Gordonia sputi as an Arising Causative Agent of Bacteremia in Immunocompromised Comorbid Dialysis Patients—A Case Report
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stenvinkel, P.; Ketteler, M.; Johnson, R.J.; Lindholm, B.; Pecoits-Filho, R.; Riella, M.; Heimbürger, O.; Cederholm, T.; Girndt, M. IL-10, IL-6, and TNF-α: Central factors in the altered cytokine network of uremia—The good, the bad, and the ugly. Kidney Int. 2005, 67, 1216–1233. [Google Scholar] [CrossRef] [Green Version]
- Mailloux, L.U.; Bellucci, A.G.; Wilkes, B.M.; Napolitano, B.; Mossey, R.T.; Lesser, M.; Bluestone, P.A. Mortality in dialysis patients: Analysis of the causes of death. Am. J. Kidney Dis. 1991, 18, 326–335. [Google Scholar] [CrossRef]
- Annual Data Report|USRDS. Available online: https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/6-mortality (accessed on 8 July 2023).
- Siga, M.M.; Ducher, M.; Florens, N.; Roth, H.; Mahloul, N.; Fouque, D.; Fauvel, J.P. Prediction of all-cause mortality in haemodialysis patients using a Bayesian network. Nephrol. Dial. Transplant. 2020, 35, 1420–1425. [Google Scholar] [CrossRef]
- Tsukamura, M. Proposal of a New Genus, Gordona, for Slightly Acid-fast Organisms Occurring in Sputa of Patients with Pulmonary Disease and in Soil. J. Gen. Microbiol. 1971, 68, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Arenskötter, M.; Bröker, D.; Steinbüchel, A. Biology of the Metabolically Diverse Genus Gordonia. Appl. Environ. Microbiol. 2004, 70, 3195. [Google Scholar] [CrossRef] [Green Version]
- Linos, A.; Berekaa, M.M.; Steinbüchel, A.; Kim, K.K.; Sproer, C.; Kroppenstedt, R.M. Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int. J. Syst. Evol. Microbiol. 2002, 52 Pt 4, 1133–1139. [Google Scholar]
- Böhlke, M.; Uliano, G.; Barcellos, F.C. Hemodialysis Catheter-related Infection: Prophylaxis, Diagnosis and Treatment. J. Vasc. Access 2015, 16, 347–355. [Google Scholar] [CrossRef]
- Danese, M.D.; Griffiths, R.I.; Dylan, M.; Yu, H.T.; Dubois, R.; Nissenson, A.R. Mortality differences among organisms causing septicemia in hemodialysis patients. Hemodial. Int. 2006, 10, 56–62. [Google Scholar] [CrossRef]
- Loo, L.W.; Liew, Y.X.; Choong, H.L.; Tan, A.L.; Chlebicki, P. Microbiology and audit of vascular access-associated bloodstream infections in multi-ethnic Asian hemodialysis patients in a tertiary hospital. Infect. Dis. 2015, 47, 225–230. [Google Scholar] [CrossRef]
- D’Amato-Palumbo, S.; Kaplan, A.A.; Feinn, R.S.; Lalla, R.V. Retrospective study of microorganisms associated with vascular access infections in hemodialysis patients. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Aslam, S.; Vaida, F.; Ritter, M.; Mehta, R.L. Systematic review and meta-analysis on management of hemodialysis catheter-related bacteremia. J. Am. Soc. Nephrol. 2014, 25, 2927–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sng, L.H.; Koh, T.H.; Toney, S.R.; Floyd, M.; Butler, W.R.; Tan, B.H. Bacteremia Caused by Gordonia bronchialis in a Patient with Sequestrated Lung. J. Clin. Microbiol. 2004, 42, 2870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, V.A.J.; Schmalzing, M.; Yassin, A.F.; Schaal, K.P.; Baumeister, D.; Arenskötter, M.; Steinbüchel, A.; Autenrieth, I.B. Gordonia polyisoprenivorans septicemia in a bone marrow transplant patient. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.S.; Dé, I.; Rolston, K.V.; Tarrand, J.J.; Han, X.Y. Catheter-related bacteremia caused by the nocardioform actinomycete Gordonia terrae. Clin. Infect. Dis. 2003, 36, 524–527. [Google Scholar] [CrossRef] [Green Version]
- Buchman, A.L.; McNeil, M.M.; Brown, J.M.; Lasker, B.A.; Anient, M.E. Central venous catheter sepsis caused by unusual Gordona (Rhodococcus species: Identification with a digoxigenin-labeled rDNA probe. Clin. Infect. Dis. 1992, 15, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Lesens, O.; Hansmann, Y.; Riegel, P.; Heller, R.; Benaissa-Djellouli, M.; Martinot, M.; Petit, H.; Christmann, D. Bacteremia and endocarditis caused by a Gordonia species in a patient with a central venous catheter. Emerg. Infect. Dis. 2000, 6, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Barthel, A.; Ursenbach, A.; Kaeuffer, C.; Koebel, C.; Gravet, A.; De Briel, D.; Dubois, J.; Haerrel, E.; Rougier, E.; Gerber, V. Characteristics and Treatment of Gordonia spp. Bacteremia, France. Emerg. Infect. Dis. 2023, 29, 1025–1028. [Google Scholar] [CrossRef]
