A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022
Abstract
:1. Introduction
- Providing an account of accessible CT datasets and their utilization in deep learning (DL) for the classification of COVID-19;
- Conducting a performance evaluation that contrasts existing DL models through dataset utilization and methodological approaches;
- Implementing transfer learning (TF) and data augmentation (DA) techniques in the development of DL models;
- Proposing prospective directives for DL investigations within this particularly sensitive domain.
2. COVID-19: Background and Its Relevance
3. Study Scope and Selection Criteria
4. AI for Medical Imaging for COVID-19
4.1. Dataset and Availability
- C1. The COVID-CT dataset consists of 746 CT scans, 349 of which are COVID-19-positive cases.
- C2. The COVID-19 dataset contains 829 CT scans, of which 373 are COVID-19-positive cases.
- C3. Large COVID-19 CT scan dataset comprises 2282 COVID-19-positive CT scans and 12,058 CT scans.
- C4. SARS-CoV-2 dataset has 2482 CT scans with 1252 COVID-19-positive cases.
- C5. COVID-19 open research dataset (CORD-19) consists of 3439 CT scan images, 98 of which are COVID-19-positive cases.
- C6. SIRM COVID-19 database contains 100 CT scans.
- C7. COVID-19 BSTI imaging dataset details are not available.
- C8. Radiopaedia dataset consists of 36,559 CT scans, where 3520 are COVID-19-positive cases. It is the largest dataset.
- C9. MosMeddata dataset is composed of 1110 CT scans.
- C10. COVID-19 dataset contains 521 CT scans, where 48 are COVID-19-positive cases.
- C11. COVID-CS dataset contains 3855 CXRs, where 200 are COVID-19-positive cases.
- C12. Medical imaging databank in the Valencia region medical image bank (BIMCV) COVID-19 dataset consists of 1311 COVID-19-positive CT scans and 6687 CT scans.
- C13. COVID-19-CT-CXR dataset contains 1327 CT scans, and the author has not disclosed the number of positive cases.
- C14. Larxel dataset is composed of 20 COVID-19-positive CT scans.
- C15. Large COVID-19 CT scan slice dataset consists of 7593 COVID-19 positive CT scans and a total of 17,102.
- C16. Extensive COVID-19 X-Ray and CT Chest images dataset has 17,099 CT scans, including 5427 COVID-19-positive cases.
- C17. CF dataset contributes 19,685 images with 4001 COVID-19-positive cases.
- C18. COVID-19 image dataset contains 22,873 CT scans, where 3520 are COVID-19-positive.
- C19. China consortium of chest CT image investigation (CC-CCII) Dataset comprises 4178 CT scans, 1544 of which are COVID-19-positive.
- C20. COVID-CT-MD dataset is private.
- C21. Deep Covid dataset consists of 5000 CT scans. They have not disclosed the number of positive cases.
- C22. CT scan for COVID-19 dataset contains 13,980 CT scans, where 4001 are COVID-19-positive cases.
- C23. Covid Chest Xray and CT images dataset consist of 144 CT scans, where 118 are COVID-19-positive cases.
- C24. Harvard dataverse dataset contains 4172 CT scans with 2167 COVID-19-positive cases.
- C25. COVIDx CT is the largest dataset with 431,205 CT scans, including 316,774 COVID-19-positive cases.
4.2. CT Imaging Tools
4.3. Identification of COVID-19 Using CT Imaging Tools (2020–2022)
4.3.1. 2020
4.3.2. 2021
4.3.3. 2022
4.4. Performance Comparison
4.5. How Big Is Big Data?
4.6. Transfer Learning
4.7. Data Augmentation
4.7.1. 2020
4.7.2. 2021
4.7.3. 2022
5. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. Who declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157. [Google Scholar] [PubMed]
- Worldometers. Available online: https://www.worldometers.info/coronavirus/ (accessed on 2 June 2023).
- Santosh, K.; Ghosh, S.; GhoshRoy, D. Deep Learning for COVID-19 Screening Using Chest X-rays in 2020: A Systematic Review. Int. J. Pattern Recognit. Artif. Intell. 2022, 36, 22520103. [Google Scholar] [CrossRef]
- Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 2020, 93, 284–286. [Google Scholar] [CrossRef]
- Santosh, K.C. COVID-19 Prediction Models and Unexploited Data. J. Med. Syst. 2020, 44, 170. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Razai, M.S.; Doerholt, K.; Ladhani, S.; Oakeshott, P. Coronavirus disease 2019 (COVID-19): A guide for UK GPs. BMJ 2020, 368, m800. [Google Scholar] [CrossRef]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Mahbub, M.K.; Biswas, M.; Gaur, L.; Alenezi, F.; Santosh, K. Deep features to detect pulmonary abnormalities in chest x-rays due to infectious diseasex: COVID-19, pneumonia, and tuberculosis. Inf. Sci. 2022, 592, 389–401. [Google Scholar] [CrossRef]
- Santosh, K.; Gaur, L. Artificial Intelligence and Machine Learning in Public Healthcare Opportunities and Societal Impact; Briefs in Applied Sciences; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Santosh, K.; Das, N.; Ghosh, S. Deep Learning Models for Medical Imaging; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Islam, M.; Rahaman, A.; Islam, R. Development of Smart Healthcare Monitoring System in IoT Environment. SN Comput. Sci. 2020, 1, 185. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Islam, M.M.; Islam, M.R.; Nooruddin, S. Developing IoT Based Smart Health Monitoring Systems: A Review. Rev. D’intelligence Artif. 2019, 33, 435–440. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, P.K.; Srivastava, A. A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Carin, L.; Dzau, V.; Wong, T.Y. Digital technology and COVID-19. Nat. Med. 2020, 26, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.D.; Ryerson, C.J.; Haramati, L.B.; Sverzellati, N.; Kanne, J.P.; Raoof, S.; Schluger, N.W.; Volpi, A.; Yim, J.-J.; Martin, I.B.K.; et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology 2020, 296, 172–180. [Google Scholar] [CrossRef]
- Dong, D.; Tang, Z.; Wang, S.; Hui, H.; Gong, L.; Lu, Y.; Xue, Z.; Liao, H.; Chen, F.; Yang, F.; et al. The Role of Imaging in the Detection and Management of COVID-19: A Review. IEEE Rev. Biomed. Eng. 2020, 14, 16–29. [Google Scholar] [CrossRef]
- Zhao, D.; Yao, F.; Wang, L.; Zheng, L.; Gao, Y.; Ye, J.; Guo, F.; Zhao, H.; Gao, R. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. In Clinical Infectious Diseases; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Schalk, A.F.; Hawn, M.C. An apparent new respiratory disease of baby chicks. J. Am. Vet. Med. Assoc. 1931, 78, 413–423. [Google Scholar]
- Fabricant, J. The Early History of Infectious Bronchitis. Avian Dis. 1998, 42, 648–650. [Google Scholar] [CrossRef]
- Cook, J.K.A.; Jackwood, M.; Jones, R.C. The long view: 40 years of infectious bronchitis research. Avian Pathol. 2012, 41, 239–250. [Google Scholar] [CrossRef]
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and Sources of Endemic Human Coronaviruses. Adv. Virus Res. 2018, 100, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, K.; Dees, J.H.; Becker, W.B.; Kapikian, A.Z.; Chanock, R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA 1967, 57, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.M.; Arden, K.E. MERS coronavirus: Diagnostics, epidemiology and transmission. Virol. J. 2015, 12, 222. [Google Scholar] [CrossRef]
- Boopathi, S.; Poma, A.B.; Kolandaivel, P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn. 2020, 39, 3409–3418. [Google Scholar] [CrossRef]
- Khan, S.; Fakhar, Z.; Hussain, A.; Ahmad, A.; Jairajpuri, D.S.; Alajmi, M.F.; Hassan, M.I. Structure-based identification of potential SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2020, 40, 3595–3608. [Google Scholar] [CrossRef]
- Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He, K.; Shi, Y.; Shen, D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2020, 14, 4–15. [Google Scholar] [CrossRef]
- McCall, B. COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread. Lancet Digit. Health 2020, 2, e166–e167. [Google Scholar] [CrossRef]
- Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today 2018, 23, 1241–1250. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Wainberg, M.; Merico, D.; Delong, A.; Frey, B.J. Deep learning in biomedicine. Nat. Biotechnol. 2018, 36, 829–838. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1. [Google Scholar]
