Increased Safety Behavior and COVID-19-Related Fear in Adults with Cystic Fibrosis during the Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Propensity Score Matching
2.3. Assessment Instruments
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Emotion and Behavior
3.3. Subjective Risk Perception
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Umakanthan, S.; Senthil, S.; John, S.; Madhavan, M.K.; Das, J.; Patil, S.; Rameshwaram, R.; Cintham, A.; Subramaniam, V.; Yogi, M.; et al. The protective role of statins in COVID-19 patients: A retrospective observational study. Transl. Med. Commun. 2021, 6, 22. [Google Scholar] [CrossRef]
- Bäuerle, A.; Teufel, M.; Musche, V.; Weismüller, B.; Kohler, H.; Hetkamp, M.; Dörrie, N.; Schweda, A.; Skoda, E.M. Increased generalized anxiety, depression and distress during the COVID-19 pandemic: A cross-sectional study in Germany. J. Public Health 2020, 42, 672–678. [Google Scholar] [CrossRef]
- Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef]
- Robert Koch Institut. Informationen und Hilfestellungen für Personen mit Einem höheren Risiko für Einen Schweren COVID-19-Krankheitsverlauf. Available online: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Risikogruppen.HTML (accessed on 3 November 2020).
- Kerem, E.; Reisman, J.; Corey, M.; Canny, G.J.; Levison, H. Prediction of mortality in patients with cystic fibrosis. N. Engl. J. Med. 1992, 326, 1187–1191. [Google Scholar] [CrossRef]
- Deutsches Mukoviszidose-Register. Available online: https://www.muko.info/angebote/qualitaetsmanagement/register (accessed on 19 January 2022).
- Saint-Criq, V.; Gray, M.A. Role of CFTR in epithelial physiology. Cell. Mol. Life Sci. 2017, 74, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Mathew, H.R.; Choi, M.Y.; Parkins, M.D.; Fritzler, M.J. Systematic review: Cystic fibrosis in the SARS-CoV-2/COVID-19 pandemic. BMC Pulm. Med. 2021, 21, 173. [Google Scholar] [CrossRef]
- Bundesverband für Cystische Fibrose—Mukoviszidose e.V. FAQs zum Coronavirus und Mukoviszidose. Available online: https://www.muko.info/faqs-zum-coronavirus#c9329 (accessed on 2 November 2020).
- Kohler, H.; Bäuerle, A.; Schweda, A.; Weismüller, B.; Fink, M.; Musche, V.; Robitzsch, A.; Pfeiffer, C.; Benecke, A.V.; Dörrie, N.; et al. Increased COVID-19-related fear and subjective risk perception regarding COVID-19 affects behavior in individuals with internal high-risk diseases. J. Prim. Care Community Health 2021, 12, 2150132721996898. [Google Scholar] [CrossRef]
- Radtke, T.; Haile, S.R.; Dressel, H.; Benden, C. Recommended shielding against COVID-19 impacts physical activity levels in adults with cystic fibrosis. J. Cyst. Fibros. 2020, 19, 875–879. [Google Scholar] [CrossRef]
- Ciprandi, R.; Bonati, M.; Campi, R.; Pescini, R.; Castellani, C. Psychological distress in adults with and without cystic fibrosis during the COVID-19 lockdown. J. Cyst. Fibros. 2021, 20, 198–204. [Google Scholar] [CrossRef]
- Musche, V.; Bäuerle, A.; Steinbach, J.; Schweda, A.; Hetkamp, M.; Weismüller, B.; Kohler, H.; Beckmann, M.; Herrmann, K.; Tewes, M.; et al. COVID-19-Related Fear and Health-Related Safety Behavior in Oncological Patients. Front. Psychol. 2020, 11, 1984. [Google Scholar] [CrossRef]
- Musche, V.; Kohler, H.; Bäuerle, A.; Schweda, A.; Weismüller, B.; Fink, M.; Schadendorf, T.; Robitzsch, A.; Dörrie, N.; Tan, S.; et al. COVID-19-Related Fear, Risk Perception, and Safety Behavior in Individuals with Diabetes. Healthcare 2021, 9, 480. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Ma, F.; Li, K.X. The psychological causes of panic buying following a health crisis. Int. J. Environ. Res. Public Health 2020, 17, 3513. [Google Scholar] [CrossRef] [PubMed]
- Bäuerle, A.; Musche, V.; Schmidt, K.; Schweda, A.; Fink, M.; Weismüller, B.; Kohler, H.; Herrmann, K.; Tewes, M.; Schadendorf, D.; et al. Mental Health Burden of German Cancer Patients before and after the Outbreak of COVID-19: Predictors of Mental Health Impairment. Int. J. Environ. Res. Public Health 2021, 18, 2318. [Google Scholar] [CrossRef]
- Lee, J.; Little, T.D. A practical guide to propensity score analysis for applied clinical research. Behav. Res. 2017, 98, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Thoemmes, F. Propensity Score Matching in SPSS. 2012. Available online: http://arxiv.org/pdf/1201.6385v1 (accessed on 8 September 2021).
