Cognitive Impairment in Convalescent COVID-19 Patients Undergoing Multidisciplinary Rehabilitation: The Association with the Clinical and Functional Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Main Study Procedures
2.2.1. Psychological Distress and Quality of Life Assessment
- (1)
- Hospital Anxiety and Depression Scale (HADS), consisting of 14 items, seven for the anxiety subscale (HADS-A), and seven for the depression subscale (HADS-D). Each item is scored on a scale ranging from 0 (no symptom) to 3 (severe symptom). Scores ranging from 8–10 indicate doubtful cases, while scores ≥ 11 indicate clinically relevant cases [27]. A cut-off score ≥ 8 can be considered optimal for both sensitivity and specificity for the diagnosis of clinically relevant anxiety and depression [28];
- (2)
- State-Trait Anxiety Inventory-Form Y2 (STAI-Y2) [29], a questionnaire assessing the tendency to react to environmental stimuli with a high level of trait anxiety; it is composed of 20 items to be rated on a 1–4 scale, with higher scores meaning higher levels of anxiety; the cut-off score for the presence of relevant anxiety symptoms is 40;
- (3)
- Impact of Event Scale–Revised (IES-R) [30], a 22-item self-report measure assessing subjective distress caused by traumatic events. Items correspond to 14 of the 17 DSM-IV symptoms of PTSD. Respondents were asked to identify a specific stressful life event and then indicate how much they were distressed or bothered during the past seven days by each “difficulty” listed.
- (4)
- EuroQOL (EQ-5D) [32], evaluating the quality of life of patients with different pathologies according to a continuum of five dimensions (mobility, care person, habitual activities, pain or discomfort, anxiety or depression) and a Visual Analog Scale (VAS) on the perception of one’s state of health on a 20-cm visual analogue scale. Respondents are asked to indicate how they rate their own health state by drawing a line from an anchor box to the point on the VAS which best represents their own health on that day (range 0–100).
2.2.2. Neuropsychological Assessment
- (1)
- Verbal Fluency Test (FAS) [36,37], requiring to orally produce as many words as possible beginning with the letters F, A, and S within 1 min for each phonetic cue; successful performance requires executive control, selective attention, set-shifting, internal response generation, and self-monitoring;
- (2)
- Trail Making Test (TMT) [38,39], assessing attention and executive functions, in which participants are required to connect in ascending order numbers (Part A) or numbers and letters alternately (Part B); performance is expressed as the time (seconds) needed to complete the task; the B-A score (obtained by subtracting Part A time from Part B time) is thought to be related to executive control;
- (3)
- Rey auditory Verbal learning task [40,41], assessing long-term verbal memory. Participants are required to learn a 15-word list repeated five times; performance is assessed by counting the number of words recalled after each presentation (immediate recall), and after a filled 15-min interval (delayed recall);
- (4)
- Corsi block-tapping test [42,43], assessing visuospatial immediate memory. Participants are required to tap the sequence of blocks tapped by the examiner on a wooden tablet on which nine cubes are irregularly placed. The maximum number of blocks tapped in the correct order is about 5–6 for healthy individuals;
- (5)
- Supra-span learning on Corsi’s Test [42], assessing spatial long-term memory. A sequence of eight blocks on the same tablet as before is presented repeatedly up to a maximum of 18 times until participants reach the learning criterion (three consecutive exact repetitions); the total score is computed on the basis of block correctly tapped in the 18 trials;
- (6)
- Frontal Assessment Battery (FAB) [44], assessing the following functions related to frontal lobes: (1) conceptualization and abstract reasoning (similarities test); (2) mental flexibility (verbal fluency test); (3) motor programming and executive control of action (Luria motor sequences); (4) resistance to interference (conflicting instructions); (5) inhibitory control (go–no go test); and (6) environmental autonomy (prehension behavior). The cut-off score of FAB is 12/18.
