Hypericum perforatum and Its Potential Antiplatelet Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining HP Extracts
2.2. Selection of Donors
2.3. Blood Collection and Treatment of Samples with Hypericum perforatum Extract
2.4. Kinetics of Intracellular Calcium Mobilization
2.5. Determination of the Expression of Activated GPIIbIIIa Receptors and P-Selectin (CD62P)
2.6. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 2017, 200, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.C.P.; Seabra, R.M.; Ferreres, F.; Fernandes-Ferreira, M. Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Sci. 2000, 150, 93–101. [Google Scholar] [CrossRef]
- Ben-Eliezer, D.; Yechiam, E. Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis. Sci. Rep. 2016, 6, 35700. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Gao, Y.; Chai, X.; Pi, R.; Chan, G.; Hu, Y. Translating traditional herbal formulas into modern drugs: A network-based analysis of Xiaoyao decoction. Chin. Med. 2020, 15, 25. [Google Scholar] [CrossRef]
- Chen, J.K.; Chen, T.T. Chinese Medican Herbology and Pharmacology; Art of Medicine Press: City of Industry, CA, USA, 2004. [Google Scholar]
- Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y. Clinical use of Hypericum perforatum (St John’s wort) in depression: A meta-analysis. J. Affect. Disord. 2017, 210, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Anderson, L.A.; Phillipson, D.J. St. John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001, 53, 583–600. [Google Scholar] [CrossRef]
- Zirak, N.; Shafiee, M.; Soltani, G.; Mirzaei, M.; Sahebkar, A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action. J. Cell. Physiol. 2019, 234, 8496–8508. [Google Scholar] [CrossRef]
- Gruenwald, J. St. John’s wort-The International Debate. Nutraceuticals World 2001. Available online: https://www.nutraceuticalsworld.com/issues/2001-06/view_columns/eurotrends-st-john-s-wort-the-international-debate/ (accessed on 23 July 2022).
- Menegazzi, M.; Masiello, P.; Novelli, M. Anti-Tumor Activity of Hypericum perforatum L. and Hyperforin through Modulation of Inflammatory Signaling, ROS Generation and Proton Dynamics. Antioxidants 2020, 10, 18. [Google Scholar] [CrossRef]
- Hostanska, K.; Reichling, J.; Bommer, S.; Weber, M.; Saller, R. Hyperforin a constituent of St John’s wort (Hypericum perforatum L.) extract induces apoptosis by triggering activation of caspases and with hypericin synergistically exerts cytotoxicity towards human malignant cell lines. Eur. J. Pharm. Biopharm. 2003, 56, 121–132. [Google Scholar] [CrossRef]
- Zanoli, P. Role of hyperforin in the pharmacological activities of St John’s Wort. CNS Drug Rev. 2004, 10, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Beckert, B.W.; Concannon, M.J.; Henry, S.L.; Smith, D.S.; Puckett, C.L. The effect of herbal medicines on platelet function: An in vivo experiment and review of the literature. Plast. Reconstr. Surg. 2007, 120, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Nilius, B.; Szallasi, A. Chapter 23—Are Brain TRPs Viable Targets for Curing Neurodegenerative Disorders and Improving Mental Health? In TRP Channels as Therapeutic Targets: From Basic Science to Clinical Use; Academic Press: Cambridge, MA, USA, 2015; pp. 419–456. [Google Scholar]
- Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; Lavalle, C.; McKeown, T.; Marshall, A.H.; et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016, 53, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Ferreres, F.; Malva, J.; Dias, A. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 2005, 90, 157–167. [Google Scholar] [CrossRef]
- Monteiro, M.C.; Sansonetty, F.; Goncalves, M.J.; O’Connor, J.E. Flow cytometric kinetic assay of calcium mobilization in whole blood platelets using fluo-3 and CD41. Cytometry 1999, 35, 302–310. [Google Scholar] [CrossRef]
- Schmitz, G.; Rothe, G.; Ruf, A.; Barlage, S.; Tschöpe, D.; Clemetson, K.J.; Goodall, A.H.; Michelson, A.D.; Nurden, A.T.; Shankey, T.V. Review European Working Group on Clinical Cell Analysis: Consensus protocol for the flow cytometric characterization of platelet function. Thromb. Haemost. 1998, 79, 885–896. [Google Scholar]
- Fujioka-Kobayashi, M.; Schaller, B.; Morão, C.F.; Zhang, Y.; Sculean, A.; Miron, R.J. Biological characterization of an injectable platelet-rich fibrin mixture consisting of autologous albumin gel and liquid platelet-rich-fibrin (Alb-PRF). Platelets 2020, 20, 1–8. [Google Scholar] [CrossRef]
