Maternal Risk Factors Associated with Negative COVID-19 Outcomes and Their Relation to Socioeconomic Indicators in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Ethical Aspects
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Lokken, E.M.; Walker, C.L.; Delaney, S.; Kachikis, A.; Kretzer, N.M.; Erickson, A.; Resnick, R.; Vanderhoeven, J.; Hwang, J.K.; Barnhart, N.; et al. Clinical characteristics of 46 pregnant women with a severe acute respiratory syndrome coronavirus 2 infection in Washington State. Am. J. Obstet. Gynecol. 2020, 223, 911.e1–911.e14. [Google Scholar] [CrossRef] [PubMed]
- Lokken, E.M.; Huebner, E.M.; Taylor, G.G.; Hendrickson, S.; Vanderhoeven, J.; Kachikis, A.; Coler, B.; Walker, C.L.; Sheng, J.S.; Al-Haddad, B.J.; et al. Disease Severity, Pregnancy Outcomes and Maternal Deaths among Pregnant Patients with SARS-CoV-2 Infection in Washington State. Am. J. Obstet. Gynecol. 2021, 225, 77.e1–77.e14. [Google Scholar] [CrossRef] [PubMed]
- Allotey, J.; Fernandez, S.; Bonet, M.; Stallings, E.; Yap, M.; Kew, T.; Zhou, D.; Coomar, D.; Sheikh, J.; Lawson, H.; et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. BMJ 2020, 370, 3320. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakopoulos, L. SARS-CoV-2 Infection Among Hospitalized Pregnant Women: Reasons for Admission and Pregnancy Characteristics—Eight U.S. Health Care Centers, March 1–May 30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1355–1359. [Google Scholar] [CrossRef]
- Takemoto, M.L.; Menezes, M.D.O.; Andreucci, C.B.; Nakamura-Pereira, M.; Amorim, M.M.; Katz, L.; Knobel, R. The tragedy of COVID-19 in Brazil: 124 maternal deaths and counting. Int. J. Gynecol. Obstet. 2020, 51, 154–156. [Google Scholar] [CrossRef]
- Amorim, M.M.R.; Soligo Takemoto, M.L.; da Fonseca, E.B. Maternal deaths with coronavirus disease 2019: A different outcome from low- to middle-resource countries? Am. J. Obstet. Gynecol. 2020, 223, 298–299. [Google Scholar] [CrossRef]
- Takemoto, M.L.; Menezes, M.O.; Andreucci, C.B.; Knobel, R.; Sousa, L.A.; Katz, L.; Fonseca, E.B.; Magalhães, C.G.; Oliveira, W.K.; Rezende-Filho, J.; et al. Maternal mortality and COVID-19. J. Matern.-Fetal Neonatal Med. 2020, 35, 2355–2361. [Google Scholar] [CrossRef]
- Joseph, N.; Wylie, B. Maternal deaths in Brazil from severe COVID-19 respiratory disease: Time for a global commitment to ending health disparities. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1627. [Google Scholar] [CrossRef]
- Roberton, T.; Carter, E.D.; Chou, V.B.; Stegmuller, A.R.; Jackson, B.D.; Tam, Y.; Sawadogo-Lewis, T.; Walker, N. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, 901–908. [Google Scholar] [CrossRef]
