Time to Treatment Intensification to Reduce Diabetes-Related Complications: A Post Hoc Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Participants
2.3. Data Collection
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association between Time to Treatment Intensification and Diabetes-Related Complications
3.3. Effect of Treatment Intensification on HbA1c Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lebeau, J.-P.; Cadwallader, J.-S.; Aubin-Auger, I.; Mercier, A.; Pasquet, T.; Rusch, E.; Hendrickx, K.; Vermeire, E. The concept and definition of therapeutic inertia in hypertension in primary care: A qualitative systematic review. BMC Fam. Pract. 2014, 15, 130. [Google Scholar] [CrossRef] [PubMed]
- Reach, G.; Pechtner, V.; Gentilella, R.; Corcos, A.; Ceriello, A. Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus. Diabetes Metab. 2017, 43, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Meredith, A.H.; Buatois, E.M.; Krenz, J.R.; Walroth, T.; Shenk, M.; Triboletti, J.S.; Pence, L.; Gonzalvo, J.D. Assessment of clinical inertia in people with diabetes within primary care. J. Eval. Clin. Pract. 2021, 27, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Pantalone, K.M.; Misra-Hebert, A.D.; Hobbs, T.M.; Ji, X.; Kong, S.X.; Milinovich, A.; Weng, W.; Bauman, J.; Ganguly, R.; Burguera, B.; et al. Clinical Inertia in type 2 diabetes management: Evidence from a large, real-world data set. Diabetes Care 2018, 41, e113–e114. [Google Scholar] [CrossRef]
- O’Connor, P.J.; Sperl-Hillen, J.A.M.; Johnson, P.E.; Rush, W.A.; Biltz, G. Advances in Patient Safety Clinical Inertia and Outpatient Medical Errors. In Advances in Patient Safety: From Research to Implementation (Volume 2: Concepts and Methodology); Henriksen, K., Battles, J.B., Marks, E.S., Lewin, D.I., Eds.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2005. [Google Scholar]
- Khunti, K.; Davies, M.J. Clinical inertia-Time to reappraise the terminology? Prim. Care Diabetes 2017, 11, 105–106. [Google Scholar] [CrossRef]
- Aujoulat, I.; Jacquemin, P.; Rietzschel, E.; Scheen, A.; Trefois, P.; Wens, J.; Darras, E.; Hermans, M.P. Factors associated with clinical inertia: An integrative review. Adv. Med. Educ. Pract. 2014, 5, 141–147. [Google Scholar] [CrossRef]
- Veettil, R. Understanding Clinical Inertia in Diabetes. J. Soc. Health Diabetes 2019, 7, 77–80. [Google Scholar] [CrossRef]
- Lin, J.; Zhou, S.; Wei, W.; Pan, C.; Lingohr-Smith, M.; Levin, P. Does clinical inertia vary by personalized a1c goal? A study of predictors and prevalence of clinical inertia in a U.S. managed-care setting. Endocr. Pract. 2016, 22, 151–161. [Google Scholar] [CrossRef]
- Kaewbut, P.; Kosachunhanun, N.; Phrommintikul, A.; Chinwong, D.; Hall, J.; Chinwong, S. An observational study of clinical inertia among patients with type 2 diabetes mellitus in a tertiary care hospital. Arch. Med. Sci. 2020. [Google Scholar] [CrossRef]
- Osataphan, S.; Chalermchai, T.; Ngaosuwan, K. Clinical inertia causing new or progression of diabetic retinopathy in type 2 diabetes: A retrospective cohort study. J. Diabetes 2017, 9, 267–274. [Google Scholar] [CrossRef]
- Pholdee, L.; Vejakama, P.; Kunawaradisai, N.; Watcharathanakij, S. Clinical inertia in type 2 diabetic patients in community hospitals in Ubon Ratchathani. TJPP 2020, 12, 128–139. [Google Scholar]