- (7)
- Montreal Cognitive Assessment (MoCA) [45], a screening test assessing global cognitive functioning and the following cognitive domains: short-term memory recall task (score ranging 0–5), visuospatial abilities (score ranging from 0–4), executive functions (score ranging from 0–4), attention, concentration, and working memory (score ranging from 0–5), language (score ranging from 0–5), abstract reasoning (score ranging from 0–2), orientation to time and place (score ranging from 0–5). Higher scores indicate better cognitive functioning. The cut-off score for this test is 26/30.
2.2.3. Timeline of the Psychological and Neuropsychological Assessment
2.3. Statistical Analysis
2.4. Sample Size
3. Results
3.1. Description of the Sample
3.2. Psychological Assessment
3.3. Neuropsychological Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Partinen, M.; Holzinger, B.; Morin, C.M.; Espie, C.; Chung, F.; Penzel, T.; Benedict, C.; Bolstad, C.J.; Cedernaes, J.; Chan, R.N.Y.; et al. Sleep and daytime problems during the COVID-19 pandemic and effects of coronavirus infection, confinement and financial suffering: A multinational survey using a harmonised questionnaire. BMJ Open 2021, 11, e050672. [Google Scholar] [CrossRef] [PubMed]
- Miskowiak, K.; Johnsen, S.; Sattler, S.; Nielsen, S.; Kunalan, K.; Rungby, J.; Lapperre, T.; Porsberg, C. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021, 46, 39–48. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Huang, Y.-M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.-L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef]
- Ambrosino, P.; Papa, A.; Maniscalco, M.; Di Minno, M.N.D. COVID-19 and functional disability: Current insights and rehabilitation strategies. Postgrad. Med. J. 2020, 97, 469–470. [Google Scholar] [CrossRef]
- Ambrosino, P.; Fuschillo, S.; Papa Di Minno, M.N.D.; Maniscalco, M. Exergaming as a Supportive Tool for Home-Based Rehabili-tation in the COVID-19 Pandemic Era. Games Health J. 2020, 9, 311–313. [Google Scholar] [CrossRef]
- Scarpelli, S.; Nadorff, M.R.; Bjorvatn, B.; Chung, F.; Dauvilliers, Y.; A Espie, C.; Inoue, Y.; Matsui, K.; Merikanto, I.; Morin, C.M.; et al. Nightmares in People with COVID-19: Did Coronavirus Infect Our Dreams? Nat. Sci. Sleep 2022, 14, 93–108. [Google Scholar] [CrossRef]
- De Lorenzo, R.; Conte, C.; Lanzani, C.; Benedetti, F.; Roveri, L.; Mazza, M.G.; Brioni, E.; Giacalone, G.; Canti, V.; Sofia, V.; et al. Residual clinical damage after COVID-19: A retrospective and prospective observational cohort study. PLoS ONE 2020, 15, e0239570. [Google Scholar] [CrossRef]
- Amalakanti, S.; Arepalli, K.V.R.; Jillella, J.P. Cognitive assessment in asymptomatic COVID-19 subjects. VirusDisease 2021, 32, 146–149. [Google Scholar] [CrossRef]
- Rabinovitz, B.; Jaywant, A.; Fridman, C.B. Neuropsychological functioning in severe acute respiratory disorders caused by the coronavirus: Implications for the current COVID-19 pandemic. Clin. Neuropsychol. 2020, 34, 1453–1479. [Google Scholar] [CrossRef] [PubMed]