- World Health Organization. Benchmarks for Training in Traditional/Complementary and Alternative Medicines; WHO Library Cataloging-in-Publication Data; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Peiró, P.; Galve, J.J.; Lucas, M.O. Monográfico de Hypericum perforatum L. Med. Natur. 2010, 4, 57–62. [Google Scholar]
- Uzbay, T.; Kayir, H.; Coskun, I.; Özturk, N.; Özturk, Y. Extract of Hypericum perforatum blocks nicotine-induced locomotor activity in mice. Turk. J. Pharm. Sci. 2006, 3, 31–40. [Google Scholar]
- Matić, I.Z.; Ergün, S.; Đorđić Crnogorac, M.; Misir, S.; Aliyazicioğlu, Y.; Damjanović, A.; Džudžević-Čančar, H.; Stanojković, T.; Konanç, K.; Petrović, N. Cytotoxic activities of Hypericum perforatum L. extracts against 2D and 3D cancer cell models. Cytotechnology 2021, 73, 373–389. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Balmeh, N.; Mohammadi, N.; Sadeghian-Rizi, T. The Novel Drug Discovery to Combat COVID-19 by Repressing Important Virus Proteins Involved in Pathogenesis Using Medicinal Herbal Compounds. Avicenna J. Med. Biotechnol. 2021, 13, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Chinese Herbal Medicines: Comparisons and Characteristics, 2nd ed.; Churchill Livingstone Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Linden, M.D. Platelet Flow Cytometry. Methods Mol. Biol. 2013, 998, 241–262. [Google Scholar]
- McEwen, B.J. The influence of herbal medicine on platelet function and coagulation: A narrative review. Semin. Thromb. Hemost. 2015, 41, 300–314. [Google Scholar] [CrossRef]
- Tognolini, M.; Barocelli, V.; Ballaberi, V.; Bruni, R.; Bianchi, A.; Chiavarini, M.; Impicciatore, M. Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sci. 2006, 78, 1419–1432. [Google Scholar] [CrossRef] [PubMed]
- Nicolussi, S.; Drewe, J.; Butterweck, V.; Schwabedissen, H.E. Clinical relevance of St. John’s wort drug interactions revisited. Br. J. Pharmacol. 2020, 177, 1212–1226. [Google Scholar] [CrossRef] [PubMed]
- Spina, E.; Barbieri, M.A.; Cicala, G.; Bruno, A.; de Leon, J. Clinically relevant drug interactions between newer antidepressants and oral anticoagulants. Expert Opin. Drug Metab. Toxicol. 2020, 16, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Scicchitano, F.; Whalley, B.; Mazzitello, C.; Ciriaco, M.; Esposito, S.; Patanà, M.; Uptan, R.; Pugliese, M.; Chimirri, S.; et al. Hypericum perforatum: Pharmacokinetic, mechanism of action, tolerability, and clinical drug-drug interactions. Phytother. Res. 2014, 28, 643–655. [Google Scholar] [CrossRef]
- Li, R.L.; Zhang, Q.; Liu, J.; He, L.Y.; Huang, Q.W.; Peng, W.; Wu, C.J. Processing methods and mechanisms for alkaloid-rich Chinese herbal medicines: A review. J. Integr. Med. 2021, 19, 89–103. [Google Scholar] [CrossRef]
KERRYPNX | Compound | µg/mg Dry Extract |
---|---|---|
Total hyperforins (41, 191) | Hyperforin | 33.661 |
Adhyperforin | 7.530 | |
Total Flavonoids (53, 514) | Chlorogenic acid | 4.108 |
Rutin | 7.049 | |
Hyperoside | 19.631 | |
Isoquercetin | 6.429 | |
Ramnosyl-quercetin | 7.484 | |
Hyperoxide-acetil | 2.219 | |
Acetyl-Rutin | 0.535 | |
Quercetin | 6.128 | |
Biapigenin | 2.136 | |
Quercetin-3-O-b-D-glucuronic acid | 1.003 | |
Total Hypericins (1, 414) | Protopseudohypericin | 0.175 |
Pseudohypericin | 0.499 | |
Protohypericin | 0.171 | |
Hypericin | 0.570 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, M.-d.-C.; Dias, A.C.P.; Costa, D.; Almeida-Dias, A.; Criado, M.B. Hypericum perforatum and Its Potential Antiplatelet Effect. Healthcare 2022, 10, 1774. https://doi.org/10.3390/healthcare10091774
Monteiro M-d-C, Dias ACP, Costa D, Almeida-Dias A, Criado MB. Hypericum perforatum and Its Potential Antiplatelet Effect. Healthcare. 2022; 10(9):1774. https://doi.org/10.3390/healthcare10091774
Chicago/Turabian StyleMonteiro, Maria-do-Céu, Alberto C. P. Dias, Daniela Costa, António Almeida-Dias, and Maria Begoña Criado. 2022. "Hypericum perforatum and Its Potential Antiplatelet Effect" Healthcare 10, no. 9: 1774. https://doi.org/10.3390/healthcare10091774
APA StyleMonteiro, M. -d. -C., Dias, A. C. P., Costa, D., Almeida-Dias, A., & Criado, M. B. (2022). Hypericum perforatum and Its Potential Antiplatelet Effect. Healthcare, 10(9), 1774. https://doi.org/10.3390/healthcare10091774