; Furlanis, G.; Accardo, A.; Ajčević, M. Return to school in the COVID-19 era: Considerations for temperature measurement. J. Med. Eng. Technol. 2020, 44, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ghassemi, P.; Chen, M.; McBride, D.; Casamento, J.P.; Pfefer, T.J.; Wang, Q. Clinical evaluation of fever-screening thermography: Impact of consensus guidelines and facial measurement location. J. Biomed. Opt. 2020, 25, 097002. [Google Scholar] [CrossRef]
- Ring, E.F.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
- Epstein, Y.; Moran, D.S. 44-Extremes of temperature and hydration. In Travel Medicine, 4th ed.; Keystone, J.S., Kozarsky, P.E., Connor, B.A., Nothdurft, H.D., Mendelson, M., Leder, K., Eds.; Elsevier: London, UK, 2019; pp. 407–415. [Google Scholar]
- Peterson, B.K. Chapter 22—Vital signs. In Physical Rehabilitation; Cameron, M.H., Monroe, L.G., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2007; pp. 598–624. [Google Scholar]
- Fletcher, T.; Whittam, A.; Simpson, R.; Machin, G. Comparison of non-contact infrared skin thermometers. J. Med. Eng. Technol. 2018, 42, 65–71. [Google Scholar] [CrossRef]
- Sun, G.; Nakayama, Y.; Dagdanpurev, S.; Abe, S.; Nishimura, H.; Kirimoto, T.; Matsui, T. Remote sensing of multiple vital signs using a CMOS camera-equipped infrared thermography system and its clinical application in rapidly screening patients with suspected infectious diseases. Int. J. Infect. Dis. 2017, 55, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Ryan-Wenger, N.A.; Sims, M.A.; Patton, R.A.; Williamson, J. Selection of the most accurate thermometer devices for clinical practice: Part 1: Meta-analysis of the accuracy of non-core thermometer devices compared to core body temperature. Ped. Nurs. 2018, 44, 116–133. [Google Scholar]
- Sims, M.A.; Patton, R.A.; Williamson, J.; Ryan-Wenger, N.A. Selection of the most accurate thermometer devices for clinical practice: Part 2: Nursing practice and policy change in the use of non-core thermometer devices. Ped. Nurs. 2018, 44, 134–154. [Google Scholar]
- Chan, P.Y.; Tay, A.; Chen, D.; Vogrin, S.; McNeil, J.; Hopper, I. Comparison of cutaneous facial temperature using infrared thermography to standard temperature measurement in the critical care setting. J. Clin. Monit. Comput. 2021, 35, 1–8. [Google Scholar] [CrossRef]
Sensor Unit and Models | Working Mechanics | Calibration Frequency/Traceability | Accuracy * | Core/Peripheral Temperature | Contact (Y/N) | Invasive (Y/N/B) | Robustness | Consumables Used |
---|---|---|---|---|---|---|---|---|
Thermistors | ||||||||
YSI 400 series Foley Catheter Temperature Sensor, DeRoyal©, DeBusk Lane Powell, TN, 37849, USA | Thermistor probe attached to catheter of multiple sizes | Single use, no recalibration | ++++ | Core | Y | B | Sterile single use | One use thermometer probe |
YSI 400 and 700 series, Xylem Inc., Tokyo, Japan | Thermistor probe with multiple tip sizes, materials, and shapes for different sites | Traceable to US National Institute of Standards and Technology (NIST) | ++++ | Core | Y | B | Reusable—ethylene oxide gas sterilisation | Sterilisation materials |
Thermocouples | ||||||||
Thermocouple probes, Harvard Apparatus, MA, Hollistion, USA | Proprietary copper thermocouple wires with multiple tip sizes and shapes for different sites | No recalibration required | +++++ | Core | Y | B | Reusable—gas/cidex sterilisation | Sterilisation materials |
Level 1® Temperature Monitoring Probes, SAN CLEMENTE ICU Medical, Inc. 951 Calle Amanecer San Clemente, 92673, CA, USA | Lead wire thermocouple probe with multiple tip sizes and shapes for different sites | Start-up standardise calibration to one monitoring system required | ++ | Core | Y | B | Reusable and pliable probes for sterilisation between use | Sterilisation materials |
Infrared | ||||||||
Braun ThermoScan® PRO 6000, Welch Allyn, Southborough, MA, Hollistion, USA | Infrared proprietary sensory probe | Annual calibration check suggested | +++ | Core | N | N | 70% isopropyl or ethyl alcohol to clean probe lens window—needs to be maintained for accurate readings | Single-use disposable probe cover |
Omron® TH839S, HsinChu, Taiwan | Infrared thermopile detectors | No stated calibration frequency/traceability found | +++ | Core | N | N | Delicate probes require care when cleaning | Single-use disposable probe cover |
Thermograph | ||||||||
FLIR Elara™ FR-345-EST, FLIR Systems, Inc., Wilsonville, 97070, CA, USA | Infrared thermal imaging microbolometer | Initial calibration on set up with recalibration if set up is disturbed by use or cleaning | + | Peripheral | N | N | Operates best in specific humidity, temperature, and distance to enhance accuracy | No consumables or sterilisation |
InfReC R550series, Nippon Avionics Co., Ltd., Tokyo, Japan | Infrared thermal imaging or isotherm imaging | No stated calibration frequency/traceability found | − | Peripheral | N | N | Quite robust, only need upkeep of electronic accessory components | No consumables or sterilisation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Zundert, A.; Intaprasert, T.; Wiepking, F.; Eley, V. Are Non-Contact Thermometers an Option in Anaesthesia? A Narrative Review on Thermometry for Perioperative Medicine. Healthcare 2022, 10, 219. https://doi.org/10.3390/healthcare10020219
van Zundert A, Intaprasert T, Wiepking F, Eley V. Are Non-Contact Thermometers an Option in Anaesthesia? A Narrative Review on Thermometry for Perioperative Medicine. Healthcare. 2022; 10(2):219. https://doi.org/10.3390/healthcare10020219
Chicago/Turabian Stylevan Zundert, Andre, Tonchanok Intaprasert, Floris Wiepking, and Victoria Eley. 2022. "Are Non-Contact Thermometers an Option in Anaesthesia? A Narrative Review on Thermometry for Perioperative Medicine" Healthcare 10, no. 2: 219. https://doi.org/10.3390/healthcare10020219
APA Stylevan Zundert, A., Intaprasert, T., Wiepking, F., & Eley, V. (2022). Are Non-Contact Thermometers an Option in Anaesthesia? A Narrative Review on Thermometry for Perioperative Medicine. Healthcare, 10(2), 219. https://doi.org/10.3390/healthcare10020219