- Alemanno, F.; Houdayer, E.; Parma, A.; Spina, A.; Del Forno, A.; Scatolini, A.; Angelone, S.; Brugliera, L.; Tettamanti, A.; Beretta, L.; et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS ONE 2021, 16, e0246590. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, C.; Sun, Y.; Huang, W.; Ye, K. Cognitive disorders associated with hospitalization of COVID-19: Results from an observational cohort study. Brain Behav. Immun. 2021, 91, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Dini, M.; Groppo, E.; Rosci, C.; Reitano, M.R.; Bai, F.; Poletti, B.; Brugnera, A.; Silani, V.; Monforte, A.D.; et al. Long-Lasting Cognitive Abnormalities after COVID-19. Brain Sci. 2021, 11, 235. [Google Scholar] [CrossRef]
- Qiu, C.; Winblad, B.; Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005, 4, 487–499. [Google Scholar] [CrossRef]
- Reitz, C.; Tang, M.-X.; Manly, J.; Mayeux, R.; Luchsinger, J. Hypertension and the Risk of Mild Cognitive Impairment. Arch. Neurol. 2007, 64, 1734–1740. [Google Scholar] [CrossRef] [Green Version]
- Palta, P.; Albert, M.S.; Gottesman, R.F. Heart health meets cognitive health: Evidence on the role of blood pressure. Lancet Neurol. 2021, 20, 854–867. [Google Scholar] [CrossRef]
- Woo, M.S.; Malsy, J.; Pöttgen, J.; Zai, S.S.; Ufer, F.; Hadjilaou, A.; Schmiedel, S.; Addo, M.M.; Gerloff, C.; Heesen, C.; et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2020, 2, fcaa205. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef]
- Ortelli, P.; Ferrazzoli, D.; Sebastianelli, L.; Engl, M.; Romanello, R.; Nardone, R.; Bonini, I.; Koch, G.; Saltuari, L.; Quartarone, A.; et al. Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J. Neurol. Sci. 2021, 420, 117271. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, B.C.; Miles, A.; Webb, T.E.; Knopp, P.; Eyres, C.; Fabbri, A.; Humphries, F.; Davis, D. Functional and cognitive outcomes after COVID-19 delirium. Eur. Geriatr. Med. 2020, 11, 857–862. [Google Scholar] [CrossRef]
- Rochester, C.L.; Vogiatzis, I.; Holland, A.E.; Lareau, S.C.; Marciniuk, D.D.; Puhan, M.A.; Spruit, M.A.; Masefield, S.; Casaburi, R.; Clini, E.M. ATS/ERS Task Force on Policy in Pulmonary Rehabilitation. An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing Implementation, Use, and Delivery of Pulmonary Rehabili-tation. Am. J. Respir. Crit. Care Med. 2015, 192, 1373–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gotzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Initiative S: Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Ann. Intern. Med. 2007, 147, W163–W194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laszlo, G. Standardisation of lung function testing: Helpful guidance from the ATS/ERS Task Force. Thorax 2006, 61, 744–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrien, E.; Sheridan, J.; Omalley, K. Dippers and Non-Dippers. Lancet 1988, 2, 397. [Google Scholar] [CrossRef]
- Snaith, R.P. The Hospital Anxiety And Depression Scale. Health Qual Life Outcomes 2003, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale. An updated liter-ature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef]
- Spielberg, C.D.G.R.; Lushene, R.E. Manual for the State-Trait Anxiety Inventory (Form Y); Consulting Psychologist Press: Palo Alto, CA, USA, 1997. [Google Scholar]
- Amendola, L.M.; Galazzi, A.; Zainaghi, I.; Cortinovis, I.; Zolin, A.; Gerritsen, R.T.; Adamini, I.; Lusignani, M.; Laquintana, D. Validation and Analysis of the European Quality Questionnaire in Italian Language. Int. J. Environ. Res. Public Health 2020, 17, 8852. [Google Scholar] [CrossRef]
