The Effects of Arginine-Based Supplements on Fatigue Levels following COVID-19 Infection: A Prospective Study in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Belli, S.; Balbi, B.; Prince, I.; Cattaneo, D.; Masocco, F.; Zaccaria, S.; Bertalli, L.; Cattini, F.; Lomazzo, A.; Dal Negro, F.; et al. Low physical functioning and impaired performance of activities of daily life in COVID-19 patients who survived hospitalisation. Eur. Respir. J. 2020, 56, 2002096. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Cholevas, C.; Polyzoidis, K.; Politis, A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. Biofactors 2021, 47, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef] [PubMed]
- Daynes, E.; Gerlis, C.; Chaplin, E.; Gardiner, N.; Singh, S.J. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition—A cohort study. Chron. Respir. Dis. 2021, 18, 14799731211015691. [Google Scholar] [CrossRef]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef]
- Adebayo, A.; Varzideh, F.; Wilson, S.; Gambardella, J.; Eacobacci, M.; Jankauskas, S.S.; Donkor, K.; Kansakar, U.; Trimarco, V.; Mone, P.; et al. l-Arginine and COVID-19: An Update. Nutrients 2021, 13, 3951. [Google Scholar] [CrossRef]
- Tsuda, Y.; Yamaguchi, M.; Noma, T.; Okaya, E.; Itoh, H. Combined Effect of Arginine, Valine, and Serine on Exercise-Induced Fatigue in Healthy Volunteers: A Randomized, Double-Blinded, Placebo-Controlled Crossover Study. Nutrients 2019, 11, 862. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Subramanian, S.; Laird, E.; Griffin, G.; Kenny, R.A. Perspective: Vitamin D deficiency and COVID-19 severity–plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2, and thrombosis (R1). J. Intern. Med. 2021, 289, 97–115. [Google Scholar] [CrossRef]
- Silva, M.C.; Furlanetto, T.W. Does serum 25-hydroxyvitamin D decrease during acute-phase response? A systematic review. Nutr. Res. 2015, 35, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Calvani, R.; Picca, A.; Ciciarello, F.; Galluzzo, V.; Coelho-Júnior, H.J.; Di Giorgio, A.; Di Mario, C.; Gervasoni, J.; Gremese, E.; et al. Effects of L-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14, 4984. [Google Scholar] [CrossRef] [PubMed]
- Durante, W. Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy. Metabolites 2022, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Grimes, J.M.; Khan, S.; Badeaux, M.; Rao, R.M.; Rowlinson, S.W.; Carvajal, R.D. Arginine depletion as a therapeutic approach for patients with COVID-19. Int. J. Infect. Dis. 2021, 102, 566–570. [Google Scholar] [CrossRef]
- Reizine, F.; Lesouhaitier, M.; Gregoire, M.; Pinceaux, K.; Gacouin, A.; Maamar, A.; Painvin, B.; Camus, C.; Le Tulzo, Y.; Tattevin, P.; et al. SARS-CoV-2-Induced ARDS Associates with MDSC Expansion, Lymphocyte Dysfunction, and Arginine Shortage. J. Clin. Immunol. 2021, 41, 515–525. [Google Scholar] [CrossRef]
- Wagner, J.; Garcia-Rodriguez, V.; Yu, A.; Dutra, B.; Larson, S.; Cash, B.; DuPont, A.; Farooq, A. Elevated transaminases and hypoalbuminemia in COVID-19 are prognostic factors for disease severity. Sci. Rep. 2021, 11, 10308. [Google Scholar] [CrossRef]
- Muralidharan, J.; Kashyap, S.S.P.; Jacob, M.; Ollapally, A.; Idiculla, J.; Raj, J.M.; Thomas, T.; Kurpad, A.V. The effect of l-arginine supplementation on amelioration of oxygen support in severe COVID-19 pneumonia. Clin. Nutr. ESPEN 2022, 52, 431–435. [Google Scholar] [CrossRef]