- Tang, X. The role of artificial intelligence in medical imaging research. BJR|Open 2019, 2, 20190031. [Google Scholar] [CrossRef]
- Ranschaert, E.R.; Morozov, S.; Algra, P.R. Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Desai, S.B.; Pareek, A.; Lungren, M.P. Deep learning and its role in COVID-19 medical imaging. Intell. Med. 2020, 3–4, 100013. [Google Scholar] [CrossRef]
- Gaur, U.; Majumder, A.A.; Sa, B.; Sarkar, S.; Williams, A.; Singh, K. Challenges and Opportunities of Preclinical Medical Education: COVID-19 Crisis and Beyond. SN Compr. Clin. Med. 2020, 2, 1992–1997. [Google Scholar] [CrossRef]
- Tayarani, M. Applications of artificial intelligence in battling against COVID-19: A literature review. Chaos Solitons Fractals 2020, 142, 110338. [Google Scholar] [CrossRef]
- Islam, M.; Karray, F.; Alhajj, R.; Zeng, J. A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19). IEEE Access 2021, 9, 30551–30572. [Google Scholar] [CrossRef]
- Fan, D.-P.; Zhou, T.; Ji, G.-P.; Zhou, Y.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE Trans. Med. Imaging 2020, 39, 2626–2637. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Deep Learning applications for COVID-19. J. Big Data 2021, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Huo, J.; Xia, L.; Shan, F.; Liu, J.; Mo, Z.; Yan, F.; Ding, Z.; Yang, Q.; Song, B.; et al. Dual-Sampling Attention Network for Diagnosis of COVID-19 From Community Acquired Pneumonia. IEEE Trans. Med. Imaging 2020, 39, 2595–2605. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Oda, M.; Wang, C.; Moriya, T.; Hayashi, Y.; Otake, Y.; Hashimoto, M.; Akashi, T.; Mori, M.; Takabatake, H.; et al. Unsupervised segmentation of covid-19 infected lung clinical ct volumes using image inpainting and representation learning. In Medical Imaging 2021: Image Processing; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2021. [Google Scholar] [CrossRef]
- Brooks, N.A.; Puri, A.; Garg, S.; Nag, S.; Corbo, J.; El Turabi, A.; Kaka, N.; Zemmel, R.W.; Hegarty, P.K.; Kamat, A.M. The association of coronavirus disease-19 mortality and prior bacilli calmette-guerin vaccination: A robust ecological analysis using unsupervised machine learning. Sci. Rep. 2021, 11, 774. [Google Scholar] [CrossRef]
- Sallay, H.; Bourouis, S.; Bouguila, N. Online Learning of Finite and Infinite Gamma Mixture Models for COVID-19 Detection in Medical Images. Computers 2020, 10, 6. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D.; Laboratories, H.Y.L.B.; Zhu, Z.; Cheng, J.; Zhao, Y.; et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Ni, Q.; Sun, Z.Y.; Qi, L.; Chen, W.; Yang, Y.; Wang, L.; Zhang, X.; Yang, L.; Fang, Y.; Xing, Z.; et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur. Radiol. 2020, 30, 6517–6527. [Google Scholar] [CrossRef]
- He, X. Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. medRxiv 2020. [Google Scholar] [CrossRef]
- Loey, M.; Manogaran, G.; Khalifa, N.E.M. A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images. Neural Comput. Appl. 2020. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, H.; Liu, Y.; Wu, W.; Dai, G.; Wu, Z.; Zhu, P.; Zhang, W.; Yeom, K.W.; Deng, K. End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT. Eur. J. Nucl. Med. 2020, 47, 2516–2524. [Google Scholar] [CrossRef] [PubMed]
- Chaganti, S.; Grenier, P.; Balachandran, A.; Chabin, G.; Cohen, S.; Flohr, T.; Georgescu, B.; Grbic, S.; Liu, S.; Mellot, F.; et al. Automated Quantification of CT Patterns Associated with COVID-19 from Chest CT. Radiol. Artif. Intell. 2020, 2, e200048. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V.; Vaishali; Kaur, M. Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Lei, S.; Yang, J.; Cao, Y.; Jiang, P.; Yang, Q.; Zhang, J.; Wang, X.; Chen, F.; Geng, Z.; et al. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng. 2020, 4, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.; Gianchandani, N.; Singh, D.; Kumar, V.; Kaur, M. Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn. 2020, 39, 5682–5689. [Google Scholar] [CrossRef] [PubMed]
- Babukarthik, R.G.; Adiga, V.A.K.; Sambasivam, G.; Chandramohan, D.; Amudhavel, J. Prediction of COVID-19 Using Genetic Deep Learning Convolutional Neural Network (GDCNN). IEEE Access 2020, 8, 177647–177666. [Google Scholar] [CrossRef]
- Mohammed, A.; Wang, C.; Zhao, M.; Ullah, M.; Naseem, R.; Wang, H.; Pedersen, M.; Cheikh, F.A. Weakly-Supervised Network for Detection of COVID-19 in Chest CT Scans. IEEE Access 2020, 8, 155987–156000. [Google Scholar] [CrossRef]
- Han, Z.; Wei, B.; Hong, Y.; Li, T.; Cong, J.; Zhu, X.; Wei, H.; Zhang, W. Accurate Screening of COVID-19 Using Attention-Based Deep 3D Multiple Instance Learning. IEEE Trans. Med. Imaging 2020, 39, 2584–2594. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, H.; Loew, M.; Ko, H. COVID-19 CT Image Synthesis ith a Conditional Generative Adversarial Network. IEEE J. Biomed. Health Inform. 2020, 25, 441–452. [Google Scholar] [CrossRef]
- Gunraj, H.; Wang, L.; Wong, A. COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases From Chest CT Images. Front. Med. 2020, 7, 608525. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Das, S.K.; Roy, P.; Bandyopadhyay, S. Identifying COVID19 from Chest CT Images: A Deep Convolutional Neural Networks Based Approach. J. Health Eng. 2020, 2020, 8843664. [Google Scholar] [CrossRef] [PubMed]
- Javor, D.; Kaplan, H.; Kaplan, A.; Puchner, S.; Krestan, C.; Baltzer, P. Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography. Eur. J. Radiol. 2020, 133, 109402. [Google Scholar] [CrossRef]
- Silva, P.; Luz, E.; Silva, G.; Moreira, G.; Silva, R.; Lucio, D.; Menotti, D. COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Inform. Med. Unlocked 2020, 20, 100427. [Google Scholar] [CrossRef] [PubMed]
- Pathak, Y.; Shukla, P.; Tiwari, A.; Stalin, S.; Singh, S. Deep Transfer Learning Based Classification Model for COVID-19 Disease. IRBM 2020, 43, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hui, H.; Niu, M.; Li, L.; Wang, L.; He, B.; Yang, X.; Li, L.; Li, H.; Tian, J.; et al. Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study. Eur. J. Radiol. 2020, 128, 109041. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tang, Y.; Lee, S.; Zhu, Y.; Summers, R.M.; Lu, Z. COVID-19-CT-CXR: A Freely Accessible and Weakly Labeled Chest X-ray and CT Image Collection on COVID-19 From Biomedical Literature. IEEE Trans. Big Data 2020, 7, 3–12. [Google Scholar] [CrossRef]
- Qian, X.; Fu, H.; Shi, W.; Chen, T.; Fu, Y.; Shan, F.; Xue, X. M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening From CT Imaging. IEEE J. Biomed. Health Inform. 2020, 24, 3539–3550. [Google Scholar] [CrossRef]
- Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology 2020, 296, E65–E71. [Google Scholar] [CrossRef]
- Lessmann, N.; Sánchez, C.I.; Beenen, L.; Boulogne, L.H.; Brink, M.; Calli, E.; Charbonnier, J.P.; Dofferhoff, T.; van Everdingen, W.M.; Gerke, P.K.; et al. Automated assessment of CO-RADS and chest CT severity scores in patients with suspected COVID-19 using artificial intelligence. Radiology 2020, 298, E18–E28. [Google Scholar] [CrossRef]
- Jin, C.; Chen, W.; Cao, Y.; Xu, Z.; Tan, Z.; Zhang, X.; Deng, L.; Zheng, C.; Zhou, J.; Shi, H.; et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.; Dehghani, M.; et al. Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access 2020, 8, 109581–109595. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deng, X.; Fu, Q.; Zhou, Q.; Feng, J.; Ma, H.; Liu, W.; Zheng, C. A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT. IEEE Trans. Med. Imaging 2020, 39, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chu, Y.; Zhao, N. Supervised framework for COVID-19 classification and lesion localization from chest CT. Ethiop. J. Health Dev. 2020, 34, 235–242. [Google Scholar]
- Lai, Y.; Li, G.; Wu, D.; Lian, W.; Li, C.; Tian, J.; Ma, X.; Chen, H.; Xu, W.; Wei, J.; et al. 2019 Novel Coronavirus-Infected Pneumonia on CT: A Feasibility Study of Few-Shot Learning for Computerized Diagnosis of Emergency Diseases. IEEE Access 2020, 8, 194158–194165. [Google Scholar] [CrossRef]