- Thoresen, S.; Tambs, K.; Hussain, A.; Heir, T.; Johansen, V.A.; Bisson, J.I. Brief measure of posttraumatic stress reactions: Impact of Event Scale-6. Soc. Psychiatry Psychiatr. Epidemiol. 2010, 45, 405–412. [Google Scholar] [CrossRef]
- Balestroni, G.; Bertolotti, G. EuroQol-5D (EQ-5D): An instrument for measuring quality of life. Monaldi Arch. Chest Dis. 2012, 78, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Molina, A.; Roig-Rovira, T.; Enseñat-Cantallops, A.; Sanchez-Carrion, R.; Pico-Azanza, N.; Bernabeu, M.; Tomos, J.M. Neuropsychological profile of persons with anoxic brain injury: Differences regarding physiopathological mechanism. Brain Inj. 2006, 20, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Trollor, J.N.; Smith, E.; Agars, E.; Kuan, S.A.; Baune, B.T.; Campbell, L.; Samaras, K.; Crawford, J.; Lux, O.; Kochan, N.A.; et al. The association between systemic inflammation and cognitive performance in the elderly: The Sydney Memory and Ageing Study. AGE 2011, 34, 1295–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uiterwijk, R.; van Oostenbrugge, R.J.; Huijts, M.; de Leeuw, P.W.; Kroon, A.A.; Staals, J. Total Cerebral Small Vessel Disease MRI Score is Associated with Cognitive Decline in Executive Function in Patients with Hypertension. Front. Aging Neurosci. 2016, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Bagoj, E.; Monaco, M.; Zabberoni, S.; de Rosa, S.; Papantonio, A.M.; Mundi, C.; Caltagirone, C.; Carlesimo, G.A. Standardization and normative data obtained in the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurol. Sci. 2014, 35, 365–372. [Google Scholar] [CrossRef]
- Caltagirone, C.; Gainotti, G.; Carlesimo, G.A.; Parnetti, L. il Gruppo per la standardizzazione della batteria per deterioramento mentale: Batteria per la valutazione del deterioramento mentale (Parte I): Descrizione di uno strumento di diagnosi neuropsicologica. Archivio di Psicologia Neurologia e Psichiatria 1995, 56, 461–470. [Google Scholar]
- Giovagnoli, A.R.; Del Pesce, M.; Mascheroni, S.; Simoncelli, M.; Laiacona, M.; Capitani, E. Trail making test: Normative values from 287 normal adult controls. Neurol. Sci. 1996, 17, 305–309. [Google Scholar] [CrossRef]
- Siciliano, M.; Chiorri, C.; Battini, V.; Sant’Elia, V.; Altieri, M.; Trojano, L.; Santangelo, G. Regression-based normative data and equivalent scores for Trail Making Test (TMT): An updated Italian normative study. Neurol. Sci. 2019, 40, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Rey, A. Memorisation D’une Serie de 15 Mots en 5 Répétition. L’examen Clinique en Psychologie; Presses Universitaires de France: Paris, France, 1958. [Google Scholar]
- Carlesimo, G.A.; Caltagirone, C.; Gainotti, G. The Mental Deterioration Battery: Normative Data, Diagnostic Reliability and Qualitative Analysis of Cognitive Impairment. Eur. Neurol. 1996, 36, 378–384. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Standardizzazione italiana di Test Neuropsicologici. Ital. J. Neurol. Sci. 1987, (Suppl. 8), 1–120. [Google Scholar]