- Monti, L.D.; Setola, E.; Lucotti, P.C.; Marrocco-Trischitta, M.M.; Comola, M.; Galluccio, E.; Poggi, A.; Mammì, S.; Catapano, A.L.; Comi, G.; et al. Effect of a long-term oral l-arginine supplementation on glucose metabolism: A randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2012, 14, 893–900. [Google Scholar] [CrossRef]
- Szlas, A.; Kurek, J.M.; Krejpcio, Z. The Potential of L-Arginine in Prevention and Treatment of Disturbed Carbohydrate and Lipid Metabolism—A Review. Nutrients 2022, 14, 961. [Google Scholar] [CrossRef]
- Burtscher, M.; Brunner, F.; Faulhaber, M.; Hotter, B.; Likar, R. The prolonged intake of L-arginine-L-aspartate reduces blood lactate accumulation and oxygen consumption during submaximal exercise. J. Sport. Sci. Med. 2005, 4, 314–322. [Google Scholar]
- Yu, C.; Wang, Y.; Cao, H.; Zhao, Y.; Li, Z.; Wang, H.; Chen, M.; Tang, Q. Simultaneous Determination of 13 Organic Acids in Liquid Culture Media of Edible Fungi Using High-Performance Liquid Chromatography. BioMed. Res. Int. 2020, 2020, 2817979. [Google Scholar] [CrossRef] [PubMed]
- Rees, C.A.; Rostad, C.A.; Mantus, G.; Anderson, E.J.; Chahroudi, A.; Jaggi, P.; Wrammert, J.; Ochoa, J.B.; Ochoa, A.; Basu, R.K.; et al. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA 2021, 118, e2101708118. [Google Scholar] [CrossRef] [PubMed]
- Armengou, A.; Hurtado, O.; Leira, R.; Obón, M.; Pascual, C.; Moro, M.A.; Lizasoain, I.; Castillo, J.; Dávalos, A. L-arginine levels in blood as a marker of nitric oxide-mediated brain damage in acute stroke: A clinical and experimental study. J. Cereb. Blood Flow Metab. 2003, 23, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Yakushkin, V.V.; Zyuryaev, I.T.; Khaspekova, S.G.; Sirotkina, O.V.; Ruda, M.Y.; Mazurov, A.V. Glycoprotein IIb-IIIa content and platelet aggregation in healthy volunteers and patients with acute coronary syndrome. Platelets 2011, 22, 243–251. [Google Scholar] [CrossRef]
- Zheng, L.; Duan, Z.; Tang, D.; He, Y.; Chen, X.; Chen, Q.; Li, M. GP IIb/IIIa-Mediated Platelet Activation and Its Modulation of the Immune Response of Monocytes Against Candida albicans. Front. Cell Infect. Microbiol. 2021, 11, 783085. [Google Scholar] [CrossRef]
- Frelinger, A.L., 3rd. Using flow cytometry to monitor glycoprotein IIb-IIIa activation. Platelets 2018, 29, 670–676. [Google Scholar] [CrossRef]
- Schwarz, M.; Meade, G.; Stoll, P.; Ylanne, J.; Bassler, N.; Chen, Y.C.; Hagemeyer, C.E.; Ahrens, I.; Moran, N.; Kenny, D.; et al. Conformation-specific blockade of the integrin GPIIb/IIIa: A novel antiplatelet strategy that selectively targets activated platelets. Circ. Res. 2006, 99, 25–33. [Google Scholar] [CrossRef]
- Peter, K.; Straub, A.; Kohler, B.; Volkmann, M.; Schwarz, M.; Kübler, W.; Bode, C. Platelet activation as a potential mechanism of GP IIb/IIIa inhibitor-induced thrombocytopenia. Am. J. Cardiol. 1999, 84, 519–524. [Google Scholar] [CrossRef]
- Gabriel, H.M.; Oliveira, E.I. Role of abciximab in the treatment of coronary artery disease. Expert Opin. Biol. Ther. 2006, 6, 935–942. [Google Scholar] [CrossRef]