- Blonde, L.; Aschner, P.; Bailey, C.; Bailey, C.; Ji, L.; Leiter, L.A.; Matthaei, S.; Global Partnership for Effective Diabetes Management. Gaps and barriers in the control of blood glucose in people with type 2 diabetes. Diabetes Vasc. Dis. Res. 2017, 14, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.A. Breaking down patient and physician barriers to optimize glycemic control in type 2 diabetes. Am. J. Med. 2013, 126, S38–S48. [Google Scholar] [CrossRef] [PubMed]
- Ziemer, D.C.; Miller, C.D.; Rhee, M.K.; Doyle, J.P.; Watkins, C., Jr.; Cook, C.B.; Gallina, D.L.; El-Kebbi, I.M.; Barnes, C.S.; Dunbar, V.G.; et al. Clinical inertia contributes to poor diabetes control in a primary care setting. Diabetes Educ. 2005, 31, 564–571. [Google Scholar] [CrossRef]
- Cucinotta, D.; Nicolucci, A.; Giandalia, A.; Lucisano, G.; Manicardi, V.; Mannino, D.; Rossi, M.C.; Russo, G.T.; Di Bartolo, P. Temporal trends in intensification of glucose-lowering therapy for type 2 diabetes in Italy: Data from the AMD Annals initiative and their impact on clinical inertia. Diabetes Res. Clin. Pract. 2021, 181, 109096. [Google Scholar] [CrossRef]
- Kaewbut, P.; Kosachunhanun, N.; Phrommintikul, A.; Chinwong, D.; Hall, J.J.; Chinwong, S. Effect of Clinical Inertia on Diabetes Complications among Individuals with Type 2 Diabetes: A Retrospective Cohort Study. Medicina 2021, 58, 63. [Google Scholar] [CrossRef]
- Paul, S.K.; Klein, K.; Thorsted, B.L.; Wolden, M.L.; Khunti, K. Delay in treatment intensification increases the risks of cardiovascular events in patients with type 2 diabetes. Cardiovasc. Diabetol. 2015, 14, 100. [Google Scholar] [CrossRef]
- Folse, H.J.; Mukherjee, J.; Sheehan, J.J.; Ward, A.J.; Pelkey, R.L.; Dinh, T.A.; Qin, L.; Kim, J. Delays in treatment intensification with oral antidiabetic drugs and risk of microvascular and macrovascular events in patients with poor glycaemic control: An individual patient simulation study. Diabetes Obes. Metab. 2017, 19, 1006–1013. [Google Scholar] [CrossRef]
- Association, A.D. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin. Diabetes 2022, 40, 10–38. [Google Scholar] [CrossRef]
- Diabetes Association of Thailand; The Endocrine Society of Thailand; Department of Medical Services; National Health Security Office Thailand. Clinical Practice Guideline for Diabetes 2017; Romyen Media Printing: Pathum Thani, Thailand, 2017; pp. 21–137. [Google Scholar]
- Khunti, K.; Wolden, M.L.; Thorsted, B.L.; Andersen, M.; Davies, M.J. Clinical inertia in people with type 2 diabetes: A retrospective cohort study of more than 80,000 people. Diabetes Care 2013, 36, 3411–3417. [Google Scholar] [CrossRef]
- Maegawa, H.; Ishigaki, Y.; Langer, J.; Saotome-Nakamura, A.; Andersen, M. Clinical inertia in patients with type 2 diabetes treated with oral antidiabetic drugs: Results from a Japanese cohort study (JDDM53). J. Diabetes Investig. 2021, 12, 374–381. [Google Scholar] [CrossRef]
- Neugebauer, R.; Fireman, B.; Roy, J.A.; O’Connor, P.J. Impact of specific glucose-control strategies on microvascular and macrovascular outcomes in 58,000 adults with type 2 diabetes. Diabetes Care 2013, 36, 3510–3516. [Google Scholar] [CrossRef] [PubMed]