- Drzyzga, O. The strengths and weaknesses of Gordonia: A review of an emerging genus with increasing biotechnological potential. Crit. Rev. Microbiol. 2012, 38, 300–316. [Google Scholar] [CrossRef]
- Verma, P.; Brown, J.M.; Nunez, V.H.; Morey, R.E.; Steigerwalt, A.G.; Pellegrini, G.J.; Kessler, H.A. Native valve endocarditis due to Gordonia polyisoprenivorans: Case report and review of literature of bloodstream infections caused by Gordonia species. J. Clin. Microbiol. 2006, 44, 1905–1908. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.C.; Wang, C.Y.; Liu, C.Y.; Tan, C.K.; Lin, S.H.; Liao, C.H.; Chou, C.H.; Huang, Y.T.; Lin, H.I.; Hsueh, P.R. Infections caused by Gordonia species at a medical centre in Taiwan, 1997 to 2008. Clin. Microbiol. Infect. 2010, 16, 1448–1453. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rychert, J. Commentary: Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infect. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Grenga, L.; Pible, O.; Armengaud, J. Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns. Clin. Mass Spectrom. 2019, 14 Pt A, 9–17. [Google Scholar] [CrossRef]
- Kato, S.; Chmielewski, M.; Honda, H.; Pecoits-Filho, R.; Matsuo, S.; Yuzawa, Y.; Tranaeus, A.; Stenvinkel, P.; Lindholm, B. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1526–1533. [Google Scholar] [CrossRef] [Green Version]
- Deenitchina, S.S.; Ando, T.; Okuda, S.; Kinukawa, N.; Hirakata, H.; Nagashima, A.; Fujishima, M. Cellular Immunity in Hemodialysis Patients: A Quantitative Analysis of Immune Cell Subsets by Flow Cytometry. Am. J. Nephrol. 1995, 15, 57–65. [Google Scholar] [CrossRef]
- Clunk, J.M.; Lin, C.Y.; Curtis, J.J. Polarization of t-helper lymphocytes toward the Th2 phenotype in uremic patients. Am. J. Kidney Dis. 2001, 38, 286–295. [Google Scholar]
- Marchant, A.; Bruyns, C.; Vandenabeele, P.; Ducarme, M.; Gérard, C.; Delvaux, A.; De Groote, D.; Abramowicz, D.; Velu, T.; Goldman, M. Interleukin-10 controls interferon-γ and tumor necrosis factor production during experimental endotoxemia. Eur. J. Immunol. 1994, 24, 1167–1171. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Celullar and Molecular Immunology. In Celullar and Molecular Immunology, 10th ed.; Saunder Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kimmel, P.L.; Phillips, T.M.; Simmens, S.J.; Peterson, R.A.; Weihs, K.L.; Alleyne, S.; Cruz, I.; Yanovski, J.A.; Veis, J.H. Immunologic function and survival in hemodialysis patients. Kidney Int. 1998, 54, 236. [Google Scholar] [CrossRef] [Green Version]
- Szabo, S.J.; Dighe, A.S.; Gubler, U.; Murphy, K.M. Regulation of the Interleukin (IL)-12R β2 Subunit Expression in Developing T Helper 1 (Th1) and Th2 Cells. J. Exp. Med. 1997, 185, 817. [Google Scholar] [CrossRef] [Green Version]
- te Velde, A.; Huijbens, R.; Heije, K.; de Vries, J.; Figdor, C. Interleukin-4 (IL-4) Inhibits Secretion of IL-1β, Tumor Necrosis Factor a, and IL-6 by Human Monocytes. Blood 1990, 76, 1392–1397. [Google Scholar] [CrossRef] [Green Version]
- Abrams, J.; Figdor, C.G.; De Waal Malefyt, R.; Bennett, B.; De Vries, J.E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 1991, 174, 1209. [Google Scholar]
- Fiorentino, D.F.; Zlotnik, A.; Mosmann, T.R.; Howard, M.; O’Garra, A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991, 147, 3815–3822. [Google Scholar] [CrossRef] [PubMed]
- Poe, J.C.; Wagner, D.H.; Miller, R.W.; Stout, R.D.; Suttles, J. IL-4 and IL-10 modulation of CD40-mediated signaling of monocyte IL-1beta synthesis and rescue from apoptosis. J. Immunol. 1997, 159, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Boehm, U.; Klamp, T.; Groot, M.; Howard, J.C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 1997, 15, 749–795. [Google Scholar] [CrossRef]