- Pahlavani, N.; Entezari, M.H.; Nasiri, M.; Miri, A.; Rezaie, M.; Bagheri-Bidakhavidi, M.; Sadeghi, O. The effect of L-arginine supplementation on body composition and performance in male athletes: A double-blinded randomized clinical trial. Eur. J. Clin. Nutr. 2017, 71, 544–548. [Google Scholar] [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Baltazar-Martins, G.; Brito de Souza, D.; Aguilar-Navarro, M.; Munoz-Guerra, J.; Plata, M.D.M.; Del Coso, J. Prevalence and patterns of dietary supplement use in elite Spanish athletes. J. Int. Soc. Sports Nutr. 2019, 16, 30. [Google Scholar] [CrossRef]
- Dukes, J.C.; Chakan, M.; Mills, A.; Marcaurd, M. Approach to Fatigue: Best Practice. Med. Clin. N. Am. 2021, 105, 137–148. [Google Scholar] [CrossRef]
- Schoormans, D.; Jansen, M.; Mols, F.; Oerlemans, S. Negative illness perceptions are related to more fatigue among haematological cancer survivors: A PROFILES study. Acta Oncol. 2020, 59, 959–966. [Google Scholar] [CrossRef]
- Ebede, C.C.; Jang, Y.; Escalante, C.P. Cancer-Related Fatigue in Cancer Survivorship. Med. Clin. N. Am. 2017, 101, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Reeve, B.B.; Stover, A.M.; Alfano, C.M.; Smith, A.W.; Ballard-Barbash, R.; Bernstein, L.; McTiernan, A.; Baumgartner, K.B.; Piper, B.F. The Piper Fatigue Scale-12 (PFS-12): Psychometric findings and item reduction in a cohort of breast cancer survivors. Breast Cancer Res. Treat. 2012, 136, 9–20. [Google Scholar] [CrossRef]
- Michielsen, H.J.; De Vries, J.; Van Heck, G.L. Psychometric qualities of a brief self-rated fatigue measure: The Fatigue Assessment Scale. J. Psychosom. Res. 2003, 54, 345–352. [Google Scholar] [CrossRef]
- Hendriks, C.; Drent, M.; Elfferich, M.; De Vries, J. The fatigue assessment scale: Quality and availability in sarcoidosis and other diseases. Curr. Opin. Pulm. Med. 2018, 24, 495–503. [Google Scholar] [CrossRef]
- Fatigue Assessment Scale. Available online: https://www.wasog.org/education-research/questionnaires.html (accessed on 30 November 2022).
- Drent, M.; Lower, E.E.; De Vries, J. Sarcoidosis-associated fatigue. Eur. Respir. J. 2012, 40, 255–263. [Google Scholar] [CrossRef]
- Kleijn, W.P.E.; De Vries, J.; Wijnen, P.A.H.M.; Drent, M. Minimal (clinically) important differences for the Fatigue Assessment Scale in sarcoidosis. Respir. Med. 2011, 105, 1388–1395. [Google Scholar] [CrossRef]
- De Vries, M.H.; Van Heck, G.L.; Drent, M. Measuring fatigue in sarcoidosis: The Fatigue Assessment Scale (FAS). Br. J. Health Psychol. 2004, 9, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Moloney, D.; Finucane, C.; McCarthy, K.; Bergin, C.; Bannan, C.; Kenny, R.A. Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS ONE 2021, 16, e0247280. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Abo Omirah, M.; Hussein, A.; Saeed, H. Assessment and characterisation of post-COVID-19 manifestations. Int. J. Clin. Pract. 2021, 75, e13746. [Google Scholar] [CrossRef] [PubMed]
- Nehme, M.; Braillard, O.; Chappuis, F.; Courvoisier DSGuessous, I.T. Covicare study, prevalence of symptoms more than seven months after diagnosis of symptomatic COVID-19 in an outpatient setting. Ann. Intern. Med. 2021, 174, 1252–1260. [Google Scholar] [CrossRef]