- Liu, Q.; Leung, C.K.; Hu, P. A Two-Dimensional Sparse Matrix Profile DenseNet for COVID-19 Diagnosis Using Chest CT Images. IEEE Access 2020, 8, 213718–213728. [Google Scholar] [CrossRef]
- Panwar, H.; Gupta, P.; Siddiqui, M.K.; Morales-Menendez, R.; Bhardwaj, P.; Singh, V. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images. Chaos Solitons Fractals 2020, 140, 110190. [Google Scholar] [CrossRef]
- Misztal, K.; Pocha, A.; Durak-Kozica, M.; Wątor, M.; Kubica-Misztal, A.; Hartel, M. The importance of standardisation—COVID-19 CT & Radiograph Image Data Stock for deep learning purpose. Comput. Biol. Med. 2020, 127, 104092. [Google Scholar] [CrossRef]
- Amyar, A.; Modzelewski, R.; Li, H.; Ruan, S. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput. Biol. Med. 2020, 126, 10403. [Google Scholar] [CrossRef]
- Polsinelli, M.; Cinque, L.; Placidi, G. A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recognit. Lett. 2020, 140, 95–100. [Google Scholar] [CrossRef]
- Ko, H.; Chung, H.; Kang, W.S.; Kim, K.W.; Shin, Y.; Kang, S.J.; Lee, J.H.; Kim, Y.J.; Kim, N.Y.; Jung, H.; et al. COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework with a Single Chest CT Image: Model Development and Validation. J. Med. Internet Res. 2020, 22, e19569. [Google Scholar] [CrossRef]
- El-Bana, S.; Al-Kabbany, A.; Sharkas, M. A multi-task pipeline with specialized streams for classification and segmentation of infection manifestations in COVID-19 scans. PeerJ Comput. Sci. 2020, 6, e303. [Google Scholar] [CrossRef]
- Wang, J.; Bao, Y.; Wen, Y.; Lu, H.; Luo, H.; Xiang, Y.; Li, X.; Liu, C.; Qian, D. Prior-Attention Residual Learning for More Discriminative COVID-19 Screening in CT Images. IEEE Trans. Med. Imaging 2020, 39, 2572–2583. [Google Scholar] [CrossRef]
- Deng, X.; Shao, H.; Shi, L.; Wang, X.; Xie, T. An Classification–Detection Approach of COVID-19 Based on Chest X-ray and CT by Using Keras Pre-Trained Deep Learning Models. Comput. Model. Eng. Sci. 2020, 125, 579–596. [Google Scholar] [CrossRef]
- Hu, S.; Gao, Y.; Niu, Z.; Jiang, Y.; Li, L.; Xiao, X.; Wang, M.; Fang, E.F.; Menpes-Smith, W.; Xia, J.; et al. Weakly Supervised Deep Learning for COVID-19 Infection Detection and Classification from CT Images. IEEE Access 2020, 8, 118869–118883. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Chen, Y.; Su, J.; Lang, G. Deep Learning System to Screen novel Coronavirus Disease 2019 Pneumonia. Engineering 2020, 6, 1122–1129. [Google Scholar] [CrossRef]
- Wang, S.; Zha, Y.; Li, W.; Wu, Q.; Li, X.; Niu, M.; Wang, M.; Qiu, X.; Li, H.; Yu, H.; et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur. Respir. J. 2020, 56, 2000775. [Google Scholar] [CrossRef]
- Kang, H.; Xia, L.; Yan, F.; Wan, Z.; Shi, F.; Yuan, H.; Jiang, H.; Wu, D.; Sui, H.; Zhang, C.; et al. Diagnosis of Coronavirus Disease 2019 (COVID-19) With Structured Latent Multi-View Representation Learning. IEEE Trans. Med Imaging 2020, 39, 2606–2614. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Zhang, J.; Zhang, L.; Gong, D.; Zhao, Y.; Chen, Q.; Huang, S.; Yang, M.; Yang, X.; et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci. Rep. 2020, 10, 19196. [Google Scholar] [CrossRef]
- Bai, H.X.; Wang, R.; Xiong, Z.; Hsieh, B.; Chang, K.; Halsey, K.; Tran, T.M.L.; Choi, J.W.; Wang, D.-C.; Shi, L.-B.; et al. Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT. Radiology 2020, 296, E156–E165. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, B.; Abbasi, A.; Hoshmand-Kochi, M.; Li, H.; Duong, T.Q. Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs. PLoS ONE 2020, 15, e0236621. [Google Scholar] [CrossRef] [PubMed]
- Benbrahim, H.; Hachimi, H.; Amine, A. Deep transfer learning with apache spark to detect COVID-19 in chest X-ray images. Rom. J. Inf. Sci. Technol. 2020, 23, S117–S129. [Google Scholar]
- Sharma, S. Drawing insights from COVID-19-infected patients using CT scan images and machine learning techniques: A study on 200 patients. Environ. Sci. Pollut. Res. 2020, 27, 37155–37163. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.M.; Elshennawy, N.M.; Sarhan, A.M. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput. Biol. Med. 2021, 132, 104348. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, M.; Pisov, M.; Shevtsov, A.; Shirokikh, B.; Kurmukov, A.; Blokhin, I.; Chernina, V.; Solovev, A.; Gombolevskiy, V.; Morozov, S.; et al. CT-Based COVID-19 triage: Deep multitask learning improves joint identification and severity quantification. Med. Image Anal. 2021, 71, 102054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-D.; Satapathy, S.C.; Liu, S.; Li, G.-R. A five-layer deep convolutional neural network with stochastic pooling for chest CT-based COVID-19 diagnosis. Mach. Vis. Appl. 2021, 32, 14. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, S.; Li, L.; Zhang, X.; Zhang, X.; Huang, Z.; Chen, J.; Zhao, H.; Jie, Y.; Wang, R. Deep learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT images. medRxiv 2021. [Google Scholar] [CrossRef]
- Yao, J.-C.; Wang, T.; Hou, G.-H.; Ou, D.; Li, W.; Zhu, Q.-D.; Chen, W.-C.; Yang, C.; Wang, L.-P.; Fan, L.-Y.; et al. AI detection of mild COVID-19 pneumonia from chest CT scans. Eur. Radiol. 2021, 31, 7192–7201. [Google Scholar] [CrossRef] [PubMed]
- Acar, E.; Şahin, E.; Yılmaz, I. Improving effectiveness of different deep learning-based models for detecting COVID-19 from computed tomography (CT) images. Neural Comput. Appl. 2021, 33, 17589–17609. [Google Scholar] [CrossRef]
- Ravi, V.; Narasimhan, H.; Chakraborty, C.; Pham, T.D. Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images. Multimed. Syst. 2022, 28, 1401–1415. [Google Scholar] [CrossRef]
- Chen, H.; Guo, S.; Hao, Y.; Fang, Y.; Fang, Z.; Wu, W.; Liu, Z.; Li, S. Auxiliary Diagnosis for COVID-19 with Deep Transfer Learning. J. Digit. Imaging 2021, 34, 231–241. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Wang, R.; Zhang, M.; Zeng, X.; Liu, J.; Yang, Y.; Liu, X.; Zheng, H.; Liang, D.; et al. FaNet: Fast assessment network for the novel coronavirus (COVID-19) pneumonia based on 3D CT imaging and clinical symptoms. Appl. Intell. 2021, 51, 2838–2849. [Google Scholar] [CrossRef] [PubMed]
- Jangam, E.; Barreto, A.A.D.; Annavarapu, C.S.R. Automatic detection of COVID-19 from chest CT scan and chest X-rays images using deep learning, transfer learning and stacking. Appl. Intell. 2021, 52, 2243–2259. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Kolekar, M.H. Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform. Multimed. Tools Appl. 2022, 81, 3–30. [Google Scholar] [CrossRef]
- Alirr, O.I. Automatic deep learning system for COVID-19 infection quantification in chest CT. Multimed. Tools Appl. 2021, 81, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Kundu, R.; Singh, P.K.; Ferrara, M.; Ahmadian, A.; Sarkar, R. ET-NET: An ensemble of transfer learning models for prediction of COVID-19 infection through chest CT-scan images. Multimed. Tools Appl. 2021, 81, 31–50. [Google Scholar] [CrossRef]
- Saad, W.; Shalaby, W.A.; Shokair, M.; El-Samie, F.A.; Dessouky, M.; Abdellatef, E. COVID-19 classification using deep feature concatenation technique. J. Ambient. Intell. Humaniz. Comput. 2021, 13, 2025–2043. [Google Scholar] [CrossRef]
- Fung, D.L.; Liu, Q.; Zammit, J.; Leung, C.K.S.; Hu, P. Self-supervised deep learning model for COVID-19 lung CT image segmentation highlighting putative causal relationship among age, underlying disease and COVID-19. J. Transl. Med. 2021, 19, 318. [Google Scholar] [CrossRef]
- Tan, W.; Liu, P.; Li, X.; Liu, Y.; Zhou, Q.; Chen, C.; Gong, Z.; Yin, X.; Zhang, Y. Classification of COVID-19 pneumonia from chest CT images based on reconstructed super-resolution images and VGG neural network. Health Inf. Sci. Syst. 2021, 9, 10. [Google Scholar] [CrossRef]
- Lascu, M.-R. Deep Learning in Classification of COVID-19 Coronavirus, Pneumonia and Healthy Lungs on CXR and CT Images. J. Med. Biol. Eng. 2021, 41, 514–522. [Google Scholar] [CrossRef]
