Factors Informing the Development of a Clinical Pathway and Patients’ Quality of Life after a Non-Union Fracture of the Lower Limb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Methods
2.4. Statistical Analysis
3. Results
Quality of Life Measure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kruk, M.E.; Gage, A.D.; Arsenault, C.; Jordan, K.; Leslie, H.H.; Roder-DeWan, S.; Adeyi, O.; Barker, P.; Daelmans, B.; Doubova, S.V. High-quality health systems in the Sustainable Development Goals era: Time for a revolution. Lancet Glob. Health 2018, 6, e1196–e1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taberna, M.; Gil Moncayo, F.; Jané-Salas, E.; Antonio, M.; Arribas, L.; Vilajosana, E.; Peralvez Torres, E.; Mesía, R. The multidisciplinary team (MDT) approach and quality of care. Front. Oncol. 2020, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekegren, C.L.; Edwards, E.R.; De Steiger, R.; Gabbe, B.J. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int. J. Environ. Res. Public Health 2018, 15, 2845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emara, K.M.; Diab, R.A.; Emara, A.K. Recent biological trends in management of fracture non-union. World J. Orthop. 2015, 6, 623. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.; Makaram, N.; Simpson, A.; Keating, J. Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury 2021, 52, S3–S11. [Google Scholar] [CrossRef]
- Giannotti, S.; Bottai, V.; Dell’Osso, G.; Pini, E.; De Paola, G.; Bugelli, G.; Guido, G. Current medical treatment strategies concerning fracture healing. Clin. Cases Miner. Bone Metab. 2013, 10, 116. [Google Scholar]
- Stewart, S. Fracture non-union: A review of clinical challenges and future research needs. Malays. Orthop. J. 2019, 13, 1. [Google Scholar]
- Kim, P.H.; Leopold, S.S. Gustilo-Anderson Classification; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Calori, G.M.; Mazza, E.L.; Mazzola, S.; Colombo, A.; Giardina, F.; Romanò, F.; Colombo, M. Non-unions. Clin. Cases Miner. Bone Metab. 2017, 14, 186. [Google Scholar] [CrossRef]
- WHO. Improving Healthcare Quality in Europe Characteristics, Effectiveness and Implementation of Different Strategies: Characteristics, Effectiveness and Implementation of Different Strategies; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Martin, G.P.; Kocman, D.; Stephens, T.; Peden, C.J.; Pearse, R.M. Pathways to professionalism? Quality improvement, care pathways, and the interplay of standardisation and clinical autonomy. Sociol. Health Illn. 2017, 39, 1314–1329. [Google Scholar] [CrossRef] [Green Version]
- Rotter, T.; de Jong, R.B.; Lacko, S.E.; Ronellenfitsch, U.; Kinsman, L. Clinical pathways as a quality strategy. In Improving Healthcare Quality in Europe; European Observatory on Health Systems and Policies: Copenhagen, Denmark, 2019; p. 309. [Google Scholar]
- Fernández-Peña, R.; Ortego-Maté, C.; Amo-Setién, F.J.; Silió-García, T.; Casasempere-Satorres, A.; Sarabia-Cobo, C. Implementing a Care Pathway for Complex Chronic Patients from a Nursing Perspective: A Qualitative Study. Int. J. Environ. Res. Public Health 2021, 18, 6324. [Google Scholar] [CrossRef]
- Wind, A.; van der Linden, C.; Hartman, E.; Siesling, S.; van Harten, W. Patient involvement in clinical pathway development, implementation and evaluation–A scoping review of international literature. Patient Educ. Couns. 2022, 105, 1441–1448. [Google Scholar] [CrossRef]
- Hipp, R.; Abel, E.; Weber, R.J. A primer on clinical pathways. Hosp. Pharm. 2016, 51, 416–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandra, R.; Grover, L.; Porter, K. Fracture non-union epidemiology and treatment. Trauma 2016, 18, 3–11. [Google Scholar] [CrossRef]
