The Association between Physical Activity and Smartphone Addiction in Korean Adolescents: The 16th Korea Youth Risk Behavior Web-Based Survey, 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Independent Variable
2.2.2. Dependent Variable
2.2.3. Confounding Variable
2.3. Statistics
3. Results
3.1. General Characteristics of the Survey Subjects and the Results of Cross-Analysis
3.2. Relationship between Moderate Physical Activity and Smartphone Addiction
3.3. Relationship between Vigorous Physical Activity and Smartphone Addiction
3.4. Relationship between Strength Exercise and Smartphone Addiction
3.5. Relationship between Regular Physical Activity and Smartphone Addiction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Velthoven, M.H.; Powell, J.; Powell, G. Problematic smartphone use: Digital approaches to an emerging public health problem. Digit. Health 2018, 4, 2055207618759167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noë, B.; Turner, L.D.; Linden, D.E.; Allen, S.M.; Winkens, B.; Whitaker, R.M. Identifying indicators of smartphone addiction through user-app interaction. Comput. Hum. Behav. 2019, 99, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Yaya, L.H.; Manolis, C. The invisible addiction: Cell-phone activities and addiction among male and female college students. J. Behav. Addict. 2014, 3, 254–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Science and ICT. 2020 The Survey on Smartphone Overdependence. Available online: https://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=65914&bcIdx=23109&parentSeq=23109 (accessed on 8 March 2022).
- Hwang, K.H.; Yoo, Y.S.; Cho, O.H. Smartphone Overuse and Upper Extremity Pain, Anxiety, Depression, and Interpersonal Relationships among College Students. J. Korea Contents Assoc. 2012, 12, 356–375. [Google Scholar] [CrossRef] [Green Version]
- Huh, M.Y. The Impact of Online Classes on Adolescent’s Internet Use. J. Next-Gener. Converg. Inf. Serv. Technol. 2020, 9, 401–411. [Google Scholar] [CrossRef]
- Ministry of Science and ICT. 2019 The Survey on Smartphone Overdependence. Available online: https://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=65914&bcIdx=21939&parentSeq=21939 (accessed on 8 March 2022).
- Bélanger, M.; Sabiston, C.M.; Barnett, T.A.; O’Loughlin, E.; Ward, S.; Contreras, G.; O’Loughlin, J. Number of years of participation in some, but not all, types of physical activity during adolescence predicts level of physical activity in adulthood: Results from a 13-year study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, J.N.; Leary, S.D.; Joinson, C.; Ness, A.R.; Tomporowski, P.D.; Boyle, J.M.; Reilly, J.J. Associations between objectively measured physical activity and academic attain- ment in adolescents from a UK cohort. Br. J. Sports Med. 2014, 48, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Korea Disease Control and Prevention Agency. 2020 Reports on the Korea Youth Risk Behavior Web-based Survey. Available online: https://www.kdca.co.kr/yhs/ (accessed on 8 March 2022).
- Kong, I.G.; Lee, H.J.; Kim, S.Y.; Sim, S.; Choi, H.G. Physical activity, study sitting time, leisure sitting time, and sleep time are differently associated with obesity in Korean adolescents: A population-based study. Medicine 2015, 94, e1965. [Google Scholar] [CrossRef]
- Werneck, A.O.; Vancampfort, D.; Oyeyemi, A.L.; Stubbs, B.; Silva, D.R. Associations between TV viewing, sitting time, physical activity and insomnia among 100,839 Brazilian adolescents. Psychiatry Res. 2018, 269, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Lepp, A.; Barkley, J.E.; Sanders, G.J.; Rebold, M.; Gates, P. The relationship between cell phone use, physical and sedentary activity, and cardiorespiratory fitness in a sample of U.S. college students. Int. J. Behav. Nutr. Phys. Act. 2013, 21, 79. [Google Scholar] [CrossRef] [Green Version]
- Alaca, N. The impact of internet addiction on depression, physical activity level and trigger point sensitivity in Turkish university students. J. Back Musculoskelet Rehabil. 2020, 33, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Boulos, M.N.; Wheeler, S.; Tavares, C.; Jones, R. How smartphones are changing the face of mobile and participatory healthcare: An overview, with example from eCAALYX. Biomed. Eng. Online 2011, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, M.K.; Kim, G.M.; Jung, H.H.; Park, S.K. The Association between Smartphone Dependence Trends and Body Mass Index & Health Fitness in Adolescents. J. Sport Leis. Studies 2019, 78, 461–469. [Google Scholar]