- Lassau, N.; Ammari, S.; Chouzenoux, E.; Gortais, H.; Herent, P.; Devilder, M.; Soliman, S.; Meyrignac, O.; Talabard, M.-P.; Lamarque, J.-P.; et al. Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients. Nat. Commun. 2021, 12, 634. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Li, L.; Liu, B.; Ye, T.; Li, L.; Liu, D.; Ding, Z.; Chen, G.; Liang, B.; Yang, L.; et al. A novel deep learning-based quantification of serial chest computed tomography in Coronavirus Disease 2019 (COVID-19). Sci. Rep. 2021, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Martinez, C.; Visuña, L.; Khandhar, H.; Bhatt, C.; Carretero, J. Detection and analysis of COVID-19 in medical images using deep learning techniques. Sci. Rep. 2021, 11, 19638. [Google Scholar] [CrossRef] [PubMed]
- Gifani, P.; Shalbaf, A.; Vafaeezadeh, M. Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, M.; Attar, A.; Sakhaei, S.M. A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset. Biomed. Signal Process. Control 2021, 68, 102588. [Google Scholar] [CrossRef]
- Lee, E.H.; Zheng, J.; Colak, E.; Mohammadzadeh, M.; Houshmand, G.; Bevins, N.; Kitamura, F.; Altinmakas, E.; Reis, E.P.; Kim, J.-K.; et al. Deep COVID DeteCT: An international experience on COVID-19 lung detection and prognosis using chest CT. NPJ Digit. Med. 2021, 4, 11. [Google Scholar] [CrossRef]
- Mishra, S. Deep Transfer Learning-Based Framework for COVID-19 Diagnosis Using Chest CT Scans and Clinical Information. SN Comput. Sci. 2021, 2, 390. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, X.; Huo, G.; Li, Q.; Qi, F. Novel coronavirus pneumonia detection and segmentation based on the deep-learning method. Ann. Transl. Med. 2021, 9, 934. [Google Scholar] [CrossRef]
- Barbosa, E.J.M., Jr.; Gefter, W.B.; Ghesu, F.C.; Liu, S.; Mailhe, B.; Mansoor, A.; Grbic, S.; Vogt, S. Automated Detection and Quantification of COVID-19 Airspace Disease on Chest Radiographs: A Novel Approach Achieving Expert Radiologist-Level Performance Using a Deep Convolutional Neural Network Trained on Digital Reconstructed Radiographs from Computed Tomography–Derived Ground Truth. Investig. Radiol. 2021, 56, 471–479. [Google Scholar]
- Zhao, C.; Xu, Y.; He, Z.; Tang, J.; Zhang, Y.; Han, J.; Shi, Y.; Zhou, W. Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images. Pattern Recognit. 2021, 119, 108071. [Google Scholar] [CrossRef]
- Jadhav, S.; Deng, G.; Zawin, M.; Kaufman, A.E. COVID-view: Diagnosis of COVID-19 using Chest CT. IEEE Trans. Vis. Comput. Graph. 2021, 28, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Guiot, J.; Vaidyanathan, A.; Deprez, L.; Zerka, F.; Danthine, D.; Frix, A.-N.; Thys, M.; Henket, M.; Canivet, G.; Mathieu, S.; et al. Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19. Diagnostics 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.-J.; Zhu, Z.-Q.; Wang, S.-H.; Zhang, Y.-D. CSGBBNet: An Explainable Deep Learning Framework for COVID-19 Detection. Diagnostics 2021, 11, 1712. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Yow, K.-C. Object or Background: An Interpretable Deep Learning Model for COVID-19 Detection from CT-Scan Images. Diagnostics 2021, 11, 1732. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Xingming, Z.; Tao, G.; Dan, T.; Li, J.; Chen, X.; Li, Y.; Zhou, Z.; Zhang, X.; Zhou, J.; et al. Classification of COVID-19 by Compressed Chest CT Image through Deep Learning on a Large Patients Cohort. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Kuchana, M.; Srivastava, A.; Das, R.; Mathew, J.; Mishra, A.; Khatter, K. AI aiding in diagnosing, tracking recovery of COVID-19 using deep learning on Chest CT scans. Multimed. Tools Appl. 2021, 80, 9161–9175. [Google Scholar] [CrossRef]
- Khalifa, N.E.M.; Manogaran, G.; Taha, M.H.N.; Loey, M. A deep learning semantic segmentation architecture for COVID-19 lesions discovery in limited chest CT datasets. Expert Syst. 2021, 39, e12742. [Google Scholar] [CrossRef]
- Bhuyan, H.K.; Chakraborty, C.; Shelke, Y.; Pani, S.K. COVID-19 diagnosis system by deep learning approaches. Expert Syst. 2022, 39, e12776. [Google Scholar] [CrossRef]
- Heidarian, S.; Afshar, P.; Enshaei, N.; Naderkhani, F.; Rafiee, M.J.; Fard, F.B.; Samimi, K.; Atashzar, S.F.; Oikonomou, A.; Plataniotis, K.N.; et al. COVID-FACT: A Fully-Automated Capsule Network-Based Framework for Identification of COVID-19 Cases from Chest CT Scans. Front. Artif. Intell. 2021, 4, 598932. [Google Scholar] [CrossRef]
- Ahsan, M.; Nazim, R.; Siddique, Z.; Huebner, P. Detection of COVID-19 Patients from CT Scan and Chest X-ray Data Using Modified MobileNetV2 and LIME. Healthcare 2021, 9, 1099. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Z.; Liu, G.; Zhang, W.; Du, Q.; Tan, J.; Gao, Q. Artificial Intelligence Clinicians Can Use Chest Computed Tomography Technology to Automatically Diagnose Coronavirus Disease 2019 (COVID-19) Pneumonia and Enhance Low-Quality Images. Infect. Drug Resist. 2021, 14, 671–687. [Google Scholar] [CrossRef]
- Chaddad, A.; Hassan, L.; Desrosiers, C. Deep CNN models for predicting COVID-19 in CT and X-ray images. J. Med. Imaging 2021, 8, 014502. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Esfahanian, P.; Movahed, S.M.S.; Gorgin, S.; Rahmati, D.; Abedini, A.; Nadji, S.A.; Haseli, S.; Bakhshayesh Karam, M.; Kiani, A.; et al. ai-corona: Radiologist-assistant deep learning framework for COVID-19 diagnosis in chest CT scans. PLoS ONE 2021, 16, e0250952. [Google Scholar]
- Chen, X.; Yao, L.; Zhou, T.; Dong, J.; Zhang, Y. Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images. Pattern Recognit. 2021, 113, 107826. [Google Scholar] [CrossRef]
- Munusamy, H.; Muthukumar, K.J.; Gnanaprakasam, S.; Shanmugakani, T.R.; Sekar, A. FractalCovNet architecture for COVID-19 Chest X-ray image Classification and CT-scan image Segmentation. Biocybern. Biomed. Eng. 2021, 41, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Nayak, D.R.; Guttery, D.S.; Zhang, X.; Zhang, Y.-D. COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Inf. Fusion 2021, 68, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Tang, S.; Liu, W.; Zhang, Y. Deep learning for COVID-19 chest CT (computed tomography) image analysis: A lesson from lung cancer. Comput. Struct. Biotechnol. J. 2021, 19, 1391–1399. [Google Scholar] [CrossRef]
- Hu, K.; Huang, Y.; Huang, W.; Tan, H.; Chen, Z.; Zhong, Z.; Li, X.; Zhang, Y.; Gao, X. Deep supervised learning using self-adaptive auxiliary loss for COVID-19 diagnosis from imbalanced CT images. Neurocomputing 2021, 458, 232–245. [Google Scholar] [CrossRef]
- Jingxin, L.; Mengchao, Z.; Yuchen, L.; Jinglei, C.; Yutong, Z.; Zhong, Z.; Lihui, Z. COVID-19 lesion detection and segmentation–A deep learning method. Methods 2022, 202, 62–69. [Google Scholar] [CrossRef]
- Balaha, H.M.; El-Gendy, E.M.; Saafan, M.M. CovH2SD: A COVID-19 detection approach based on Harris Hawks Optimization and stacked deep learning. Expert. Syst. Appl. 2021, 186, 115805. [Google Scholar] [CrossRef]
- Turkoglu, M. COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network. IRBM 2021, 42, 207–214. [Google Scholar] [CrossRef]
- Ahamed, K.U.; Islam, M.; Uddin, A.; Akhter, A.; Paul, B.K.; Abu Yousuf, M.; Uddin, S.; Quinn, J.M.; Moni, M.A. A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images. Comput. Biol. Med. 2021, 139, 105014. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Siddalingaswamy, P.; Kumar, P.; Manohara Pai, M.M.; Ali, T.; Acharya, U.R. Novel ensemble of optimized CNN and dynamic selection techniques for accurate COVID-19 screening using chest CT images. Comput. Biol. Med. 2021, 137, 104835. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.F.H.S. An ensemble approach for multi-stage transfer learning models for COVID-19 detection from chest CT scans. Intell. Med. 2021, 5, 100027. [Google Scholar] [CrossRef]