- Clark, D.; Nakamura, M.; Miclau, T.; Marcucio, R. Effects of aging on fracture healing. Curr. Osteoporos. Rep. 2017, 15, 601–608. [Google Scholar] [CrossRef]
- Jiao, H.; Xiao, E.; Graves, D.T. Diabetes and its effect on bone and fracture healing. Curr. Osteoporos. Rep. 2015, 13, 327–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, S.M.; Maqungo, S.; Laubscher, M.; Ferreira, N.; Held, M.; Harrison, W.J.; Simpson, A.H.; MacPherson, P.; Lalloo, D.G. Fracture healing in patients with HIV in South Africa: A prospective cohort study. J. Acquir. Immune Defic. Syndr. 2021, 87, 1214. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G.; Clement, R.; Edwards, K.; Scammell, B.E. Do smokers have greater risk of delayed and non-union after fracture, osteotomy and arthrodesis? A systematic review with meta-analysis. BMJ Open 2016, 6, e010303. [Google Scholar] [CrossRef]
- Smolle, M.A.; Leitner, L.; Böhler, N.; Seibert, F.-J.; Glehr, M.; Leithner, A. Fracture, nonunion and postoperative infection risk in the smoking orthopaedic patient: A systematic review and meta-analysis. EFORT Open Rev. 2021, 6, 1006–1019. [Google Scholar] [CrossRef]
- Zura, R.; Braid-Forbes, M.J.; Jeray, K.; Mehta, S.; Einhorn, T.A.; Watson, J.T.; Della Rocca, G.J.; Forbes, K.; Steen, R.G. Bone fracture nonunion rate decreases with increasing age: A prospective inception cohort study. Bone 2017, 95, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Newman, H.; Shih, Y.V.; Varghese, S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021, 277, 121114. [Google Scholar] [CrossRef]
- Hernigou, J.; Schuind, F. Tobacco and bone fractures: A review of the facts and issues that every orthopaedic surgeon should know. Bone Jt. Res. 2019, 8, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Pickering, R.M.; Onslow, E.; Clancy, M.; Powell, J.; Roberts, A.; Hughes, K.; Coulson, D.; Bray, J. The effectiveness of implementing a care pathway for femoral neck fracture in older people: A prospective controlled before and after study. Age Ageing 2004, 33, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Rommens, P.M.; Ossendorf, C.; Pairon, P.; Dietz, S.-O.; Wagner, D.; Hofmann, A. Clinical pathways for fragility fractures of the pelvic ring: Personal experience and review of the literature. J. Orthop. Sci. 2015, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vanhaecht, K.; Sermeus, W.; Peers, J.; Lodewijckx, C.; Deneckere, S.; Leigheb, F.; Boonen, S.; Sermon, A.; Boto, P.; Mendes, R.V. The impact of care pathways for patients with proximal femur fracture: Rationale and design of a cluster-randomized controlled trial. BMC Health Serv. Res. 2012, 12, 124. [Google Scholar] [CrossRef]
- Neugebauer, E.A.; Waydhas, C.; Lendemans, S.; Rixen, D.; Eikermann, M.; Pohlemann, T. The treatment of patients with severe and multiple traumatic injuries. Dtsch. Ärzteblatt Int. 2012, 109, 102. [Google Scholar] [CrossRef]
- Collinge, C.A.; McWilliam-Ross, K.; Beltran, M.J.; Weaver, T. Measures of clinical outcome before, during, and after implementation of a comprehensive geriatric hip fracture program: Is there a learning curve? J. Orthop. Trauma 2013, 27, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Lion, K.C.; Wright, D.R.; Spencer, S.; Zhou, C.; Del Beccaro, M.; Mangione-Smith, R. Standardized clinical pathways for hospitalized children and outcomes. Pediatrics 2016, 137, e20151202. [Google Scholar] [CrossRef] [Green Version]