- Bong, E.J.; Kim, Y.K. Relationship between life stress, depression and smartphone addiction in nursing students: Mediating effects of experiential avoidance. J. Korea Acad.-Ind. Coop. Soc. 2017, 18, 121–129. [Google Scholar]
- Ratey, J.; Hagerman, E. Spark: The Revolutionary New Science of Exercise and the Brain; Little Brown: New York, NY, USA, 2008. [Google Scholar]
- Pinto, A.D.A.; Asante, K.O.; Barbosa, R.M.D.S.P.; Nahas, M.V.; Dias, D.T.; Pelegrini, A. Association between loneliness, physical activity, and participation in physical education among adolescents in Amazonas, Brazil. J. Health Psychol. 2021, 26, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.E.; Kim, J.W.; Jee, Y.S. Relationship between smartphone addiction and physical activity in Chinese international students in Korea. J. Behav. Addict. 2015, 4, 200–205. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, S.; Chun, C.; Park, S.; Khang, Y.H.; Oh, K. Data resource profile: The Korea youth risk behavior web-based survey (KYRBS). Int. J. Epidemiol. 2016, 45, 1076–1076e. [Google Scholar] [CrossRef] [Green Version]
- Jun, W. A Study on Correlation Analysis of Smart Phone Addiction and Age Groups in Korea. Int. J. Adv. Smart Converg. 2020, 9, 106–114. [Google Scholar]
- Chen, B.; Liu, F.; Ding, S.; Ying, X.; Wang, L.; Wen, Y. Gender differences in factors associated with smartphone addiction: A cross- sectional study among medical college students. BMC Psychiatry 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.N.; Kim, H.H. The Relationship of Parent-Child Communication, Loneliness and Interpersonal Problems on Adolescents’ Smartphone Addiction. Youth Facil. Environ. 2019, 17, 27–36. [Google Scholar]
- Lee, S.J. An Analysis on the Mental Health of Adolescent Addicted to Smartphone. J. Youth Welfare 2018, 20, 47–67. [Google Scholar]
- Samaha, M.; Hawi, N.S. Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 2016, 57, 321–325. [Google Scholar] [CrossRef]
- Kim, S.Y.; Han, S.; Park, E.J.; Yoo, H.J.; Park, D.; Suh, S.; Shin, Y.M. The relationship between smartphone overuse and sleep in younger children: A prospective cohort study. J. Clin. Sleep Med. 2020, 16, 1133–1139. [Google Scholar] [CrossRef]
- Coban, D.A. Investigation of the relationship between smartphone addiction and overweight on university students. Ann. Med. Res. 2019, 26, 2172–2176. [Google Scholar] [CrossRef]
- Kim, S.G.; Park, J.; Kim, H.T.; Pan, Z.; Lee, Y.; McIntyre, R.S. The relationship between smartphone addiction and symptoms of depression, anxiety, and attention-deficit/hyperactivity in South Korean adolescents. Ann. Gen. Psychiatry 2019, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De-Sola Gutiérrez, J.; de Fonseca, F.R.; Rubio, G. Cell-phone addiction: A review. Front. Psychiatry 2016, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costigan, S.A.; Barnett, L.; Plotnikoff, R.C.; Lubans, D.R. The health indicators associated with screen-based sedentary behavior among adolescent girls: A systematic review. J. Adoles Health 2013, 52, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syn- drome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [Green Version]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar] [CrossRef]
- Zhu, Z.; Feng, T.; Huang, Y.; Liu, X.; Lei, H.; Li, G.; Deng, D.; Zhang, N.; Huang, W. Excessive physical activity duration may be a risk factor for hypertension in young and middle-aged populations. Medicine 2019, 98, e15378. [Google Scholar] [CrossRef]
- Kohyama, J. An Association between physical activity and sleepiness. Asia Pac. J. Paediatr. Child. Health. 2021, 4, 45–51. [Google Scholar]
Total User (N = 53,534) | χ2 (p-Value) | |||
---|---|---|---|---|
General User (N = 40,130; 74.6%) | Potential Risk User (N = 11,847; 22.5%) | High-Risk User (N = 1557; 2.9%) | ||
Sex | ||||
Male | 21,990 (54.9) | 5131 (44.2) | 566 (36.8) | 570.380 |
Female | 18,140 (45.1) | 6716 (55.8) | 991 (63.2) | <0.001 |
BMI | ||||
<23 | 27,558 (69.2) | 8464 (71.5) | 1126 (72.6) | 28.138 |
23≤ | 12,572 (30.8) | 3383 (28.5) | 431 (27.4) | <0.001 |
School grade | ||||