- Piccardi, L.; Bianchini, F.; Argento, O.; de Nigris, A.; Maialetti, A.; Palermo, L.; Guariglia, C. The Walking Corsi Test (WalCT): Standardization of the topographical memory test in an Italian population. Neurol. Sci. 2013, 34, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The frontal assessment battery (FAB): Normative values in an Italian population sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Raimo, S.; Trojano, L.; Siciliano, M.; Cuoco, S.; D’iorio, A.; Santangelo, F.; Abbamonte, L.; Grossi, D. Psychometric properties of the Italian version of the multifactorial memory questionnaire for adults and the elderly. Neurol. Sci. 2016, 37, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Capitani, E.; Laiacona, M. Composite neuropsychological batteries and demographic correction: Standardization based on equivalent scores, with a review of Published Data. J. Clin. Exp. Neuropsychol. 1997, 19, 795–809. [Google Scholar] [CrossRef]
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 1994, 6, 284. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, S.; Cheng, G.; Yang, J.; Li, B.; Xu, K.; Xiao, P.; Li, W.; Rong, S. The Prevalence of Mild Cognitive Impairment among Chinese People: A Meta-Analysis. Neuroepidemiology 2021, 55, 79–91. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Z.; Yuan, Y.; Han, J.; Wang, Z.; Chen, H.; Wang, S.; Wang, Z.; Hu, H.; Zhou, L.; et al. Alteration of Autonomic Nervous System Is Associated With Severity and Outcomes in Patients With COVID-19. Front. Physiol. 2021, 12, 630038. [Google Scholar] [CrossRef]
- Hestad, K.A.; Engedal, K.; Selbæk, G.; Strand, B.H. Blood pressure in dementia, mild cognitive impairment, and subjective cognitive decline related to time of death. Brain Behav. 2021, 11, e02166. [Google Scholar] [CrossRef]
- Zhang, J.; Tecson, K.M.; McCullough, P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev. Cardiovasc. Med. 2020, 21, 315–319. [Google Scholar] [CrossRef]
- Merikanto, I.; Dauvilliers, Y.; Chung, F.; Holzinger, B.; de Gennaro, L.; Wing, Y.K.; Korman, M.; Partinen, M.; Benedict, C.; Bjelajac, A.; et al. Disturbances in sleep, circadian rhythms and daytime functioning in relation to coronavirus infection and Long-COVID—A multinational ICOSS study. J. Sleep Res. 2021, 28, e13542. [Google Scholar] [CrossRef]
Characteristics of the Sample | |
---|---|
Sex (F/M), n (ratio) | 16/47 (1:2.9) |
Age (years) | 59.82 ± 10.78 (39–65) |
Severe pneumonia | 40 (63.4%) |
Duration of hospital stay (days) | 20.17 ± 16.79 (15–90) |
Mechanical ventilation | 54 (85.7%) |
O2 high fluxes | 19 (30.1%) |
Provenance | |
Sub-intensive care unit | 25 (39.7%) |
Intensive Care Unit | 5 (7.9%) |
COVID-19 Unit | 19 (30.2%) |
Home | 14 (22.2%) |
Clinical features at admission | |
PaO2 | 75.09 ± 15.25 (48–100) |
PaCO2 | 36.08 ± 4.06 (25–88) |
FEV1% | 78.88 ± 20.99 (34–119) |
FVC% | 75.59 ± 20.25 (35–113) |
FEV1/FVC | 83.33 ± 6.89 (62–94) |
DLCO% | 14.67 ± 8.02 (25–110) |
DLCO/VA% | 80.46 ± 21.35 (21–109) |
Dippers/Non-Dippers, n | 26/37 |
Corsi Span | Corsi-SSL | TMT | RAVLT-IR | RAVLT-DR | Verbal Fluency | |
---|---|---|---|---|---|---|
‘Pathological’ Scores (ES = 0) | 6 (9.5%) | 14 (22.2%) | 4 (6.3%) | 6 (9.5%) | 10 (15.8%) | 9 (14.2%) |
‘Borderline’ Scores (ES = 1) | 12 (19%) | 8 (12.7%) | 10 (15.8%) | 8 (12.7%) | 6 (9.5%) | 8 (12.7%) |
RCE (n = 28) | NCE (n = 35) | p | |
---|---|---|---|
Sex, (F/M) | 7/21 | 9/26 | 0.948 |
Age | 58.78 (10.61) | 58.78 (11.16) | 0.64 |
Education (years) | 11.46 (3.67) | 12.73 (3.41) | 0.272 |
Disease duration (days) | 51.37 (34.22) | 47.75 (23.54) | 0.739 |
Duration of hospital stay (days) | 25.10 (19.13) | 25.54 (19.38) | 0.71 |