- Lau, T.-W.; Fang, C.; Leung, F. The effectiveness of a geriatric hip fracture clinical pathway in reducing hospital and rehabilitation length of stay and improving short-term mortality rates. Geriatr. Orthop. Surg. Rehabil. 2013, 4, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntuli, M.; Filmalter, C.J.; White, Z.; Heyns, T. Length of stay and contributing factors in elderly patients who have undergone hip fracture surgery in a tertiary hospital in South Africa. Int. J. Orthop. Trauma Nurs. 2020, 37, 100748. [Google Scholar] [CrossRef]
- Davis, C.; Baldry, E.; Milosevic, B.; Walsh, A. Defining the role of the hospital social worker in Australia. Int. Soc. Work 2004, 47, 346–358. [Google Scholar] [CrossRef]
- Ferreira, N.; Marais, L.; Aldous, C. Challenges and controversies in defining and classifying tibial non-unions. SA Orthop. J. 2014, 13, 52–56. [Google Scholar]
- Johnson, L.; Igoe, E.; Kleftouris, G.; Papachristos, I.V.; Papakostidis, C.; Giannoudis, P.V. Physical health and psychological outcomes in adult patients with long-bone fracture non-unions: Evidence today. J. Clin. Med. 2019, 8, 1998. [Google Scholar] [CrossRef] [Green Version]
- Singaram, S.; Naidoo, M. The physical impact of long bone fractures on adults in KwaZulu-Natal. S. Afr. J. Physiother. 2020, 76, 1393. [Google Scholar] [CrossRef] [PubMed]
- DeRuiter, W.K.; Faulkner, G.; Cairney, J.; Veldhuizen, S. Characteristics of physically active smokers and implications for harm reduction. Am. J. Public Health 2008, 98, 925–931. [Google Scholar] [CrossRef]
- Mills, L.A.; Aitken, S.A.; Simpson, A.H.R. The risk of non-union per fracture: Current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017, 88, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Nawfal, A.; SEwELL, M.D.; BHAviKATT, M.; GiKAS, P.D. The effect of smoking on fracture healing and on various orthopaedic procedures. Acta Orthop. Belg 2012, 78, 285–290. [Google Scholar]
- Zhang, W.; Lin, H.; Zou, M.; Yuan, Q.; Huang, Z.; Pan, X.; Zhang, W. Nicotine in inflammatory diseases: Anti-inflammatory and pro-inflammatory effects. Front. Immunol. 2022, 13, 826889. [Google Scholar] [CrossRef]
- Lu, C.; Hansen, E.; Sapozhnikova, A.; Hu, D.; Miclau, T.; Marcucio, R.S. Effect of age on vascularization during fracture repair. J. Orthop. Res. 2008, 26, 1384–1389. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.K.; Do, T.P.; Critchlow, C.W.; Dent, R.E.; Jick, S.S. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta Orthop 2012, 83, 653–660. [Google Scholar] [CrossRef]
- Hileman, C.O.; Eckard, A.R.; McComsey, G.A. Bone loss in HIV: A contemporary review. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 446–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McComsey, G.A.; Tebas, P.; Shane, E.; Yin, M.T.; Overton, E.T.; Huang, J.S.; Aldrovandi, G.M.; Cardoso, S.W.; Santana, J.L.; Brown, T.T. Bone disease in HIV infection: A practical review and recommendations for HIV care providers. Clin. Infect. Dis. 2010, 51, 937–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, J.M.; Krentz, H.; Gill, M.J.; Hogan, D.B. Managing HIV infection in patients older than 50 years. CMAJ 2018, 190, E1253–E1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Category (n = 22) | Frequency (%) |
---|---|---|
Sex | Male | 90.9 (n = 20) |
Female | 9.09 (n = 2) | |
Age | 20–29 | 27.27 (n = 6) |
30–39 | 22.72 (n = 5) | |
40–49 | 22.72 (n = 5) | |
50–59 | 22.72 (n = 5) | |
>60 | 4.54 (n = 1) | |
Marital Status | Married | 31.81 (n = 7) |
Divorced | 9.09 (n = 2) | |
Widowed | 4.54 (n = 1) | |
Type of house | Stand-alone house | 63.63 (n = 14) |
Flat | 18.18 (n = 4) | |
Shack | 18.18 (n = 4) | |
Employment status | None | 68.18 (n = 15) |
Student | 13.63 (n = 3) | |
Pensioner | 4.54 (n = 1) | |