- The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, F.M.; Abraira, C.; Anderson, R.J.; Byington, R.P.; Chalmers, J.P.; Duckworth, W.C.; Evans, G.W.; Gerstein, H.C.; Holman, R.R.; Moritz, T.E.; et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009, 52, 2288–2298. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Seshasai, S.R.; Wijesuriya, S.; Sivakumaran, R.; Nethercott, S.; Preiss, D.; Erqou, S.; Sattar, N. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: A meta-analysis of randomised controlled trials. Lancet 2009, 373, 1765–1772. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- The VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Iradukunda, A.; Kembabazi, S.; Ssewante, N.; Kazibwe, A.; Kabakambira, J.D. Diabetic Complications and Associated Factors: A 5-Year Facility-Based Retrospective Study at a Tertiary Hospital in Rwanda. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 4801–4810. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All (n = 686) | No Delayed Treatment Intensification (n = 521) | Intensification within 6 Months (n = 53) | Intensification after 6 Months (n = 112) | p-Value |
---|---|---|---|---|---|
Sex | |||||
Female (%) | 297 (43.3) | 214 (41.1) | 26 (49.1) | 57 (50.9) | 0.107 |
Male (%) | 389 (56.7) | 307 (58.9) | 27 (50.9) | 55 (49.1) | |
Age (Mean ± SD) | 53.6 ± 6.0 | 53.6 ± 6.1 | 52.1 ± 6.2 | 54.3 ± 5.8 | 0.092 |
Duration of T2DM (Median (IQR)) | 5 (3–6) | 4 (3–6) | 4 (2.5–6) | 5 (3–6) | 0.386 |
Current drinker (%) | 71 (10.4) | 53 (10.2) | 2 (3.8) | 16 (14.3) | 0.120 |
Current smoker (%) | 31 (4.5) | 25 (4.8) | 1 (1.9) | 5 (4.5) | 0.763 |
Hypertension (%) | 487 (71.0) | 372 (71.4) | 42 (79.2) | 73 (65.2) | 0.166 |
Dyslipidemia (%) | 415 (60.5) | 309 (59.3) | 36 (67.9) | 70 (62.5) | 0.441 |
Charlson comorbidity index | |||||
1 (%) | 539 (78.6) | 403 (77.4) | 47 (88.7) | 89 (79.5) | 0.154 |
2 (%) | 147 (21.4) | 118 (22.6) | 6 (11.3) | 23 (20.5) | |
Diabetic nephropathy (%) | 69 (10.1) | 56 (10.8) | 4 (7.6) | 9 (8.0) | 0.659 |
Diabetic retinopathy (%) | 53 (7.7) | 49 (9.4) * | 2 (3.8) | 2 (1.8) * | 0.007 |
Cardiovascular disease (%) | 53 (7.7) | 35 (6.7) | 3 (5.7) | 15 (13.4) | 0.065 |
Baseline HbA1c (Median(IQR)) | 7.9 (7.3–9.0) | 8.0 (7.4–9.1) * | 7.7 (7.3–8.5) | 7.6 (7.3–8.6) * | 0.009 |
Lipid profile | |||||
Total cholesterol (Mean ± SD) | 178.4 ± 50.0 | 179.2 ± 52.2 | 170.5 ± 36.4 | 177.6 ± 44.3 | 0.730 |
Triglyceride (Median(IQR)) | 118 (81–171) | 116 (79–171) | 121.5 (81–172) | 118 (84–164) | 0.907 |
HDL-c (Median(IQR)) | 45 (39–54) | 46 (40–55) | 43.5 (45–49) | 44 (39–49) | 0.066 |
LDL-c (Mean ± SD) | 104.2 ± 36.1 | 103.5 ± 36.5 | 101.5 ± 35.5 | 108.7 ± 34.9 | 0.572 |
Blood pressure | |||||
Systolic (Median (IQR)) | 134 (124–146) | 133 (123–146) | 135 (130–144) | 135 (124–145) | 0.640 |
Diastolic (Mean ± SD) | 78.3 ± 10.0 | 78.1 ± 10.1 | 80.1 ± 9.5 | 78.4 ± 9.7 | 0.393 |
eGFR (Mean ± SD) | 87.7 ± 32.4 | 86.3 ± 32.9 | 99.5 ± 27.6 | 86.3 ± 32.9 | 0.085 |
BMI (Mean ± SD) | 26.9 ± 4.7 | 26.7 ± 4.6 | 26.8 ± 4.2 | 27.9 ± 5.4 | 0.085 |
The use of insulin (%) | 97 (14.1) | 81 (15.6) | 4 (7.6) | 12 (10.7) | 0.166 |
All (n = 686) | No Delayed Treatment Intensification (n = 521) | Intensification within 6 Months (n = 53) | Intensification after 6 Months (n = 112) | |