- Hasan, N.I. A hybrid method of COVID-19 patient detection from modified CT-scan/chest-X-ray images combining deep convolutional neural network and two-dimensional empirical mode decomposition. Comput. Methods Programs Biomed. Update 2021, 1, 100022. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hawash, H.; Moustafa, N.; Elkomy, O.M. Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans. Pattern Recognit. Lett. 2021, 152, 311–319. [Google Scholar] [CrossRef]
- Fu, Y.; Xue, P.; Dong, E. Densely connected attention network for diagnosing COVID-19 based on chest CT. Comput. Biol. Med. 2021, 137, 104857. [Google Scholar] [CrossRef]
- Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection. Appl. Soft Comput. 2021, 98, 106912. [Google Scholar] [CrossRef]
- Kundu, R.; Singh, P.K.; Mirjalili, S.; Sarkar, R. COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN ensemble. Comput. Biol. Med. 2021, 138, 104895. [Google Scholar] [CrossRef]
- Müller, D.; Soto-Rey, I.; Kramer, F. Robust chest CT image segmentation of COVID-19 lung infection based on limited data. Inform. Med. Unlocked 2021, 25, 100681. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Liang, H.; Wu, B. Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized training datasets. Knowl.-Based Syst. 2021, 218, 106849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-D.; Zhang, Z.; Zhang, X.; Wang, S.-H. MIDCAN: A multiple input deep convolutional attention network for COVID-19 diagnosis based on chest CT and chest X-ray. Pattern Recognit. Lett. 2021, 150, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wen, Y.; Zhao, L.; Zhang, Y.; Zhao, Y.; Tang, Z.; Yang, Z.; Chen, C.Y.C. CARes-UNet: Content-aware residual UNet for lesion segmentation of COVID-19 from chest CT images. Med. Phys. 2021, 48, 7127–7140. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.R.H.; Bharati, S.; Podder, P. CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images. PLoS ONE 2021, 16, e0259179. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Chen, Y.J.; Ho, W.H.; Tsai, J.T. Classifying chest CT images as COVID-19 positive/negative using a convolutional neural network ensemble model and uniform experimental design method. BMC Bioinform. 2021, 22, 147. [Google Scholar] [CrossRef] [PubMed]
- Alshazly, H.; Linse, C.; Barth, E.; Martinetz, T. Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning. Sensors 2021, 21, 455. [Google Scholar] [CrossRef]
- Voulodimos, A.; Protopapadakis, E.; Katsamenis, I.; Doulamis, A.; Doulamis, N. A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images. Sensors 2021, 21, 2215. [Google Scholar] [CrossRef]
- Khan, M.A.; Alhaisoni, M.; Tariq, U.; Hussain, N.; Majid, A.; Damaševičius, R.; Maskeliūnas, R. COVID-19 Case Recognition from Chest CT Images by Deep Learning, Entropy-Controlled Firefly Optimization, and Parallel Feature Fusion. Sensors 2021, 21, 7286. [Google Scholar] [CrossRef]
- Rajasekar, S.J.S.; Narayanan, V.; Perumal, V. Detection of COVID-19 from Chest CT Images Using CNN with MLP Hybrid Model. pHealth 2021, 285, 288–291. [Google Scholar] [CrossRef]
- Xie, Q.; Lu, Y.; Xie, X.; Mei, N.; Xiong, Y.; Li, X.; Zhu, Y.; Xiao, A.; Yin, B. The usage of deep neural network improves distinguishing COVID-19 from other suspected viral pneumonia by clinicians on chest CT: A real-world study. Eur. Radiol. 2021, 31, 3864–3873. [Google Scholar] [CrossRef]
- Sethy, P.K.; Behera, S.K.; Anitha, K.; Pandey, C.; Khan, M. Computer aid screening of COVID-19 using X-ray and CT scan images: An inner comparison. J. X-ray Sci. Technol. 2021, 29, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, F. Automatic Detection of COVID-19 Disease by Using Transfer Learning of Light Weight Deep Learning Model. Trait. Du Signal 2021, 38, 147–153. [Google Scholar] [CrossRef]
- Garain, A.; Basu, A.; Giampaolo, F.; Velasquez, J.D.; Sarkar, R. Detection of COVID-19 from CT scan images: A spiking neural network-based approach. Neural Comput. Appl. 2021, 33, 12591–12604. [Google Scholar] [CrossRef] [PubMed]
- Elghamrawy, S.M.; Hassnien, A.E.; Snasel, V. Optimized Deep Learning-Inspired Model for the Diagnosis and Prediction of COVID-19. Comput. Mater. Contin. 2021, 67, 2353–2371. [Google Scholar] [CrossRef]
- Sen, S.; Saha, S.; Chatterjee, S.; Mirjalili, S.; Sarkar, R. A bi-stage feature selection approach for COVID-19 prediction using chest CT images. Appl. Intell. 2021, 51, 8985–9000. [Google Scholar] [CrossRef]
- Teodoro, A.A.M.; Silva, D.H.; Saadi, M.; Okey, O.D.; Rosa, R.L.; Al Otaibi, S.; Rodríguez, D.Z. An Analysis of Image Features Extracted by CNNs to Design Classification Models for COVID-19 and Non-COVID-19. J. Signal Process. Syst. 2021, 95, 101–113. [Google Scholar] [CrossRef]
- Yasar, H.; Ceylan, M. Deep Learning–Based Approaches to Improve Classification Parameters for Diagnosing COVID-19 from CT Images. Cogn. Comput. 2021. [Google Scholar] [CrossRef]
- Ibrahim, M.R.; Youssef, S.M.; Fathalla, K.M. Abnormality detection and intelligent severity assessment of human chest computed tomography scans using deep learning: A case study on SARS-COV-2 assessment. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 5665–5688. [Google Scholar] [CrossRef]
- Afshar, P.; Heidarian, S.; Enshaei, N.; Naderkhani, F.; Rafiee, M.J.; Oikonomou, A.; Fard, F.B.; Samimi, K.; Plataniotis, K.N.; Mohammadi, A. COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning. Sci. Data 2021, 8, 121. [Google Scholar] [CrossRef]
- Liu, B.; Liu, P.; Dai, L.; Yang, Y.; Xie, P.; Tan, Y.; Du, J.; Shan, W.; Zhao, C.; Zhong, Q.; et al. Assisting scalable diagnosis automatically via CT images in the combat against COVID-19. Sci. Rep. 2021, 11, 4145. [Google Scholar] [CrossRef]
- Kundu, R.; Basak, H.; Singh, P.K.; Ahmadian, A.; Ferrara, M.; Sarkar, R. Fuzzy rank-based fusion of CNN models using Gompertz function for screening COVID-19 CT-scans. Sci. Rep. 2021, 11, 14133. [Google Scholar] [CrossRef] [PubMed]
- Pal, B.; Gupta, D.; Mahfuz, R.A.; Alyami, S.A.; Moni, M.A. Vulnerability in Deep Transfer Learning Models to Adversarial Fast Gradient Sign Attack for COVID-19 Prediction from Chest Radiography Images. Appl. Sci. 2021, 11, 4233. [Google Scholar] [CrossRef]
- Biswas, S.; Chatterjee, S.; Majee, A.; Sen, S.; Schwenker, F.; Sarkar, R. Prediction of COVID-19 from Chest CT Images Using an Ensemble of Deep Learning Models. Appl. Sci. 2021, 11, 7004. [Google Scholar] [CrossRef]
- Helwan, A.; Ma’aitah, M.K.S.; Hamdan, H.; Ozsahin, D.U.; Tuncyurek, O. Radiologists versus Deep Convolutional Neural Networks: A Comparative Study for Diagnosing COVID-19. Comput. Math. Methods Med. 2021, 2021, 5527271. [Google Scholar] [CrossRef]
- Castiglione, A.; Vijayakumar, P.; Nappi, M.; Sadiq, S.; Umer, M. COVID-19: Automatic Detection of the Novel Coronavirus Disease From CT Images Using an Optimized Convolutional Neural Network. IEEE Trans. Ind. Inform. 2021, 17, 6480–6488. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, B.; Gong, D.; Luo, C.; Zhao, W.; Shen, J.; Ai, J.; Shi, Q.; Zhang, Y.; Jin, S.; et al. COVID-19 Chest CT Image Segmentation Network by Multi-Scale Fusion and Enhancement Operations. IEEE Trans. Big Data 2021, 7, 13–24. [Google Scholar] [CrossRef]
- Suri, J.S.; Agarwal, S.; Pathak, R.; Ketireddy, V.; Columbu, M.; Saba, L.; Gupta, S.K.; Faa, G.; Singh, I.M.; Turk, M.; et al. COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models. Diagnostics 2021, 11, 1405. [Google Scholar] [CrossRef]
- Nair, R.; Alhudhaif, A.; Koundal, D.; Doewes, R.I.; Sharma, P. Deep learning-based COVID-19 detection system using pulmonary CT scans. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 2716–2727. [Google Scholar] [CrossRef]
- Wan, Y.; Zhou, H.; Zhang, X. An Interpretation Architecture for Deep Learning Models with the Application of COVID-19 Diagnosis. Entropy 2021, 23, 204. [Google Scholar] [CrossRef]