Comorbidity | Hypertension | 18.18 (n = 4) |
Smoking | 86.36 (n = 19) | |
HIV+ | 36.36 (n = 8) | |
Duration of non-union fractures | Less than a year | 9.1 (n = 2) |
More than a year | 72.72 (n = 16) | |
More than two years | 18.18 (n = 4) |
Variable | % (n) |
---|---|
Diagnosis | |
Distal femur fracture | 22.7 (n = 5) |
Proximal tibia fracture | 13.6 (n = 3) |
Proximal tibia/fibula fracture | 4.6 (n = 1) |
Midshaft tibia fracture | 18.2 (n = 4) |
Distal tibia fracture | 22.7 (n = 5) |
Distal tibia/fibula fracture | 4.6 (n = 1) |
Medial malleolus fracture | 13.6 (n = 3) |
International classification of function, diseases and disabilities | |
Impairment | 100 (n = 22) |
Activity limitation | 100 (n = 22) |
Participation restriction | 100 (n = 22) |
Re-admission within six months | |
Yes | 54.6 (n = 12) |
No | 45.4 (n = 10) |
Domains | Diagnosis | Number of Observations | Rank Sum | K–Wallis Test |
---|---|---|---|---|
Physical Function | Femur | 5 | 66.0 | 0.59 |
Tibia | 12 | 146.5 | ||
Tibia/fibula | 2 | 16.0 | ||
Malleolus | 3 | 2.5 | ||
Mental Health | Femur | 5 | 57.5 | 1.00 |
Tibia | 12 | 138.0 | ||
Tibia/fibula | 2 | 23.0 | ||
Malleolus | 3 | 34.5 | ||
Vitality | Femur | 5 | 63.5 | 0.96 |
Tibia | 12 | 132.5 | ||
Tibia/fibula | 2 | 21.0 | ||
Malleolus | 3 | 36.0 | ||
Emotional Role | Femur | 5 | 68.0 | 0.03 |
Tibia | 12 | 166.0 | ||
Tibia/fibula | 2 | 7.0 | ||
Malleolus | 3 | 12.0 | ||
Social Functioning | Femur | 5 | 43.5 | 0.61 |
Tibia | 12 | 156.0 | ||
Tibia/fibula | 2 | 23.5 | ||
Malleolus | 3 | 30.0 | ||
Pain | Femur | 5 | 62.0 | 0.57 |
Tibia | 12 | 148.0 | ||
Tibia/fibula | 2 | 23.0 | ||
Malleolus | 3 | 20.0 | ||
General Health | Femur | 5 | 54.5 | 0.73 |
Tibia | 12 | 153.5 | ||
Tibia/fibula | 2 | 18.5 | ||
Malleolus | 3 | 26.5 | ||
Physical Health | Femur | 5 | 57.5 | 0.00 |
Tibia | 12 | 138.0 | ||
Tibia/fibula | 2 | 23.0 | ||
Malleolus | 3 | 34.5 |
Domains Median (IQR) | Femur (n = 5) | Tibia (n = 12) | Tibia/Fibula (n = 2) | Malleolus (n = 3) |
---|---|---|---|---|
PCS Domains | ||||
Physical Function | 15 (14, 15) | 14.5 (13.5, 16.5) | 13 (11, 15) | 14 (11, 15) |
Physical Role | 4 (4, 4) | 4 (4, 4) | 4 (4, 4) | 4 (4, 4) |
Body Pain | 9 (8, 9) | 8 (8, 9) | 8.5 (7, 10) | 10 (8, 11) |
General Health | 17 (16, 17) | 17 (16, 18) | 16.5 (16, 17) | 17 (15, 17) |
MCS Domains | ||||
Mental Health | 17 (16, 20) | 19 (17, 20.5) | 18 (18, 18) | 18 (16, 18) |
Social Function | 5 (4, 5) | 4.5 (4, 5) | 4 (3, 5) | 5 (3, 7) |
Emotional Role | 3 (3, 3) | 3 (3, 3) | 3 (3, 3) | 3 (3, 3) |
Vitality | 13 (12, 14) | 11.5 (11, 13.5) | 14 (13, 15) | 10 (7, 14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magida, N.; Myezwa, H.; Mudzi, W. Factors Informing the Development of a Clinical Pathway and Patients’ Quality of Life after a Non-Union Fracture of the Lower Limb. Healthcare 2023, 11, 1810. https://doi.org/10.3390/healthcare11121810
Magida N, Myezwa H, Mudzi W. Factors Informing the Development of a Clinical Pathway and Patients’ Quality of Life after a Non-Union Fracture of the Lower Limb. Healthcare. 2023; 11(12):1810. https://doi.org/10.3390/healthcare11121810
Chicago/Turabian StyleMagida, Nontembiso, Hellen Myezwa, and Witness Mudzi. 2023. "Factors Informing the Development of a Clinical Pathway and Patients’ Quality of Life after a Non-Union Fracture of the Lower Limb" Healthcare 11, no. 12: 1810. https://doi.org/10.3390/healthcare11121810
APA StyleMagida, N., Myezwa, H., & Mudzi, W. (2023). Factors Informing the Development of a Clinical Pathway and Patients’ Quality of Life after a Non-Union Fracture of the Lower Limb. Healthcare, 11(12), 1810. https://doi.org/10.3390/healthcare11121810