---|---|---|---|---|
Diabetes-related complications | 278 (40.5) | 211 (40.5) | 25 (47.2) | 42 (37.5) |
A composite of macrovascular complications | 41 (6.0) | 30 (5.8) | 5 (9.4) | 6 (5.4) |
Myocardial infarction | 11 (1.6) | 10 (1.9) | 0 (0.0) | 1 (0.9) |
Stroke | 18 (2.6) | 12 (2.3) | 4 (7.6) | 2 (1.8) |
Heart failure | 20 (2.9) | 16 (3.1) | 1 (1.9) | 3 (2.7) |
A composite of microvascular complications | 259 (37.8) | 195 (37.4) | 24 (45.3) | 40 (35.7) |
Diabetic nephropathy | 121 (17.6) | 86 (16.5) | 16 (30.2) | 19 (17.0) |
Diabetic retinopathy | 182 (26.5) | 142 (27.3) | 13 (24.5) | 27 (24.1) |
Intensification within 6 Months | Intensification after 6 Months | |||
---|---|---|---|---|
HR (95%CI) | Adjusted HR (95%CI) | HR (95%CI) | Adjusted HR (95%CI) | |
Diabetes-related complications | 1.22 (0.81–1.85) | 1.39 (0.90–2.15) | 0.91 (0.66–1.27) | 0.97 (0.70–1.36) |
A composite of macrovascular complications | 1.62 (0.63–4.17) | 1.93 (0.66–5.66) | 0.96 (0.40–2.31) | 1.01 (0.41–2.46) |
Myocardial infarction | – | – | 0.50 (0.06–3.92) | 0.66 (0.08–5.38) |
Stroke | 3.15 (1.02–9.78) | 2.32 (0.62–8.64) | 0.79 (0.18–3.52) | 0.72 (0.16–3.28) |
Heart failure | 0.60 (0.08–4.50) | 0.99 (0.12–7.85) | 0.89 (0.26–3.05) | 1.14 (0.32–4.06) |
A composite of microvascular complications | 1.27 (0.83–1.95) | 1.43 (0.92–2.24) | 0.94 (0.67–1.33) | 1.04 (0.74–1.48) |
Diabetic nephropathy | 1.92 (1.13–3.28) | 2.35 (1.35–4.09) | 1.10 (0.67–1.80) | 1.17 (0.70–1.94) |
Diabetic retinopathy | 0.88 (0.50–1.55) | 0.98 (0.53–1.79) | 0.86 (0.57–1.29) | 0.94 (0.62–1.42) |
No Delayed Treatment Intensification (n = 521) | Treatment Intensification within 6 Months (n = 53) | Treatment Intensification after 6 Months (n = 112) | p-Value a | |
---|---|---|---|---|
Baseline HbA1c (median (IQR)) | 8.0 (7.4–9.1) * | 7.7 (7.3–8.5) | 7.6 (7.3–8.6) * | 0.009 |
Baseline HbA1c (mean ± SD) | 8.4 ± 1.3 * | 8.0 ± 1.1 | 8.0 ± 1.0 * | 0.005 |
HbA1c after treatment intensification (mean ± SD) | 8.1 ± 1.6 | 8.2 ± 1.3 | 8.0 ± 1.2 | 0.652 |
p-value b | <0.001 | 0.533 | 0.850 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewbut, P.; Kosachunhanun, N.; Phrommintikul, A.; Chinwong, D.; Hall, J.J.; Chinwong, S. Time to Treatment Intensification to Reduce Diabetes-Related Complications: A Post Hoc Study. Healthcare 2022, 10, 1673. https://doi.org/10.3390/healthcare10091673
Kaewbut P, Kosachunhanun N, Phrommintikul A, Chinwong D, Hall JJ, Chinwong S. Time to Treatment Intensification to Reduce Diabetes-Related Complications: A Post Hoc Study. Healthcare. 2022; 10(9):1673. https://doi.org/10.3390/healthcare10091673
Chicago/Turabian StyleKaewbut, Piranee, Natapong Kosachunhanun, Arintaya Phrommintikul, Dujrudee Chinwong, John J. Hall, and Surarong Chinwong. 2022. "Time to Treatment Intensification to Reduce Diabetes-Related Complications: A Post Hoc Study" Healthcare 10, no. 9: 1673. https://doi.org/10.3390/healthcare10091673
APA StyleKaewbut, P., Kosachunhanun, N., Phrommintikul, A., Chinwong, D., Hall, J. J., & Chinwong, S. (2022). Time to Treatment Intensification to Reduce Diabetes-Related Complications: A Post Hoc Study. Healthcare, 10(9), 1673. https://doi.org/10.3390/healthcare10091673