7th | 7934 (19.6) | 1684 (13.3) | 182 (11.7) | 360.644 |
8th | 7033 (16.4) | 2035 (15.7) | 263 (15.3) | <0.001 |
9th | 6642 (15.0) | 2197 (16.9) | 322 (19.4) | |
10th | 6499 (16.8) | 1975 (17.4) | 213 (14.0) | |
11th | 6255 (16.4) | 2109 (18.9) | 305 (20.4) | |
12th | 5767 (15.8) | 1847 (17.7) | 272 (19.2) | |
Academic achievement | ||||
High | 5337 (13.3) | 1095 (9.1) | 140 (8.9) | 734.485 |
Middle high | 10,246 (25.8) | 2662 (22.5) | 287 (18.7) | <0.001 |
Middle | 12,417 (30.8) | 3460 (29.3) | 364 (23.5) | |
Middle low | 8672 (21.4) | 3197 (27.1) | 418 (27.1) | |
Low | 3458 (8.6) | 1433 (11.9) | 348 (21.8) | |
Sleep satisfaction | ||||
Yes | 13,418 (33.1) | 3995 (22.4) | 768 (20.2) | 578.007 |
No | 31,497 (66.9) | 7852 (77.6) | 789 (79.8) | <0.001 |
Depression | ||||
Yes | 8633 (21.5) | 3995 (33.5) | 768 (49.4) | 1224.416 |
No | 31,497 (78.5) | 7852 (66.5) | 789 (50.6) | <0.001 |
Loneliness | ||||
Yes | 5608 (14.0) | 1672 (14.1) | 220 (14.4) | 0.233 |
No | 34,522 (86.0) | 10,175 (85.9) | 1337 (85.6) | 0.004 |
Stress | ||||
Yes | 12,030 (30.2) | 5086 (42.7) | 929 (59.9) | 1132.303 |
No | 28,100 (69.8) | 6761 (57.3) | 628 (40.1) | <0.001 |
Total User (N = 53,534) | χ2 (p-Value) | |||
---|---|---|---|---|
General User (N = 40,130) | Potential Risk User (N = 11,847) | High-Rik User (N = 1557) | ||
Moderated PA | ||||
Yes | 9062 (21.6) | 1812 (15.0) | 229 (14.0) | 286.256 |
No | 31,068 (78.4) | 10,035 (85.0) | 1328 (86.0) | <0.001 |
Vigorous PA | ||||
Yes | 7951 (18.8) | 1610 (13.3) | 193 (12.0) | 229.563 |
No | 32,179 (81.2) | 10,237 (86.7) | 1364(88.0) | <0.001 |
Strength exercise | ||||
Yes | 15,021 (36.6) | 3281 (27.3) | 371 (23.1) | 442.303 |
No | 25,109 (63.4) | 8566 (72.7) | 1186(76.9) | <0.001 |
Regular PA | ||||
Yes | 17,894 (43.6) | 4059 (33.8) | 467 (29.4) | 454.254 |
No | 22,236 (56.4) | 7788 (66.2) | 1090 (70.6) | <0.001 |
Model 1 | Model 2 | ||||
---|---|---|---|---|---|
Moderated PA | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Potential risk user | Yes | Reference | - | Reference | - |
No | 1.560 (1.547–1.572) | <0.001 | 1.423 (1.411–1.435) | <0.001 | |
High-risk user | Yes | Reference | - | Reference | - |
No | 1.686 (1.651–1.721) | <0.001 | 1.475 (1.444–1.507) | <0.001 |
Model 1 | Model 2 | ||||
---|---|---|---|---|---|
Vigorous PA | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Potential risk user | Yes | Reference | - | Reference | - |
No | 1.513 (1.500–1.526) | <0.001 | 1.379 (1.367–1.391) | <0.001 | |
High-risk user | Yes | Reference | - | Reference | - |
No | 1.702 (1.664–1.740) | <0.001 | 1.484 (1.450–1.518) | <0.001 |
Model 1 | Model 2 | ||||
---|---|---|---|---|---|
Strength Exercise | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Potential risk user | Yes | Reference | - | Reference | - |
No | 1.536 (1.526–1.546) | <0.001 | 1.383 (1.374–1.393) | <0.001 | |
High-risk user | Yes | Reference | - | Reference | - |
No | 1.924 (1.892–1.958) | <0.001 | 1.619 (1.589–1.649) | <0.001 |
Model 1 | Model 2 | ||||
---|---|---|---|---|---|
Regular PA | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Potential risk user | Yes | Reference | - | Reference | - |
No | 1.512 (1.503–1.522) | <0.001 | 1.351 (1.342–1.360) | <0.001 | |
High-risk user | Yes | Reference | - | Reference | - |
No | 1.851 (1.822–1.881) | <0.001 | 1.549 (1.523–1.576) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, K. The Association between Physical Activity and Smartphone Addiction in Korean Adolescents: The 16th Korea Youth Risk Behavior Web-Based Survey, 2020. Healthcare 2022, 10, 702. https://doi.org/10.3390/healthcare10040702
Kim J, Lee K. The Association between Physical Activity and Smartphone Addiction in Korean Adolescents: The 16th Korea Youth Risk Behavior Web-Based Survey, 2020. Healthcare. 2022; 10(4):702. https://doi.org/10.3390/healthcare10040702
Chicago/Turabian StyleKim, Jooyoung, and Kihyuk Lee. 2022. "The Association between Physical Activity and Smartphone Addiction in Korean Adolescents: The 16th Korea Youth Risk Behavior Web-Based Survey, 2020" Healthcare 10, no. 4: 702. https://doi.org/10.3390/healthcare10040702
APA StyleKim, J., & Lee, K. (2022). The Association between Physical Activity and Smartphone Addiction in Korean Adolescents: The 16th Korea Youth Risk Behavior Web-Based Survey, 2020. Healthcare, 10(4), 702. https://doi.org/10.3390/healthcare10040702