- Cha, M.H.; Regueiro, M.; Sandhu, D.S. Gastrointestinal and hepatic manifestations of COVID-19: A comprehensive review. World J. Gastroenterol. 2020, 26, 2323–2332. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, L.; Li, J.; Cheng, X.; Yang, J.; Tian, C.; Zhang, Y.; Huang, S.; Liu, Z.; Cheng, J. Clinical Features of COVID-19-Related Liver Functional Abnormality. Clin. Gastroenterol. Hepatol. 2020, 18, 1561–1566. [Google Scholar] [CrossRef]
- Camic, C.L.; Housh, T.J.; Zuniga, J.M.; Hendrix, R.C.; Mielke, M.; Johnson, G.O.; Schmidt, R.J. Effects of arginine-based supplements on the physical working capacity at the fatigue threshold. J. Strength Cond. Res. 2010, 24, 1306–1312. [Google Scholar] [CrossRef]
- Andrade-Silva, M.; da Silva, A.R.P.A.; do Amaral, M.A.; Fragas, M.G.; Câmara, N.O.S. Metabolic Alterations in SARS-CoV-2 Infection and Its Implication in Kidney Dysfunction. Front. Physiol. 2021, 12, 624698. [Google Scholar] [CrossRef]
- Wu, D.; Shu, T.; Yang, X.; Song, J.X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020, 7, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Stavem, K.; Ghanima, W.; Olsen, M.K.; Gilboe, H.M.; Einvik, G. Prevalence and Determinants of Fatigue after COVID-19 in Non-Hospitalized Subjects: A Population-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 2030. [Google Scholar] [CrossRef] [PubMed]
- Elia, F.; Vallelonga, F. “Pandemic fatigue” or something worse? Recent. Prog. Med. 2020, 111, 788–789. [Google Scholar]
- Xu, L.; Liu, J.; Lu, M.; Yang, D.; Zheng, X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020, 40, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Petrazzuoli, F.; Gokdemir, O.; Antonopoulou, M.; Blahova, B.; Mrduljaš-Đujić, N.; Dumitra, G.; Falanga, R.; Ferreira, M.; Gintere, S.; Hatipoglu, S.; et al. Patient consultations during SARS-CoV-2 pandemic: A mixed-method cross-sectional study in 16 European countries. Rural Remote Health 2022, 22, 7196. [Google Scholar] [CrossRef]
- Campos, M.C.; Nery, T.; Starke, A.C.; de Bem Alves, A.C.; Speck, A.E.; Aguiar, A.S. Post-viral fatigue in COVID-19: A review of symptom assessment methods, mental, cognitive, and physical impairment. Neurosci. Biobehav. Rev. 2022, 142, 104902. [Google Scholar] [CrossRef]
Patients’ Characteristics | Total Cohort (n = 505) | Group 1 (n = 146) | Group 2 (n = 359) | p-Value |
---|---|---|---|---|
Age, years, median (IQR) | 50 (39–63) | 53 (29.75–66) | 49 (39–61) | 0.265 |
Sex, male, n (%) | 231 (45.7%) | 84 (57.5%) | 147 (40.9%) | 0.001 |
Severity infection | <0.0001 | |||
Asymptomatic, n (%) | 14 (2.8%) | 3 (2.1%) | 11 (3.1%) | |
Mild, n (%) | 353 (69.9%) | 68 (46.6%) | 285 (79.4%) | |
Moderate, n (%) | 120 (23.8%) | 59 (40.4%) | 61 (17%) | |
Severe, n (%) | 18 (3.6%) | 16 (11%) | 2 (0.6%) | |
Treatment | <0.0001 | |||
In specialty, n (%) | 40 (7.9%) | 31 (21.2%) | 9 (2.5%) | |
ICU, n (%) | 4 (4%) | 4 (2.7%) | 0 | |
Ambulator, n (%) | 44 (8.7%) | 16 (11%) | 28 (7.8%) | |
Home, n (%) | 417 (82.6%) | 95 (65.1%) | 322 (89.7%) | |
BMI baseline (kg/m2), median (IQR) | 27 (24–30) | 29.1 (24.1–31.4) | 26 (24–30) | <0.0001 |
BMI follow-up (kg/m2), median (IQR) | 27 (24–30) | 29 (24.1–31.4) | 26 (23.9–30) | <0.0001 |
ALT baseline, median (IQR) | 33 (24–61.25) | 56 (39.3–74) | 28 (19–33.3) | <0.0001 |
ALT follow-up, median (IQR) | 35.50 (27–42) | 52 (38–68) | 28 (20–32) | <0.0001 |
AST baseline, median (IQR) | 32 (23–58) | 34.5 (29–42) | 37.5 (21.8–42) | 0.287 |