- Franceschini, D.; Paroli, M.; Francavilla, V.; Videtta, M.; Morrone, S.; Labbadia, G.; Cerino, A.; Mondelli, M.U.; Barnaba, V. PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J. Clin. Investig. 2009, 119, 551. [Google Scholar] [CrossRef] [Green Version]
- Boettler, T.; Spangenberg, H.C.; Neumann-Haefelin, C.; Panther, E.; Urbani, S.; Ferrari, C.; Blum, H.E.; von Weizsäcker, F.; Thimme, R. T Cells with a CD4+CD25+ Regulatory Phenotype Suppress In Vitro Proliferation of Virus-Specific CD8+ T Cells during Chronic Hepatitis C Virus Infection. J. Virol. 2005, 79, 7860. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, R.; Tu, Z.; Xu, Y.; Firpi, R.J.; Rosen, H.R.; Liu, C.; Nelson, D.R. An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology 2004, 40, 1062–1071. [Google Scholar] [CrossRef]
- Rushbrook, S.M.; Ward, S.M.; Unitt, E.; Vowler, S.L.; Lucas, M.; Klenerman, P.; Alexander, G.J.M. Regulatory T Cells Suppress In Vitro Proliferation of Virus-Specific CD8+ T Cells during Persistent Hepatitis C Virus Infection. J. Virol. 2005, 79, 7852. [Google Scholar] [CrossRef] [Green Version]
- Semmo, N.; Day, C.L.; Ward, S.M.; Lucas, M.; Harcourt, G.; Loughry, A.; Klenerman, P. Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology 2005, 41, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Prezzi, C.; Casciaro, M.A.; Francavilla, V.; Schiaffella, E.; Finocchi, L.; Chircu, L.V.; Bruno, G.; Sette, A.; Abrignani, S.; Barnaba, V. Virus-specific CD8 + T cells with type 1 or type 2 cytokine profile are related to different disease activity in chronic hepatitis C virus infection. Eur. J. Immunol. 2001, 31, 894–906. [Google Scholar] [CrossRef]
- Sliva, J.; Pantzartzi, C.N.; Votava, M. Inosine Pranobex: A Key Player in the Game Against a Wide Range of Viral Infections and Non-Infectious Diseases. Adv. Ther. 2019, 36, 1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Indicator | Measurement Unit | Result | Reference Range |
---|---|---|---|
IgG | µg/mL | 14,073 | 5000–17,000 |
IgM | µg/mL | 940 | 400–2500 |
IgA | µg/mL | 2458 | 200–3000 |
C3 | g/L | 1.23 | 0.90–1.80 |
C4 | g/L | 0.26 | 0.10–0.40 |
Indicator | Unit of Measurement | Results | Reference Range |
---|---|---|---|
Absolute number of leukocyte subpopulation (number of cells × 109/L) | |||
Lymphocytes | 109/L | 0.91 | 1.0–2.8 |
Total CD3+ T cells | 109/L | 0.64 | 1.0–2.0 |
T help-induc CD3+CD4+ | 109/L | 0.45 | 0.6–1.4 |
T suppr-cytotoxic CD3+CD8+ | 109/L | 0.17 | 0.3–1.0 |
Total B cells CD19+ | 109/L | 0.10 | 0.1–0.4 |
NK cells CD3-CD56+ | 109/L | 0.17 | 0.1–0.6 |
Percentage of leukocyte subpopulation | |||
Total CD3+ T cells | % | 70.34 | 61–85 |
T help-induc CD3+CD4+ | % | 48.75 | 34–59 |
T suppr-cytotoxic CD3+CD8+ | % | 18.80 | 19–36 |
Total B cells CD19+ | % | 11.29 | 6–15 |
NK cells CD3-CD56+ | % | 18.29 | 7–26 |
Index CD4/CD8 | 2.59 | 2.59 | 0.9–3.0 |
Cytokine | Concentration (pg/mL) |
---|---|
IFN gamma | 0 |
TNF alpha | 5 |
IL-2 | 0 |
IL-4 | 6 |
IL-6 | 61 |
IL-10 | 9 |
IL-17A | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergov, B.; Angelova, A.; Baldzhieva, A.; Kalchev, Y.; Tsochev, G.; Murdjeva, M. Gordonia sputi as an Arising Causative Agent of Bacteremia in Immunocompromised Comorbid Dialysis Patients—A Case Report. Healthcare 2023, 11, 2059. https://doi.org/10.3390/healthcare11142059
Vergov B, Angelova A, Baldzhieva A, Kalchev Y, Tsochev G, Murdjeva M. Gordonia sputi as an Arising Causative Agent of Bacteremia in Immunocompromised Comorbid Dialysis Patients—A Case Report. Healthcare. 2023; 11(14):2059. https://doi.org/10.3390/healthcare11142059
Chicago/Turabian StyleVergov, Bozhidar, Andreana Angelova, Alexandra Baldzhieva, Yordan Kalchev, Georgi Tsochev, and Marianna Murdjeva. 2023. "Gordonia sputi as an Arising Causative Agent of Bacteremia in Immunocompromised Comorbid Dialysis Patients—A Case Report" Healthcare 11, no. 14: 2059. https://doi.org/10.3390/healthcare11142059
APA StyleVergov, B., Angelova, A., Baldzhieva, A., Kalchev, Y., Tsochev, G., & Murdjeva, M. (2023). Gordonia sputi as an Arising Causative Agent of Bacteremia in Immunocompromised Comorbid Dialysis Patients—A Case Report. Healthcare, 11(14), 2059. https://doi.org/10.3390/healthcare11142059