Strength Assessment of Trunk Rotator Muscles: A Multicenter Reliability Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
2.3.1. Outcome Variables
2.3.2. Reliability
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zemková, E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front. Physiol. 2022, 13, 861582. [Google Scholar] [CrossRef]
- Zinke, F.; Warnke, T.; Gäbler, M.; Granacher, U. Effects of isokinetic training on trunk muscle fitness and body composition in world-class canoe sprinters. Front. Physiol. 2019, 10, 21. [Google Scholar] [CrossRef]
- Gordon, B.S.; Moir, G.L.; Davis, S.E.; Witmer, C.A.; Cummings, D.M. An investigation into the relationship of flexibility, power, and strength to club head speed in male golfers. J. Strength Cond. Res. 2009, 23, 1606–1610. [Google Scholar] [CrossRef]
- Taniyama, D.; Matsuno, J.; Yoshida, K.; Pyle, B.; Nyland, J. Rotational Medicine Ball Throw Velocity Relates to NCAA Division III College Baseball Player Bat Swing, Batted Baseball, and Pitching Velocity. J. Strength Cond. Res. 2021, 35, 3414–3419. [Google Scholar] [CrossRef]
- Rodríguez-Perea, Á.; Reyes-Ferrada, W.; Jerez-Mayorga, D.; Ríos, L.C.; Tillar, R.V.D.; Ríos, I.C.; Martínez-García, D. Core training and performance: A systematic review with meta-analysis. Biol. Sport 2023, 40, 975–992. [Google Scholar] [CrossRef]
- Jain, S.; Shetty, G.; Munje, P.; Bhan, A.; Linjhara, S.; Ram, C.S. Variações baseadas em gênero no movimento e na força isométrica do tronco em jovens adultos com dor lombar: Um estudo de caso-controle prospectivo. Rev. Bras. Ortop. 2021, 57, 392. [Google Scholar] [CrossRef]
- Huxel Bliven, K.C.; Anderson, B.E. Core Stability Training for Injury Prevention. Sports Health 2013, 5, 514. [Google Scholar] [CrossRef]
- Zois, J.; Sharp, A.P.; Talukdar, K.; Cronin, J. The Reliability of a Rotational Power Assessment of the Core. J. Athl. Enhanc. 2016, 5, 5–8. [Google Scholar] [CrossRef]
- Palmer, T.G.; Uhl, T.L. Interday reliability of peak muscular power outputs on an isotonic dynamometer and assessment of active trunk control using the chop and lift tests. J. Athl. Train. 2011, 46, 150–159. [Google Scholar] [CrossRef]
- Zemková, E.; Cepková, A.; Uvaček, M.; Šooš, L. A novel method for assessing muscle power during the standing cable wood chop exercise. J. Strength Cond. Res. 2017, 31, 2246–2254. [Google Scholar] [CrossRef]
- Andre, M.J.; Fry, A.C.; A Heyrman, M.; Hudy, A.; Holt, B.; Roberts, C.; Vardiman, J.P.; Gallagher, P.M. A reliable method for assessing rotational power. J. Strength Cond. Res. 2012, 26, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Barbado, D.; Barbado, L.C.; Elvira, J.L.; Dieën, J.H.; Vera-Garcia, F.J. Sports-related testing protocols are required to reveal trunk stability adaptations in high-level athletes. Gait Posture 2016, 49, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Kibler, W.; Ben Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perea, Á.; Jerez-Mayorga, D.; García-Ramos, A.; Martínez-García, D.; Ríos, L.J.C. Reliability and concurrent validity of a functional electromechanical dynamometer device for the assessment of movement velocity. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2021, 235, 176–181. [Google Scholar] [CrossRef]
- Reyes-Ferrada, W.; Chirosa-Ríos, L.; Chirosa-Ríos, I.; Martínez-García, D.; Barboza-Gonzalez, P.; Ulloa-Díaz, D.; Jerez-Mayorga, D.; Rodríguez-Perea, Á. A New Reliable Device to Assess Trunk Extensors Strength. Acta Bioeng. Biomech. 2022, 24, 2022. [Google Scholar] [CrossRef]