- Mehnert, A.; Müller, D.; Lehmann, C.; Koch, U. Die deutsche Version des NCCN Distress-Thermometers. Z. Psychiatr. Psychol. Psychother. 2006, 54, 213–223. [Google Scholar] [CrossRef]
- Löwe, B.; Decker, O.; Muller, S.; Brahler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med. Care 2008, 46, 266–274. [Google Scholar] [CrossRef]
- Löwe, B.; Kroenke, K.; Grafe, K. Detecting and monitoring depression with a two-item questionnaire (PHQ-2). J. Psychosom. Res. 2005, 58, 163–171. [Google Scholar] [CrossRef]
- Stuart, E.A.; Cole, S.R.; Bradshaw, C.P.; Leaf, P.J. The use of propensity scores to assess the generalizability of results from randomized trials. J. R. Stat. Soc. Ser. A Stat. Soc. 2001, 174, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Cliff, N. Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol. Bull. 1993, 114, 494. [Google Scholar] [CrossRef]
- Romano, J.; Kromrey, J.D.; Coraggio, J.; Skowronek, J.; Devine, L. Exploring methods for evaluating group differences on the NSSE and other surveys: Are the t-test and Cohen’sd indices the most appropriate choices. In Proceedings of the Annual Meeting of the Southern Association for Institutional Research, Arlington, VA, USA, 14–17 October 2006; pp. 1–51. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Ahorsu, D.K.; Lin, C.-Y.; Imani, V.; Saffari, M.; Griffiths, M.D.; Pakpour, A.H. The fear of COVID-19 scale: Development and initial validation. Int. J. Ment. Health Addict. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, C.A.; Satchell, L.P.; Fido, D.; Latzman, R.D. Functional fear predicts public health compliance in the COVID-19 pandemic. Int. J. Ment. Health Addict. 2021, 19, 1875–1888. [Google Scholar] [CrossRef] [PubMed]
- Pakpour, A.H.; Griffiths, M.D. The fear of COVID-19 and its role in preventive behaviors. J. Concurr. Disord. 2020, 2, 58–63. [Google Scholar] [CrossRef]
- Hetkamp, M.; Schweda, A.; Bäuerle, A.; Weismüller, B.; Kohler, H.; Musche, V.; Dörrie, N.; Schobel, C.; Teufel, M.; Skoda, E.M. Sleep disturbances, fear, and generalized anxiety during the COVID-19 shut down phase in Germany: Relation to infection rates, deaths, and German stock index DAX. Sleep Med. 2020, 75, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Prati, G.; Mancini, A.D. The psychological impact of COVID-19 pandemic lockdowns: A review and meta-analysis of longitudinal studies and natural experiments. Psychol. Med. 2021, 51, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.; Riedel-Heller, S.; Zuercher, S. Mental health problems in the general population during and after the first lockdown phase due to the SARS-Cov-2 pandemic: Rapid review of multi-wave studies. Epidemiol. Psychiatr. Sci. 2021, 30, 1–17. [Google Scholar] [CrossRef]
- Robinson, E.; Sutin, A.R.; Daly, M.; Jones, A. A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in 2020. J. Affect. Disord. 2022, 296, 567–576. [Google Scholar] [CrossRef]
- Bäuerle, A.; Jahre, L.; Teufel, M.; Jansen, C.; Musche, V.; Schweda, A.; Fink, M.; Dinse, H.; Weismüller, B.; Dörrie, N.; et al. Evaluation of the E-Mental Health Mindfulness-Based and Skills-Based "CoPE It" Intervention to Reduce Psychological Distress in Times of COVID-19: Results of a Bicentre Longitudinal Study. Front. Psychiatry 2021, 12, 768132. [Google Scholar] [CrossRef]
- Laufer, A.; Shechory Bitton, M. Gender differences in the reaction to COVID-19. Women Health 2021, 61, 800–810. [Google Scholar] [CrossRef]
- Weismüller, B.; Schweda, A.; Dörrie, N.; Musche, V.; Fink, M.; Kohler, H.; Skoda, E.-M.; Teufel, M.; Bäuerle, A. Different correlates of COVID-19-related adherent and dysfunctional safety behavior. Front. Public Health 2021, 8, 1028. [Google Scholar] [CrossRef]
People with CF | Healthy Controls | ||||
---|---|---|---|---|---|
n | % | n | % | p | |
Sex | 1 | ||||
Female | 59 | 85.5 | 60 | 87.0 | |