- Nakamura-Pereira, M.; Amorim, M.M.R.; Pacagnella, R.D.C.; Takemoto, M.L.S.; Penso, F.C.C.; Rezende-Filho, J.D.; Leal, M.D.C. COVID-19 and Maternal Death in Brazil: An Invisible Tragedy. Rev. Bras. Ginecol. Obs. RBGO Gynecol. Obstet. 2020, 42, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Menezes, M.O.; Takemoto ML, S.; Nakamura-Pereira, M.; Katz, L.; Amorim MM, R.; Salgado, H.O.; Melo, A.; Diniz CS, G.; de Sousa LA, R.; Magalhaes, C.G.; et al. Risk factors for adverse outcomes among pregnant and postpartum women with acute respiratory distress syndrome due to COVID-19 in Brazil. Int. J. Gynecol. Obstet. 2020, 151, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Portilla, R.J.; Sotiriadis, A.; Torres-Torres, J.; Christos, C.; Hawkins-Villarreal, A.; Villafan-Bernal, J.R.; Gurrola-Ochoa, R.A.; Figueras, F. Risk factors for mortality in pregnant women with SARS-CoV-2 infection. medRxiv 2020. [Google Scholar] [CrossRef]
- Siddiqui, A.; Azria, E.; Howell, E.A.; Deneux-Tharaux, C.; Langer, B.; Dupont, C.; Seco, A. Associations between maternal obesity and severe maternal morbidity: Findings from the French EPIMOMS population-based study. Paediatr. Perinat. Epidemiol. 2018, 33, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claramonte Nieto, M.; Meler Barrabes, E.; Garcia Martínez, S.; Gutiérrez Prat, M.; Serra Zantop, B. Impact of aging on obstetric outcomes: Defining advanced maternal age in Barcelona. BMC Pregnancy Childbirth 2019, 19, 342. [Google Scholar] [CrossRef]
- Suleyman, G.; Fadel, R.A.; Malette, K.M.; Hammond, C.; Abdulla, H.; Entz, A.; Demertzis, Z.; Hanna, Z.; Failla, A.; Dagher, C.; et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw. Open 2020, 3, 2012270. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde. Departamento de Informática do Sistema Único de Saúde (DATASUS). Sistema de Informações sobre Mortalidade (SIM). 2019. Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sim/cnv/obt10uf.def (accessed on 29 November 2022).
- Siqueira, T.S.; de Souza, E.K.G.; Martins-Filho, P.R.; Silva, J.R.S.; Gurgel, R.Q.; Cuevas, L.E.; Santos, V.S. Clinical characteristics and risk factors for maternal deaths due to COVID-19 in Brazil: A nationwide population-based cohort study. J. Travel Med. 2022, 29, taab199. [Google Scholar] [CrossRef]
- de Andrade Pereira Silva, M.; Ribeiro, H.F.; Oliveira, R.R.; Pelloso, F.C.; Pujals, C.; Pedroso, R.B.; Carvalho, M.D.B.; Pelloso, S.M. Factors associated with vaccination against Covid-19 in pregnant and hospitalized postpartum women: A retrospective cohort study. PLoS ONE 2022, 17, e0269091. [Google Scholar] [CrossRef]
- Khazanchi, R.; Beiter, E.R.; Gondi, S.; Beckman, A.L.; Bilinski, A.; Ganguli, I. County-Level Association of Social Vulnerability with COVID-19 Cases and Deaths in the USA. J. Gen. Intern. Med. 2020, 35, 2784–2787. [Google Scholar] [CrossRef]
- Oronce, C.I.A.; Scannell, C.A.; Kawachi, I.; Tsugawa, Y. Association between State-Level Income Inequality and COVID-19 Cases and Mortality in the USA. J. Gen. Intern. Med. 2020, 35, 2791–2793. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.; Fenner, A.L.D. Avaliação de Impactos à Saúde (AIS): Análises e desafios para a Vigilância em Saúde do Brasil. Ciência Saúde Coletiva 2017, 22, 3205–3214. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization: Health Impact Assessment (HIA). The Determinants of Health. 2016. Available online: https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1 (accessed on 29 November 2022).