- Rodriguez-Perea, A.; Ríos, L.J.C.; Martinez-Garcia, D.; Ulloa-Díaz, D.; Rojas, F.G.; Jerez-Mayorga, D.; Rios, I.J.C. Reliability of isometric and isokinetic trunk flexor strength using a functional electromechanical dynamometer. PeerJ 2019, 2019, e7887. [Google Scholar] [CrossRef]
- Rodríguez-Perea, A.; Jerez-Mayorga, D.; Morenas-Aguilar, M.D.; Martínez-García, D.; Chirosa-Ríos, I.J.; Chirosa-Ríos, L.J.; Reyes-Ferrada, W. Influence of Sex and Dominant Side on the Reliability of Two Trunk Rotator Exercises. Appl. Sci. 2023, 13, 2441. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Hopkins, W.G. Spreadsheets for analysis of validity and reliability. Sportscience 2015, 19, 36–44. [Google Scholar]
- Hopkins, W.G.; Hewson, D.J. Variability of competitive performance of distance runners. Med. Sci. Sports Exerc. 2001, 33, 1588–1592. [Google Scholar] [CrossRef]
- Mulder, M.L.; Steen, E.V.D.; De Neve, J.; Weir, A. Core muscle strength can be reliably measured using a novel isokinetic device: An intra-observer study. J. Back Musculoskelet. Rehabil. 2022, 1, 1–9. [Google Scholar] [CrossRef]
- García-Vaquero, M.P.; Barbado, D.; Juan-Recio, C.; Lopez-Valenciano, A.; Vera-Garcia, F.J. Isokinetic trunk flexion–extension protocol to assess trunk muscle strength and endurance: Reliability, learning effect, and sex differences. J. Sport Health. Sci. 2020, 9, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Demoulin, C.; Grosdent, S.; Debois, I.; Mahieu, G.; Maquet, D.; Jidovsteff, B.; Croisier, J.-L.; Crielaard, J.; Vanderthommen, M. Inter-session, inter-tester and inter-site reproducibility of isometric trunk muscle strength measurements. Isokinet. Exerc. Sci. 2006, 14, 317–325. [Google Scholar] [CrossRef]
- Oyama, S.; Garza, E.; Dugan, K. Intrasession and intersession reliability of isometric trunk and hip strength measurements using the portable tension dynamometer. J. Sport Rehabil. 2021, 30, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Steeves, D.; Thornley, L.J.; Goreham, J.A.; Jordan, M.J.; Landry, S.C.; Fowles, J.R. Reliability and validity of a novel trunk-strength assessment for high-performance sprint flat-water kayakers. Int. J. Sports Physiol. Perform. 2019, 14, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Muehlbauer, T.; Granacher, U. The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 401–419. [Google Scholar] [CrossRef]
Total (n = 51) | Center 1 (n = 30) | Center 2 (n = 21) | |
---|---|---|---|
Age (years) | 22.39 (3.5) | 22.40 (4.5) | 22.38 (1.3) |
Height (m) | 1.72 (0.08) | 1.72 (0.8) | 1.71 (0.9) |
Weight (kg) | 73.01 (12.8) | 71.97 (11.0) | 74.5 (15.1) |
BMI (kg/m2) | 24.73 (3.3) | 24.30 (2.4) | 25.3 (4.3) |
OLBPD (%) | 2.71 (4.7) | 3.27 (4.9) | 1.9 (4.3) |
ROM_LWC (cm) | 75.2 (4.3) | 74.5 (4.0) | 76.2 (4.6) |
ROM_HWC (cm) | 65.5 (3.9) | 65.1 (3.5) | 66.3 (4.4) |
Test (Kg) | Retest (Kg) | p-Value | ES | ICC (95% CI) | CV (95% CI) | SEM (95% CI) | ||
---|---|---|---|---|---|---|---|---|
Average Strength | ||||||||
LCW_0.50 m·s−1 | Con | 15.9 (6.0) | 15.0 (4.4) | 0.04 | −0.16 | 0.85 (0.75–0.91) | 13.32 (11.14–16.56) | 2.06 (1.72–2.56) |
Ecc | 23.0 (7.8) | 22.7 (5.6) | 0.64 | −0.05 | 0.76 (0.62–0.86) | 14.73 (12.32–18.30) | 3.37 (2.82–4.19) | |
LCW_0.70 m·s−1 | Con | 15.5 (5.4) | 14.7 (4.9) | 0.03 | −0.15 | 0.89 (0.82–0.94) | 11.32 (9.47–14.08) | 1.71 (1.43–2.12) |