Male | 10 | 14.5 | 9 | 13.0 | |
Age | 0.984 | ||||
18–24 years | 11 | 15.9 | 9 | 13.0 | |
25–34 years | 22 | 31.9 | 25 | 36.2 | |
35–44 years | 20 | 29.0 | 21 | 30.4 | |
45–54 years | 11 | 15.9 | 9 | 13.0 | |
55–64 years | 4 | 5.8 | 4 | 5.8 | |
65–74 years | 1 | 1.4 | 1 | 1.4 | |
Marital status | 0.935 | ||||
Single | 20 | 29.0 | 20 | 29.0 | |
Married | 25 | 36.2 | 26 | 37.7 | |
In a relationship | 17 | 24.6 | 17 | 24.6 | |
Divorced/separated | 4 | 5.8 | 2 | 2.9 | |
Others | 3 | 4.3 | 4 | 5.8 | |
Educational level | 0.959 | ||||
University education | 21 | 30.4 | 22 | 31.9 | |
Higher education entrance qualification | 22 | 31.9 | 24 | 34.8 | |
Intermediate secondary education | 18 | 26.1 | 17 | 24.6 | |
Lower secondary education | 3 | 4.3 | 3 | 4.3 | |
Others | 5 | 7.2 | 3 | 4.3 | |
City size | 0.995 | ||||
100,000 residents | 18 | 26.1 | 18 | 26.1 | |
20,000 residents | 20 | 29.0 | 20 | 29.0 | |
5000 residents | 10 | 14.5 | 11 | 15.9 | |
<5000 residents | 21 | 30.4 | 20 | 29.0 | |
Mental disorders | 1 | ||||
yes | 14 | 20.3 | 13 | 18.8 | |
no | 55 | 79.7 | 56 | 81.2 | |
Total | 69 | 100 | 69 | 100 |
People with CF (n = 69) | Healthy Controls (n = 69) | ||||||
---|---|---|---|---|---|---|---|
M (SD) | Median (IQR) | M (SD) | Median (IQR) | W | p | Cliff’sδ | |
Distress | 5.38 (2.79) | 6 (5) | 5.55 (2.89) | 6 (5) | 2481.0 | 0.669 | 0.042 |
Generalized anxiety symptoms | 6.0 (4.00) | 5 (5) | 7.26 (5.86) | 5 (6) | 2515.5 | 0.565 | 0.057 |
Depressive symptoms | 1.52 (1.39) | 2 (2) | 2.03 (1.95) | 2 (3) | 2632.5 | 0.268 | 0.106 |
COVID-19-related fear | 4.91 (1.82) | 5 (2) | 4.22 (1.90) | 5 (3) | 1872.0 | 0.028 * | −0.214 |
Subjective level of information | 6.01 (0.76) | 6 (1.33) | 5.80 (1.0) | 6 (1) | 2091.5 | 0.213 | −0.121 |
ASB | 6.28 (0.97) | 6.75 (1) | 5.48 (1.58) | 6 (2) | 1630.0 | 0.001 ** | −0.315 |
DSB | 3.46 (1.48) | 3.67 (2.33) | 2.52 (1.5) | 2 (1.67) | 1498.5 | <0.001 ** | −0.371 |
Risk perception | |||||||
Infection with COVID-19 | 47.94 (24.88) | 50 (35) | 51.09 (27.57) | 50 (40) | 2546.0 | 0.48 | 0.07 |
Suffering from symptoms | 74.59 (25.45) | 80 (49) | 46.93 (22.55) | 50 (30) | 954.5 | <0.001 ** | −0.599 |
Having a severe course | 58.9 (27.77) | 50 (30) | 24.06 (20.42) | 20 (32) | 806.5 | <0.001 ** | −0.661 |
Dying of COVID-19 | 36.33 (31.07) | 35 (49) | 9.84 (14.24) | 3 (8) | 1079.0 | <0.001 ** | −0.547 |
Risk that others contract COVID-19 | 63.43 (28.56) | 70 (36) | 63.68 (31.22) | 70 (40) | 2440.5 | 0.799 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benecke, A.-V.; Schmidt, K.L.; Dinse, H.; Schweda, A.; Jahre, L.; Fink, M.; Weismüller, B.; Dörrie, N.; Welsner, M.; Skoda, E.-M.; et al. Increased Safety Behavior and COVID-19-Related Fear in Adults with Cystic Fibrosis during the Pandemic. Healthcare 2022, 10, 858. https://doi.org/10.3390/healthcare10050858
Benecke A-V, Schmidt KL, Dinse H, Schweda A, Jahre L, Fink M, Weismüller B, Dörrie N, Welsner M, Skoda E-M, et al. Increased Safety Behavior and COVID-19-Related Fear in Adults with Cystic Fibrosis during the Pandemic. Healthcare. 2022; 10(5):858. https://doi.org/10.3390/healthcare10050858
Chicago/Turabian StyleBenecke, Anke-Verena, Kira Leandra Schmidt, Hannah Dinse, Adam Schweda, Lisa Jahre, Madeleine Fink, Benjamin Weismüller, Nora Dörrie, Matthias Welsner, Eva-Maria Skoda, and et al. 2022. "Increased Safety Behavior and COVID-19-Related Fear in Adults with Cystic Fibrosis during the Pandemic" Healthcare 10, no. 5: 858. https://doi.org/10.3390/healthcare10050858
APA StyleBenecke, A. -V., Schmidt, K. L., Dinse, H., Schweda, A., Jahre, L., Fink, M., Weismüller, B., Dörrie, N., Welsner, M., Skoda, E. -M., Bäuerle, A., Musche, V., & Teufel, M. (2022). Increased Safety Behavior and COVID-19-Related Fear in Adults with Cystic Fibrosis during the Pandemic. Healthcare, 10(5), 858. https://doi.org/10.3390/healthcare10050858