- Takemoto, M.; Menezes, M.O.; Andreucci, C.B.; Knobel, R.; Sousa, L.; Katz, L.; Fonseca, E.B.; Nakamura-Pereira, M.; Magalhães, C.G.; Diniz, C.; et al. Clinical characteristics and risk factors for mortality in obstetric patients with severe COVID-19 in Brazil: A surveillance database analysis. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
Categorical Variables | Level | Absolute Frequency | Relative Frequency |
---|---|---|---|
Gestational age | 1st trimester | 2544 | 10.79% |
2nd trimester | 5875 | 24.92% | |
3rd trimester | 13,939 | 59.11% | |
Not informed | 1222 | 5.18% | |
Race | White | 8073 | 34.79% |
Native born | 146 | 0.63% | |
Not informed | 2871 | 12.37% | |
Brown | 10,554 | 45.48% | |
Black | 1370 | 5.90% | |
Setting | Not informed | 2302 | 9.76% |
Suburban | 113 | 0.48% | |
Urban | 19,598 | 83.11% | |
Risk factor | No | 12,487 | 52.96% |
Yes | 11,093 | 47.04% | |
Cardiopathy | No | 5970 | 25.32% |
Not informed | 16,371 | 69.43% | |
Yes | 1239 | 5.25% | |
Hematological disease | No | 6706 | 28.44% |
Not informed | 16,760 | 71.08% | |
Yes | 114 | 0.48% | |
Down syndrome | No | 6775 | 28.73% |
Not informed | 16,785 | 71.18% | |
Yes | 20 | 0.08% | |
Liver disease | No | 6719 | 28.49% |
Not informed | 16,809 | 71.28% | |
Yes | 52 | 0.22% | |
Asthma | No | 6040 | 25.61% |
Not informed | 16,450 | 69.76% | |
Yes | 1090 | 4.62% | |
Diabetes | No | 5756 | 24.41% |
Not informed | 16,300 | 69,13% | |
Yes | 1524 | 6.46% | |
Neurological disease | No | 6648 | 28.19% |
Not informed | 16,777 | 71.15% | |
Yes | 155 | 0.66% | |
Pneumopathy | No | 6647 | 28.19% |
Not informed | 16,756 | 71.06% | |
Yes | 177 | 0.75% | |
Immunosupression | No | 6574 | 27.88% |
Not informed | 16,753 | 71.05% | |
Yes | 253 | 1.07% | |
Renal disease | No | 6626 | 28.10% |
Not informed | 16,821 | 71.34% | |
Obesity | Yes | 133 | 0.56% |
No | 6066 | 25.73% | |
Not informed | 16,556 | 70.21% | |
Yes | 958 | 4.06% | |
Other risk factors | No | 2173 | 9.22% |
Not informed | 14,132 | 59.93% | |
Yes | 7275 | 30.85% | |
Vaccine | No | 7094 | 30.08% |
Not informed | 12,538 | 53.17% | |
Yes | 3948 | 16.74% | |
Final classification | COVID-19 | 13,140 | 55.73% |
Influenza | 441 | 1.87% | |
Not specified | 9757 | 41.38% | |
Other etiological agent | 53 | 0.22% | |
Other respiratory virus | 189 | 0.80% | |
ICU | ICU admission | 4140 | 17.55% |
Ventilation | Use of non-invasive ventilatory support | 6070 | 25.74% |
Use of invasive ventilatory support | 1602 | 6.79% | |
Outcome | Cure | 18,778 | 79.64% |
Not specified | 3645 | 15.46% | |
Death | 1096 | 4.65% | |
Death from other causes | 61 | 0.26% | |
Numerical Variables | Mean | Standard Deviation | |
Age | 28.91 | 8.41 | |
HDI | 0.75 | 0.05 | |
Family Health Strategy | 3546.26 | 3170.10 | |
Illiteracy rate | 0.09 | 0.05 | |
Per capita income | 1187.07 | 439.71 | |
Urbanization rate | 0.80 | 0.09 |
Variable | Standard Error | p-Value | Odds Ratio |
---|---|---|---|
(Intercept) | 3.9334 | 0.2130 | 134.0707 |
HDI | 6.3876 | 0.4034 | 0.0048 |
Illiteracy | 2.9852 | 0.2890 | 0.0422 |
Per capita income | 0.0005 | 0.2578 | 1.0005 |
Urbanization | 1.8366 | 0.7041 | 0.7041 |
Death | ICU Admission | Ventilatory Support | ||||
---|---|---|---|---|---|---|
p-Value | Odds Ratio | p-Value | Odds Ratio | p-Value | Odds Ratio | |