Ecc | 24.6 (6.3) | 23.0 (6.3) | 0.01 | −0.25 | 0.81 (0.69–0.89) | 11.69 (9.78–14.53) | 2.78 (2.32–3.45) | |
LCW_ISO | Iso | 21.2 (7.1) | 22.7 (7.2) | 0.03 | 0.21 | 0.78 (0.65–0.87) | 15.31 (12.81–19.03) | 3.36 (2.81–4.18) |
HCW_0.40 m·s−1 | Con | 9.1 (2.8) | 9.2 (2.9) | 0.57 | 0.04 | 0.89 (0.82–0.94) | 10.21 (8.54–12.69) | 0.94 (0.78–1.16) |
Ecc | 14.8 (3.3) | 14.8 (3.6) | 0.95 | 0.00 | 0.85 (0.75–0.91) | 9.33 (7.80–11.59) | 1.38 (1.15–1.71) | |
HCW_0.60 m·s−1 | Con | 8.9 (3.0) | 8.9 (2.9) | 0.89 | −0.01 | 0.86 (0.77–0.92) | 12.33 (10.32–15.33) | 1.10 (0.92–1.37) |
Ecc | 15.1 (3.5) | 15.0 (3.5) | 0.71 | −0.03 | 0.79 (0.66–0.88) | 10.78 (9.02–13.40) | 1.62 (1.36–2.02) | |
HCW_Iso | Iso | 9.7 (3.9) | 9.5 (2.2) | 0.69 | −0.05 | 0.54 (0.31–0.71) | 22.46 (18.79–27.92) | 2.16 (1.81–2.69) |
Peak Strength | ||||||||
LCW_0.50 m·s−1 | Con | 25.1 (8.9) | 25.1 (9.0) | 0.93 | −0.01 | 0.78 (0.64–0.87) | 17.07 (14.28–21.22) | 4.28 (3.58–5.33) |
Ecc | 40.4 (15.4) | 38.4 (12.3) | 0.26 | −0.14 | 0.62 (0.41–0.76) | 22.14 (18.52–27.52) | 8.72 (7.30–10.84) | |
LCW_0.70 m·s−1 | Con | 26.2 (10.7) | 24.0 (8.3) | 0.02 | −0.24 | 0.76 (0.62–0.86) | 18.96 (15.86–23.57) | 4.76 (3.99–5.92) |
Ecc | 44.8 (16.1) | 40.5 (13.3) | 0.01 | −0.29 | 0.75 (0.60–0.85) | 17.64 (14.76–21.93) | 7.53 (6.30–9.36) | |
LCW_ISO | Iso | 25.0 (9.9) | 26.1 (8.7) | 0.25 | 0.12 | 0.72 (0.55–0.85) | 19.67 (16.45–24.45) | 5.03 (4.21–6.25) |
HCW_0.40 m·s−1 | Con | 14.7 (3.2) | 14.6 (3.4) | 0.94 | −0.01 | 0.64 (0.44–0.78) | 13.66 (11.43–16.98) | 2.00 (1.68–2.49) |
Ecc | 19.4 (3.9) | 19.7 (4.3) | 0.62 | 0.05 | 0.74 (0.58–0.84) | 10.84 (9.07–13.48) | 2.12 (1.77–2.63) | |
HCW_0.60 m·s−1 | Con | 16.1 (3.8) | 16.1 (3.8) | 1.00 | 0.00 | 0.71 (0.54–0.82) | 12.90 (10.79–16.03) | 2.07 (1.74–2.58) |
Ecc | 21.5 (5.0) | 20.8 (4.5) | 0.15 | −0.14 | 0.78 (0.65–0.87) | 10.66 (8.92–13.26) | 2.26 (1.89–2.81) | |
HCW_Iso | Iso | 10.6 (3.0) | 10.7 (2.7) | 0.75 | 0.03 | 0.80 (0.68–0.88) | 12.06 (10.09–14.99) | 1.28 (1.07–1.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Perea, A.; Morenas Aguilar, M.D.; Escobar-Molina, R.; Martínez-García, D.; Chirosa Ríos, I.; Jerez-Mayorga, D.; Chirosa Ríos, L.; Janicijevic, D.; Reyes-Ferrada, W. Strength Assessment of Trunk Rotator Muscles: A Multicenter Reliability Study. Healthcare 2023, 11, 2331. https://doi.org/10.3390/healthcare11162331
Rodríguez-Perea A, Morenas Aguilar MD, Escobar-Molina R, Martínez-García D, Chirosa Ríos I, Jerez-Mayorga D, Chirosa Ríos L, Janicijevic D, Reyes-Ferrada W. Strength Assessment of Trunk Rotator Muscles: A Multicenter Reliability Study. Healthcare. 2023; 11(16):2331. https://doi.org/10.3390/healthcare11162331
Chicago/Turabian StyleRodríguez-Perea, Angela, María Dolores Morenas Aguilar, Raquel Escobar-Molina, Darío Martínez-García, Ignacio Chirosa Ríos, Daniel Jerez-Mayorga, Luis Chirosa Ríos, Danica Janicijevic, and Waleska Reyes-Ferrada. 2023. "Strength Assessment of Trunk Rotator Muscles: A Multicenter Reliability Study" Healthcare 11, no. 16: 2331. https://doi.org/10.3390/healthcare11162331
APA StyleRodríguez-Perea, A., Morenas Aguilar, M. D., Escobar-Molina, R., Martínez-García, D., Chirosa Ríos, I., Jerez-Mayorga, D., Chirosa Ríos, L., Janicijevic, D., & Reyes-Ferrada, W. (2023). Strength Assessment of Trunk Rotator Muscles: A Multicenter Reliability Study. Healthcare, 11(16), 2331. https://doi.org/10.3390/healthcare11162331