- Guo, X.; Lei, Y.; He, P.; Zeng, W.; Yang, R.; Ma, Y.; Feng, P.; Lyu, Q.; Wang, G.; Shan, H. An ensemble learning method based on ordinal regression for COVID-19 diagnosis from chest CT. Phys. Med. Biol. 2021, 66, 244001. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, W.; Ren, H.; Zhao, J.; Wang, L.; Jin, R.; Zhou, J.; Wang, Q.; Yan, F.; Zhang, B.; et al. A rapid screening classifier for diagnosing COVID-19. Int. J. Biol. Sci. 2021, 17, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Polat, H.; Özerdem, M.S.; Ekici, F.; Akpolat, V. Automatic detection and localization of COVID-19 pneumonia using axial computed tomography images and deep convolutional neural networks. Int. J. Imaging Syst. Technol. 2021, 31, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tan, W.; Liu, P.; Zhou, Q.; Yang, J. Classification of COVID-19 Chest CT Images Based on Ensemble Deep Learning. J. Healthc. Eng. 2021, 2021, 5528441. [Google Scholar] [CrossRef]
- Owais, M.; Baek, N.R.; Park, K.R. Domain-Adaptive Artificial Intelligence-Based Model for Personalized Diagnosis of Trivial Lesions Related to COVID-19 in Chest Computed Tomography Scans. J. Pers. Med. 2021, 11, 1008. [Google Scholar] [CrossRef]
- Jia, G.; Lam, H.-K.; Xu, Y. Classification of COVID-19 chest X-ray and CT images using a type of dynamic CNN modification method. Comput. Biol. Med. 2021, 134, 104425. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhao, W.; Xie, X.; Ji, W.; Liu, M.; Tang, Z.; Shi, Y.; Shi, F.; Gao, Y.; Liu, J.; et al. Synergistic learning of lung lobe segmentation and hierarchical multi-instance classification for automated severity assessment of COVID-19 in CT images. Pattern Recognit. 2021, 113, 107828. [Google Scholar] [CrossRef]
- Murugan, R.; Goel, T.; Mirjalili, S.; Chakrabartty, D.K. WOANet: Whale optimized deep neural network for the classification of COVID-19 from radiography images. Biocybern. Biomed. Eng. 2021, 41, 1702–1718. [Google Scholar] [CrossRef]
- Naeem, H.; Bin-Salem, A.A. A CNN-LSTM network with multi-level feature extraction-based approach for automated detection of coronavirus from CT scan and X-ray images. Appl. Soft Comput. 2021, 113, 107918. [Google Scholar] [CrossRef]
- Kalane, P.; Patil, S.; Patil, B.; Sharma, D.P. Automatic detection of COVID-19 disease using U-Net architecture based fully convolutional network. Biomed. Signal Process. Control. 2021, 67, 102518. [Google Scholar] [CrossRef]
- Fouladi, S.; Ebadi, M.; Safaei, A.A.; Bajuri, M.Y.; Ahmadian, A. Efficient deep neural networks for classification of COVID-19 based on CT images: Virtualization via software defined radio. Comput. Commun. 2021, 176, 234–248. [Google Scholar] [CrossRef]
- Wang, S.-H.; Govindaraj, V.V.; Górriz, J.M.; Zhang, X.; Zhang, Y.-D. COVID-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Inf. Fusion 2021, 67, 208–229. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lu, S.; Guo, L.; Wang, S.H.; Zhang, Y.D. ResGNet-C: A graph convolutional neural network for detection of COVID-19. Neurocomputing 2021, 452, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Su, J.; Jiang, Z.; Zeng, L.-L.; Feng, Z.; Shen, H.; Rong, P.; Xu, X.; Qin, J.; Yang, Y.; et al. Dual-branch combination network (DCN): Towards accurate diagnosis and lesion segmentation of COVID-19 using CT images. Med. Image Anal. 2021, 67, 101836. [Google Scholar] [CrossRef]
- Sahoo, P.; Roy, I.; Ahlawat, R.; Irtiza, S.; Khan, L. Potential diagnosis of COVID-19 from chest X-ray and CT findings using semi-supervised learning. Phys. Eng. Sci. Med. 2021, 45, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, P.; Barros, B.; Albuquerque, C.; Conci, A. Hyperparameter Optimization for COVID-19 Pneumonia Diagnosis Based on Chest CT. Sensors 2021, 21, 2174. [Google Scholar] [CrossRef]
- Siddiqui, S.Y.; Abbas, S.; Khan, M.A.; Naseer, I.; Masood, T.; Khan, K.M.; Al Ghamdi, M.A.; Almotiri, S.H. Intelligent Decision Support System for COVID-19 Empowered with Deep Learning. Comput. Mater. Contin. 2021, 66, 1719–1732. [Google Scholar] [CrossRef]
- Haikel, A. CNN ensemble approach to detect COVID-19 from computed tomography chest images. Comput. Mater. Contin. 2021, 67, 3581–3599. [Google Scholar]
- Bekhet, S.; Alkinani, M.H.; Tabares-Soto, R.; Hassaballah, M. An Efficient Method for COVID-19 Detection Using Light Weight Convolutional Neural Network. Comput. Mater. Contin. 2021, 69, 2475–2491. [Google Scholar] [CrossRef]
- Kaushik, H.; Singh, D.; Tiwari, S.; Kaur, M.; Jeong, C.-W.; Nam, Y.; Khan, M.A. Screening of COVID-19 Patients Using Deep Learning and IoT Framework. Comput. Mater. Contin. 2021, 69, 3459–3475. [Google Scholar] [CrossRef]
- El-Shafai, W.; Ali, A.M.; El-Rabaie, E.-S.M.; Soliman, N.F.; Algarni, A.D.; El-Samie, F.E.A. Automated COVID-19 Detection Based on Single-Image Super-Resolution and CNN Models. Comput. Mater. Contin. 2021, 70, 1141–1157. [Google Scholar] [CrossRef]
- Masud, M.; Alshehri, M.D.; Alroobaea, R.; Shorfuzzaman, M. Leveraging Convolutional Neural Network for COVID-19 Disease Detection Using CT Scan Images. Intell. Autom. Soft Comput. 2021, 29, 1–13. [Google Scholar] [CrossRef]
- El-Shafai, W.; El-Hag, N.A.; El-Banby, G.M.; Khalaf, A.A.M.; Soliman, N.F.; Algarni, A.D.; El-Samie, F.E.A. An Efficient CNN-Based Automated Diagnosis Framework from COVID-19 CT Images. Comput. Mater. Contin. 2021, 69, 1323–1341. [Google Scholar] [CrossRef]
- Kassania, S.H.; Kassanib, P.H.; Wesolowskic, M.J.; Schneidera, K.A.; Detersa, R. Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning Based Approach. Biocybern. Biomed. Eng. 2021, 41, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jin, S.; Yan, Q.; Xu, H.; Luo, C.; Wei, L.; Zhao, W.; Hou, X.; Ma, W.; Xu, Z.; et al. AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system. Appl. Soft Comput. 2021, 98, 106897. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Panigrahi, B.K.; Dey, N.; Rajinikanth, V.; Gandhi, T.K. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. Appl. Intell. 2021, 51, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Leader, J.K.; Bandos, A.; Ke, S.; Wang, J.; Shi, J.; Du, P.; Guo, Y.; Wenzel, S.E.; Fuhrman, C.R.; et al. Automated quantification of COVID-19 severity and progression using chest CT images. Eur. Radiol. 2021, 31, 436–446. [Google Scholar] [CrossRef]
- Maghdid, H.S.; Asaad, A.T.; Ghafoor, K.Z.G.; Sadiq, A.S.; Mirjalili, S.; Khan, M.K.K. Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. In Multimodal Image Exploitation and Learning 2021; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2021; Volume 11734, p. 117340E. [Google Scholar] [CrossRef]
- Kumar, I.; Alshamrani, S.S.; Kumar, A.; Rawat, J.; Singh, K.U.; Rashid, M.; AlGhamdi, A.S. Deep Learning Approach for Analysis and Characterization of COVID-19. Comput. Mater. Contin. 2021, 70, 451–468. [Google Scholar] [CrossRef]
- Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Cai, M.; Yang, J.; Li, Y.; Meng, X.; et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). Eur. Radiol. 2021, 31, 6096–6104. [Google Scholar] [CrossRef]
- Khurana, Y.; Soni, U. Leveraging deep learning for COVID-19 diagnosis through chest imaging. Neural Comput. Appl. 2022, 34, 14003–14012. [Google Scholar] [CrossRef]
- Canayaz, M.; Şehribanoğlu, S.; Özdağ, R.; Demir, M. COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms. Neural Comput. Appl. 2022, 34, 5349–5365. [Google Scholar] [CrossRef]
- Subhalakshmi, R.T.; Balamurugan, S.A.A.; Sasikala, S. Deep learning based fusion model for COVID-19 diagnosis and classification using computed tomography images. Concurr. Eng. 2022, 30, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Zouch, W.; Sagga, D.; Echtioui, A.; Khemakhem, R.; Ghorbel, M.; Mhiri, C.; Ben Hamida, A. Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models. Ann. Biomed. Eng. 2022, 50, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Balaha, H.M.; El-Gendy, E.M.; Saafan, M.M. A complete framework for accurate recognition and prognosis of COVID-19 patients based on deep transfer learning and feature classification approach. Artif. Intell. Rev. 2022, 55, 5063–5108. [Google Scholar] [CrossRef]
- Habib, M.; Ramzan, M.; Khan, S.A. A Deep Learning and Handcrafted Based Computationally Intelligent Technique for Effective COVID-19 Detection from X-ray/CT-scan Imaging. J. Grid Comput. 2022, 20, 23. [Google Scholar] [CrossRef]