(Intercept) | 0.5874 | 0.0997 | 0.2579 | 0.0350 | 0.9925 | 1.0246 |
White race | 0.8149 | 1.2800 | 0.1443 | 0.4164 | 0.3934 | 0.5974 |
Native born | 0.9828 | 0.0000 | 0.0834 | 0.1242 | 0.0441 | 0.1338 |
Brown race | 0.6042 | 1.7267 | 0.1509 | 0.4185 | 0.5776 | 0.7126 |
Black race | 0.7396 | 1.4369 | 0.5896 | 0.7125 | 0.7652 | 0.8283 |
Cardiopathy | 0.3073 | 1.2539 | 0.0334 | 1.4090 | 0.0057 | 1.5210 |
Hematological disease | 0.9855 | 0.0000 | 0.6678 | 0.7023 | 0.6222 | 1.3442 |
Down syndrome | 0.1745 | 5.3302 | 0.4626 | 2.4681 | 0.7217 | 1.6605 |
Liver disease | 0.9873 | 0.0000 | 0.9684 | 0.0000 | 0.4837 | 0.5744 |
Diabetes | 0.0179 | 1.6163 | 0.5753 | 0.9139 | 0.5135 | 1.0962 |
Neurological disease | 0.4673 | 0.5731 | 0.3931 | 1.4486 | 0.2697 | 0.6195 |
Pneumopathy | 0.8019 | 1.1759 | 0.7562 | 0.8587 | 0.4854 | 1.3482 |
Immunosupression | 0.2241 | 1.7763 | 0.7419 | 1.1307 | 0.1168 | 1.7131 |
Renal disease | 0.5078 | 1.4629 | 0.7929 | 1.1241 | 0.9587 | 0.9796 |
Obesity | 0.0000 | 2.9303 | 0.0000 | 2.9916 | 0.0000 | 2.4256 |
Other comorbidities | 0.4673 | 0.5731 | 0.3931 | 1.4486 | 0.6916 | 0.6195 |
HDI | 0.9050 | 2.5146 | 0.5925 | 18.2745 | 0.6916 | 6.5343 |
Illiteracy | 0.8384 | 0.4885 | 0.0279 | 296.6904 | 0.0625 | 0.0156 |
Per capita income | 0.7908 | 0.9998 | 0.3546 | 1.0005 | 0.0771 | 1.0008 |
Urbanization | 0.6063 | 0.2630 | 0.7372 | 0.5387 | 0.0714 | 0.0567 |
Age over 35 years | 0.0002 | 1.9279 | 0.0050 | 1.4390 | 0.0000 | 1.7218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, H.F.; de Barros Carvalho, M.D.; Pelloso, F.C.; Santos, L.d.; de Andrade Pereira Silva, M.; Stevanato, K.P.; Borghesan, D.H.P.; Romani, I.; Marques, V.D.; de Freitas, K.M.S.; et al. Maternal Risk Factors Associated with Negative COVID-19 Outcomes and Their Relation to Socioeconomic Indicators in Brazil. Healthcare 2023, 11, 2072. https://doi.org/10.3390/healthcare11142072
Ribeiro HF, de Barros Carvalho MD, Pelloso FC, Santos Ld, de Andrade Pereira Silva M, Stevanato KP, Borghesan DHP, Romani I, Marques VD, de Freitas KMS, et al. Maternal Risk Factors Associated with Negative COVID-19 Outcomes and Their Relation to Socioeconomic Indicators in Brazil. Healthcare. 2023; 11(14):2072. https://doi.org/10.3390/healthcare11142072
Chicago/Turabian StyleRibeiro, Helena Fiats, Maria Dalva de Barros Carvalho, Fernando Castilho Pelloso, Lander dos Santos, Marcela de Andrade Pereira Silva, Kely Paviani Stevanato, Deise Helena Pelloso Borghesan, Isaac Romani, Vlaudimir Dias Marques, Karina Maria Salvatore de Freitas, and et al. 2023. "Maternal Risk Factors Associated with Negative COVID-19 Outcomes and Their Relation to Socioeconomic Indicators in Brazil" Healthcare 11, no. 14: 2072. https://doi.org/10.3390/healthcare11142072
APA StyleRibeiro, H. F., de Barros Carvalho, M. D., Pelloso, F. C., Santos, L. d., de Andrade Pereira Silva, M., Stevanato, K. P., Borghesan, D. H. P., Romani, I., Marques, V. D., de Freitas, K. M. S., Jacinto Alarcão, A. C., Pujals, C., Bocchi Pedroso, R., Cardelli, A. A. M., & Pelloso, S. M. (2023). Maternal Risk Factors Associated with Negative COVID-19 Outcomes and Their Relation to Socioeconomic Indicators in Brazil. Healthcare, 11(14), 2072. https://doi.org/10.3390/healthcare11142072