Duration of bed stay (days) | 23.79 (17.96) | 21.97 (19.3) | 0.034 |
D-Dimer (ng/mL) | 832.14 (743.253) | 427.32 (229.62) | 0.037 |
CRP (mg/L) | 10.95 (13.20) | 8.67 (21.18) | 0.128 |
PaO2 (mmHg) | 72.67 (14.97) | 77.53 (15.20) | 0.192 |
PaCO2 (mmHg) | 35.92 (4.72) | 37.74 (9.13) | 0.726 |
FEV1 (% predicted) | 75.42 (22.80) | 81.66 (20.37) | 0.316 |
FVC (% predicted) | 70.47 (24.13) | 78.31 (17.68) | 0.383 |
FEV1/FVC | 83.41 (6.32) | 83.28 (7.28) | 0.752 |
DLCO (% predicted) | 48.45 (19.71) | 63.69 (21.09) | 0.055 |
DLCO/VA (% predicted) | 64.50 (32.40) | 85.78 (13.71) | 0.119 |
Mean daytime SBP (mmHg) | 123.58 (14.04) | 120.7 (14.78) | 0.825 |
Mean daytime DBP (mmHg) | 79.69 (10.03) | 80.03 (10.3) | 0.891 |
Mean nighttime SBP (mmHg) | 120.88 (14.77) | 112.91 (16.5) | 0.062 |
Mean nighttime DBP (mmHg) | 73.85 (9.69) | 73.27 (11.37) | 0.742 |
HADS_Anxiety score | 10.39 (3.5) | 8.25 (2.78) | 0.017 |
HADS_Depression score | 12.61 (4.48) | 11.56 (4.01) | 0.193 |
STAI-Trait score | 40.88 (9.86) | 39.34 (8.66) | 0.281 |
Barthel score | 69.57 (28.78) | 78.06 (22.31) | 0.345 |
EQ-5D Visual Analog Scale | 64.03 (12.68) | 65.37 (18.17) | 0.024 |
RCE | Non-RCE | Totals | Analysis of Frequencies | |
---|---|---|---|---|
Hypoxia | 13 | 18 | 31 | |
Absence of Hypoxia | 15 | 17 | 32 | Chi-square = 0.156; df = 1; p = 0.693 |
Reduced lung function | 17 | 19 | 36 | |
Normal lung function | 11 | 16 | 27 | Chi-square = 0.263; df = 1; p = 0.608 |
Dippers | 7 | 19 | 26 | |
Non-Dippers | 21 | 16 | 37 | Chi-square = 5.504; df = 1; p = 0.01 |
WHO 3 | 6 | 17 | 23 | |
WHO 4 | 22 | 18 | 40 | Chi-square = 4.944; df = 1; p = 0.02 |
PTSD | 17 | 11 | 28 | |
No PTSD | 11 | 24 | 35 | Chi-square = 5.403; df = 1; p = 0.02 |
Cognitive complaints | 19 | 10 | 29 | |
No cognitive complaints | 9 | 25 | 34 | Chi-square = 9.664; df = 1; p = 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretta, P.; Ambrosino, P.; Lanzillo, A.; Marcuccio, L.; Fuschillo, S.; Papa, A.; Santangelo, G.; Trojano, L.; Maniscalco, M. Cognitive Impairment in Convalescent COVID-19 Patients Undergoing Multidisciplinary Rehabilitation: The Association with the Clinical and Functional Status. Healthcare 2022, 10, 480. https://doi.org/10.3390/healthcare10030480
Moretta P, Ambrosino P, Lanzillo A, Marcuccio L, Fuschillo S, Papa A, Santangelo G, Trojano L, Maniscalco M. Cognitive Impairment in Convalescent COVID-19 Patients Undergoing Multidisciplinary Rehabilitation: The Association with the Clinical and Functional Status. Healthcare. 2022; 10(3):480. https://doi.org/10.3390/healthcare10030480
Chicago/Turabian StyleMoretta, Pasquale, Pasquale Ambrosino, Anna Lanzillo, Laura Marcuccio, Salvatore Fuschillo, Antimo Papa, Gabriella Santangelo, Luigi Trojano, and Mauro Maniscalco. 2022. "Cognitive Impairment in Convalescent COVID-19 Patients Undergoing Multidisciplinary Rehabilitation: The Association with the Clinical and Functional Status" Healthcare 10, no. 3: 480. https://doi.org/10.3390/healthcare10030480
APA StyleMoretta, P., Ambrosino, P., Lanzillo, A., Marcuccio, L., Fuschillo, S., Papa, A., Santangelo, G., Trojano, L., & Maniscalco, M. (2022). Cognitive Impairment in Convalescent COVID-19 Patients Undergoing Multidisciplinary Rehabilitation: The Association with the Clinical and Functional Status. Healthcare, 10(3), 480. https://doi.org/10.3390/healthcare10030480