- Montalbo, F.J. Truncating fined-tuned vision-based models to lightweight deployable diagnostic tools for SARS-CoV-2 infected chest X-rays and CT-scans. Multimed. Tools Appl. 2022, 81, 16411–16439. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Ghafoor, K.; Mulahuwaish, A.; Maghdid, H. COVID-19 pneumonia level detection using deep learning algorithm and transfer learning. Evol. Intell. 2022. [Google Scholar] [CrossRef]
- Pandey, S.K.; Bhandari, A.K.; Singh, H. A transfer learning based deep learning model to diagnose COVID-19 CT scan images. Health Technol. 2022, 12, 845–866. [Google Scholar] [CrossRef]
- Liu, B.; Nie, X.; Li, Z.; Yang, S.; Tian, Y. Evolving deep convolutional neural networks by IP-based marine predator algorithm for COVID-19 diagnosis using chest CT scans. J. Ambient. Intell. Humaniz. Comput. 2022. [Google Scholar] [CrossRef]
- Luo, J.; Sun, Y.; Chi, J.; Liao, X.; Xu, C. A novel deep learning-based method for COVID-19 pneumonia detection from CT images. BMC Med. Inform. Decis. Mak. 2022, 22, 284. [Google Scholar] [CrossRef]
- Saheb, S.K.; Narayanan, B.; Rao, T.V.N. ADL-CDF: A Deep Learning Framework for COVID-19 Detection from CT Scans Towards an Automated Clinical Decision Support System. Arab. J. Sci. Eng. 2022, 48, 9661–9673. [Google Scholar] [CrossRef]
- Khurana Batra, P.; Aggarwal, P.; Wadhwa, D.; Gulati, M. Predicting pattern of coronavirus using X-ray and CT scan images. Netw. Model. Anal. Health Inform. Bioinform. 2022, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, C.; Peng, C.; Zhang, G.; Sun, Y.; Jiang, X.; Wang, Z.; Zhang, D.; Wang, L.; Liu, J. A convolutional neural network-based COVID-19 detection method using chest CT images. Ann. Transl. Med. 2022, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A.; Fekri-Ershad, S.; Jelvay, S. Diagnosis of COVID-19 Disease in Chest CT-Scan Images Based on Combination of Low-Level Texture Analysis and MobileNetV2 Features. Comput. Intell. Neurosci. 2022, 2022, 1658615. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.A.; Zebari, D.A.; Mohammed, H.J.; Mohammed, M.A. Effective hybrid deep learning model for COVID-19 patterns identification using CT images. Expert Syst. 2022, 39, e13010. [Google Scholar] [CrossRef]
- Akinyelu, A.A.; Blignaut, P. COVID-19 diagnosis using deep learning neural networks applied to CT images. Front. Artif. Intell. 2022, 5, 919672. [Google Scholar] [CrossRef]
- Florescu, L.M.; Streba, C.T.; Şerbănescu, M.-S.; Mămuleanu, M.; Florescu, D.N.; Teică, R.V.; Nica, R.E.; Gheonea, I.A. Federated Learning Approach with Pre-Trained Deep Learning Models for COVID-19 Detection from Unsegmented CT images. Life 2022, 12, 958. [Google Scholar] [CrossRef]
- Baghdadi, N.A.; Malki, A.; Abdelaliem, S.F.; Balaha, H.M.; Badawy, M.; Elhosseini, M. An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Comput. Biol. Med. 2022, 144, 105383. [Google Scholar] [CrossRef]
- Shaik, N.S.; Cherukuri, T.K. Transfer learning based novel ensemble classifier for COVID-19 detection from chest CT-scans. Comput. Biol. Med. 2022, 141, 105127. [Google Scholar] [CrossRef]
- Reis, H.C.; Turk, V. COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-ray images. Artif. Intell. Med. 2022, 134, 102427. [Google Scholar] [CrossRef]
- Garg, A.; Salehi, S.; La Rocca, M.; Garner, R.; Duncan, D. Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT. Expert Syst. Appl. 2022, 195, 116540. [Google Scholar] [CrossRef]
- Fan, X.; Feng, X.; Dong, Y.; Hou, H. COVID-19 CT image recognition algorithm based on transformer and CNN. Displays 2022, 72, 102150. [Google Scholar] [CrossRef]
- Karthik, R.; Menaka, R.; Hariharan, M.; Won, D. CT-based severity assessment for COVID-19 using weakly supervised non-local CNN. Appl. Soft Comput. 2022, 121, 108765. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Amin, S.B.; Naeem, M.; Saha, M. Detecting COVID-19 from chest computed tomography scans using AI-driven android application. Comput. Biol. Med. 2022, 143, 105298. [Google Scholar] [CrossRef] [PubMed]
- Abugabah, A.; Al-Smadi, A.M.; Almotairi, S. SEL-COVIDNET: An intelligent application for the diagnosis of COVID-19 from chest X-rays and CT-scans. Inform. Med. Unlocked 2022, 32, 101059. [Google Scholar] [CrossRef]
- Fallahpoor, M.; Chakraborty, S.; Heshejin, M.T.; Chegeni, H.; Horry, M.J.; Pradhan, B. Generalizability assessment of COVID-19 3D CT data for deep learning-based disease detection. Comput. Biol. Med. 2022, 145, 105464. [Google Scholar] [CrossRef]
- Sadik, F.; Dastider, A.G.; Subah, M.R.; Mahmud, T.; Fattah, S.A. A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images. Comput. Biol. Med. 2022, 149, 105806. [Google Scholar] [CrossRef]
- Huang, M.-L.; Liao, Y.-C. A lightweight CNN-based network on COVID-19 detection using X-ray and CT images. Comput. Biol. Med. 2022, 146, 105604. [Google Scholar] [CrossRef]
- Li, C.F.; Xu, Y.D.; Ding, X.H.; Zhao, J.J.; Du, R.Q.; Wu, L.Z.; Sun, W.P. MultiR-Net: A Novel Joint Learning Network for COVID-19 segmentation and classification. Comput. Biol. Med. 2022, 144, 105340. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, M. A hybrid random forest deep learning classifier empowered edge cloud architecture for COVID-19 and pneumonia detection. Expert Syst. Appl. 2022, 210, 118227. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, Y.; Guo, D.; Huang, X.; Cui, Y.; Xia, M.; Wang, Z.; Bai, C.; Chen, S. SSA-Net: Spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning. Med. Image Anal. 2022, 79, 102459. [Google Scholar] [CrossRef]
- Qi, Q.; Qi, S.; Wu, Y.; Li, C.; Tian, B.; Xia, S.; Ren, J.; Yang, L.; Wang, H.; Yu, H. Fully automatic pipeline of convolutional neural networks and capsule networks to distinguish COVID-19 from community-acquired pneumonia via CT images. Comput. Biol. Med. 2022, 141, 105182. [Google Scholar] [CrossRef]
- Oğuz, Ç.; Yağanoğlu, M. Detection of COVID-19 using deep learning techniques and classification methods. Inf. Process. Manag. 2022, 59, 103025. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.-H.; Zhang, Y.-D. EDNC: Ensemble Deep Neural Network for COVID-19 Recognition. Tomography 2022, 8, 869–890. [Google Scholar] [CrossRef]
- Tello-Mijares, S.; Woo, F. Novel COVID-19 Diagnosis Delivery App Using Computed Tomography Images Analyzed with Saliency-Preprocessing and Deep Learning. Tomography 2022, 8, 1618–1630. [Google Scholar] [CrossRef]
- Heidari, A.; Toumaj, S.; Navimipour, N.J.; Unal, M. A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain. Comput. Biol. Med. 2022, 145, 105461. [Google Scholar] [CrossRef]
- Ortiz, A.; Trivedi, A.; Desbiens, J.; Blazes, M.; Robinson, C.; Gupta, S.; Dodhia, R.; Bhatraju, P.K.; Liles, W.C.; Lee, A.; et al. Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci. Rep. 2022, 12, 1716. [Google Scholar] [CrossRef]
- Sangeetha, S.K.B.; Kumar, M.S.; Deeba, K.; Rajadurai, H.; Maheshwari, V.; Dalu, G.T. An Empirical Analysis of an Optimized Pretrained Deep Learning Model for COVID-19 Diagnosis. Comput. Math. Methods Med. 2022, 2022, 9771212. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Al-Khateeb, B.; Yousif, M.; Mostafa, S.A.; Kadry, S.; Abdulkareem, K.H.; Garcia-Zapirain, B. Novel Crow Swarm Optimization Algorithm and Selection Approach for Optimal Deep Learning COVID-19 Diagnostic Model. Comput. Intell. Neurosci. 2022, 2022, 1307944. [Google Scholar] [CrossRef]
- Joshi, A.M.; Nayak, D.R. MFL-Net: An Efficient Lightweight Multi-Scale Feature Learning CNN for COVID-19 Diagnosis From CT Images. IEEE J. Biomed. Health Inform. 2022, 26, 5355–5363. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, G.-C. Deep Transfer Learning for COVID-19 Detection and Lesion Recognition Using Chest CT Images. Comput. Math. Methods Med. 2022, 2022, 4509394. [Google Scholar] [CrossRef]
- Mouhafid, M.; Salah, M.; Yue, C.; Xia, K. Deep Ensemble Learning-Based Models for Diagnosis of COVID-19 from Chest CT Images. Healthcare 2022, 10, 166. [Google Scholar] [CrossRef]