AST follow-up, median (IQR) | 33 (28–38) | 34 (29–39) | 32 (17.8–36.3) | 0.005 |
Comorbidities, median (IQR) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 0.785 |
Comorbidities | <0.0001 | |||
No comorbidities, n (%) | 235 (46.5%) | 44 (22.4%) | 191 (43%) | |
Cardiovascular, n (%) | 74 (14.7%) | 30 (15.3%) | 44 (9.9%) | |
Diabetes, n (%) | 67 (13.3%) | 29 (14.8%) | 38 (8.6%) | |
Hypertension, n (%) | 132 (26.1%) | 34 (17.3%) | 98 (22.1%) | |
Respiratory, n (%) | 34 (6.7%) | 15 (7.7%) | 19 (4.3%) | |
Cancer, n (%) | 6 (1.2%) | 3 (1.5%) | 3 (0.7%) | |
Hepatic diseases, n (%) | 40 (7.9%) | 25 (12.8%) | 15 (3.4%) | |
Others, n (%) | 52 (10.3%) | 16 (8.2%) | 36 (8.1%) |
Patients Fatigue According to Severity of Infection | Median (Interquartile Range) | p-Value |
---|---|---|
Total score | <0.0001 | |
Asymptomatic | 20.50 (18–27.25) | |
Mild | 24 (19–34) | |
Moderate Severe | 33 (28–38) 40.50 (35.50–43.25) | |
Physical score | <0.0001 | |
Asymptomatic Mild | 9.50 (7.75–12.50) 11 (8–16) | |
Moderate Severe | 16 (12–19) 20 (17–21) | |
Mental score Asymptomatic Mild Moderate Severe | 11.50 (9–16) 14 (11–17) 18 (16–19) 20.50 (18.75–23) | <0.0001 |
Patients Fatigue | Total n = 505 | Group 1 n = 146 | Group 2 n = 359 | p-Value |
---|---|---|---|---|
Fatigue type | <0.0001 | |||
Physical fatigue | 174 (34.4%) | 24 (16%) | 150 (42%) | |
Mental fatigue | 4 (0.8%) | 1 (1%) | 3 (1%) | |
Physical and mental fatigue | 327 (64.8%) | 121 (83%) | 206 (57%) | |
Fatigue onset | 0.3216 | |||
During COVID-19 infection Post COVID-19 | 196 (38.8%) 105 (20.8%) | 55 (38%) 37 (25%) | 141 (39%) 68 (19%) | |
During and post COVID-19 | 204 (40.4%) | 56 (38%) | 148 (41%) | |
Fatigue levels at baseline No fatigue (score 10–21) Fatigue (score 22–34) Extreme fatigue (score ≥ 35) | 140 (27.7%) 219 (43.4%) 146 (28.9%) | 7 (4.8%) 83 (56.8%) 56 (38.4%) | 133 (37%) 136 (37.9%) 90 (25.1%) | <0.0001 |
Fatigue levels at follow-up No fatigue (score 10–21) Fatigue (score 22–34) Extreme fatigue (score ≥ 35) | 347 (68.7%) 148 (29.3%) 10 (2%) | 99 (67.8%) 44 (30.1%) 3 (2.1%) | 248 (69.1%) 104 (29%) 7 (1.9%) | 0.9615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turcu-Stiolica, A.; Ionele, C.M.; Ungureanu, B.S.; Subtirelu, M.-S. The Effects of Arginine-Based Supplements on Fatigue Levels following COVID-19 Infection: A Prospective Study in Romania. Healthcare 2023, 11, 1477. https://doi.org/10.3390/healthcare11101477
Turcu-Stiolica A, Ionele CM, Ungureanu BS, Subtirelu M-S. The Effects of Arginine-Based Supplements on Fatigue Levels following COVID-19 Infection: A Prospective Study in Romania. Healthcare. 2023; 11(10):1477. https://doi.org/10.3390/healthcare11101477
Chicago/Turabian StyleTurcu-Stiolica, Adina, Claudiu Marinel Ionele, Bogdan Silviu Ungureanu, and Mihaela-Simona Subtirelu. 2023. "The Effects of Arginine-Based Supplements on Fatigue Levels following COVID-19 Infection: A Prospective Study in Romania" Healthcare 11, no. 10: 1477. https://doi.org/10.3390/healthcare11101477
APA StyleTurcu-Stiolica, A., Ionele, C. M., Ungureanu, B. S., & Subtirelu, M. -S. (2023). The Effects of Arginine-Based Supplements on Fatigue Levels following COVID-19 Infection: A Prospective Study in Romania. Healthcare, 11(10), 1477. https://doi.org/10.3390/healthcare11101477