- Dara, S.; Kanapala, A.; Babu, A.R.; Dhamercherala, S.; Vidyarthi, A.; Agarwal, R. Scalable Federated-Learning and Internet-of-Things enabled architecture for Chest Computer Tomography image classification. Comput. Electr. Eng. 2022, 102, 108266. [Google Scholar] [CrossRef]
- Özdemir, Ö.; Sönmez, E.B. Attention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography images. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 6199–6207. [Google Scholar] [CrossRef]
- Ahuja, S.; Panigrahi, B.K.; Dey, N.; Taneja, A.; Gandhi, T.K. McS-Net: Multi-class Siamese network for severity of COVID-19 infection classification from lung CT scan slices. Appl. Soft Comput. 2022, 131, 109683. [Google Scholar] [CrossRef]
- Messaoud, S.; Bouaafia, S.; Maraoui, A.; Khriji, L.; Ammari, A.C.; Machhout, M. Detection of COVID-19 and other pneumonia cases from CT and X-ray chest images using deep learning based on feature reuse residual block and depthwise dilated convolutions neural network. Can. J. Infect. Dis. Med. Microbiol. 2022, 133, 109906. [Google Scholar]
- Manconi, A.; Armano, G.; Gnocchi, M.; Milanesi, L. A Soft-Voting Ensemble Classifier for Detecting Patients Affected by COVID-19. Appl. Sci. 2022, 12, 7554. [Google Scholar] [CrossRef]
- Chen, C.; Li, R.; Shen, H.; Xia, L. Long Short-Term Memory Based Framework for Longitudinal Assessment of COVID-19 Using CT Imaging and Laboratory Data. IEEE Access 2022, 10, 55533–55545. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Zhang, Z.; Zhang, Y.-D.; Wang, S.-H. CGENet: A Deep Graph Model for COVID-19 Detection Based on Chest CT. Biology 2022, 11, 33. [Google Scholar] [CrossRef]
- Owais, M.; Sultan, H.; Baek, N.R.; Lee, Y.W.; Usman, M.; Nguyen, D.T.; Batchuluun, G.; Park, K.R. Deep 3D Volumetric Model Genesis for Efficient Screening of Lung Infection Using Chest CT Scans. Mathematics 2022, 10, 4160. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Qi, X.; Inui, S.; Kim, H.; Jeong, Y.J.; Lee, K.H.; Lee, Y.K.; Lee, B.Y.; Kim, J.Y.; Jin, K.N.; et al. Deep Learning–Based Automatic CT Quantification of Coronavirus Disease 2019 Pneumonia: An International Collaborative Study. J. Comput. Assist. Tomogr. 2022, 46, 413–422. [Google Scholar] [CrossRef]
- Suri, J.S.; Agarwal, S.; Chabert, G.L.; Carriero, A.; Paschè, A.; Danna, P.S.C.; Saba, L.; Mehmedović, A.; Faa, G.; Singh, I.M.; et al. COVLIAS 1.0 Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans. Diagnostics 2022, 12, 1283. [Google Scholar] [CrossRef] [PubMed]
- Ghose, P.; Alavi, M.; Tabassum, M.; Uddin, A.; Biswas, M.; Mahbub, K.; Gaur, L.; Mallik, S.; Zhao, Z. Detecting COVID-19 infection status from chest X-ray and CT scan via single transfer learning-driven approach. Front. Genet. 2022, 13, 980338. [Google Scholar] [CrossRef]
- Gunraj, H.; Sabri, A.; Koff, D.; Wong, A. COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19 From Chest CT Images Through Bigger, More Diverse Learning. Front. Med. 2022, 8, 729287. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Hasanpour, M.; Zolghadri, M.; Salimi, F.; Vaziri, A.Y.; Abadi, A.M.A.; Jafari, R.; Esfahanian, P.; Nazem-Zadeh, M.-R. Deep learning framework for prediction of infection severity of COVID-19. Front. Med. 2022, 9, 940960. [Google Scholar] [CrossRef]
- Choudhary, T.; Gujar, S.; Goswami, A.; Mishra, V.; Badal, T. Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification. Appl. Intell. 2022, 53, 7201–7215. [Google Scholar] [CrossRef]
- Chouat, I.; Echtioui, A.; Khemakhem, R.; Zouch, W.; Ghorbel, M.; Ben Hamida, A. COVID-19 detection in CT and CXR images using deep learning models. Biogerontology 2022, 23, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Dialameh, M.; Hamzeh, A.; Rahmani, H.; Radmard, A.R.; Dialameh, S. Proposing a novel deep network for detecting COVID-19 based on chest images. Sci. Rep. 2022, 12, 3116. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, K.; Siuly, S.; Kumar, M.V.; Lalwani, P.; Mishra, M.K.; Kabir, E. A Hybrid Approach for COVID-19 Detection Using Biogeography-Based Optimization and Deep Learning. Comput. Mater. Contin. 2022, 70, 3717–3732. [Google Scholar] [CrossRef]
- Latif, G.; Morsy, H.; Hassan, A.; Alghazo, J. Novel Coronavirus and Common Pneumonia Detection from CT Scans Using Deep Learning-Based Extracted Features. Viruses 2022, 14, 1667. [Google Scholar] [CrossRef]
- El-Shafai, W.; Mahmoud, A.A.; El-Rabaie, E.-S.M.; Taha, T.E.; Zahran, O.F.; El-Fishawy, A.S.; Abd-Elnaby, M.; El-Samie, F.E.A. Efficient Deep CNN Model for COVID-19 Classification. Comput. Mater. Contin. 2022, 70, 4373–4391. [Google Scholar] [CrossRef]
- Xue, Y.; Onzo, B.-M.; Mansour, R.F.; Su, S. Deep Convolutional Neural Network Approach for COVID-19 Detection. Comput. Syst. Sci. Eng. 2022, 42, 201–211. [Google Scholar] [CrossRef]
- El-Shafai, W.; Algarni, A.D.; El Banby, G.M.; El-Samie, F.E.A.; Soliman, N.F. Classification Framework for COVID-19 Diagnosis Based on Deep CNN Models. Intell. Autom. Soft Comput. 2022, 31, 1561–1575. [Google Scholar] [CrossRef]
- Santosh, K.; Ghosh, S. COVID-19 Imaging Tools: How Big Data is Big? J. Med. Syst. 2021, 45, 71. [Google Scholar] [CrossRef] [PubMed]
- Santosh, K.C. AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data. J. Med. Syst. 2020, 44, 93. [Google Scholar] [CrossRef]
Sl. No | Dataset | Area of Utilization | Total Size (#Positive Cases) | Availability (accessed on 2 June 2023) |
---|---|---|---|---|
C1 | Covid-CT | Classification | 746 (#349) | https://arxiv.org/abs/2003.13865 |
C2 | COVID-19 CT | Segmentation | 829 (#373) | http://medicalsegmentation.com/COVID-19 |
C3 | Large COVID-19 CT scan | Classification | 12,058(#2282) | https://github.com/mr7495/COVID-CTset |
C4 | SARS-CoV-2 Dataset | Identification | 2482 (#1252) | https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset |
C5 | COVID-19 open research dataset (CORD-19) | Identification | 3439 (#98) | https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge |
C6 | SIRM COVID-19 database | Classification | 100(#100) | https://www.sirm.org/en/category/articles/COVID-19-database/ |
C7 | COVID-19 BSTI imaging dataset | Classification | Not provided | https://bit.ly/BSTICovid19_Teaching_Library |
C8 | Radiopaedia | Classification | 36,559 (#3520) | http://radiopaedia.org/articles/COVID-19-3 |
C9 | MosMeddata | Classification | 1110 (#1110) | http://mosmed.ai/datasets/COVID-19_1110 |
C10 | COVID-19 | Classification | 521 (#48) | https://github.com/KevinHuRunWen/COVID-19 |
C11 | COVID-CS | Classification and Segmentation | 3855 (#200) | https://github.com/yuhuan-wu/JCS |
C12 | BIMCV-COVID-19 | Detection | 6687(#1311) | https://github.com/BIMCV-CSUSP/BIMCV-COVID-19 |
C13 | COVID-19-CT-CXR (classification) | Classification | 1327 (not provided) | https://github.com/ncbi-nlp/COVID-19-CT-CXR |
C14 | Larxel dataset | Segmentation | 20(#20) | https://www.kaggle.com/andrewmvd/COVID-19-ct-scans |
C15 | Large COVID-19 CT scan | Classification | 17,102 (#7593) | https://www.kaggle.com/maedemaftouni/large-COVID-19-ct-slice-dataset |
C16 | Extensive COVID-19 X-Ray and CT Chest Images Dataset | Classification | 17,099 (5427) | https://data.mendeley.com/datasets/8h65ywd2jr/3 |
C17 | CF data | Detection | 19,685 (4001) | http://ictcf.biocuckoo.cn/HUST-19.php |
C18 | Covid19 Image dataset | Classification | 22,873 (#3520) | https://arxiv.org/abs/2003.11597 |
C19 | CC-CCII | Classification | 4178 (#1544) | http://ncov-ai.big.ac.cn/download |
C20 | COVID-CT-MD | Classification | Private | https://figshare.com/s/c20215f3d42c98f09ad0 |
C21 | Deep Covid | Classification | 5000(#Not given) | https://github.com/shervinmin/DeepCovid/tree/master/ |
C22 | CT scan for COVID-19 | Classification | 13,980 (#4001) | https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-COVID-19 |
C23 | Covid Chest Xray and CT images | Classification | 144 (#118) | https://github.com/ieee8023/covid-chestxray-dataset |
C24 | Harvard Dataverse | Classification | 4172 (#2167) | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SZDUQX |
C25 | COVIDx CT | Classification | 431,205 (#316774) | https://www.kaggle.com/datasets/hgunraj/covidxct |
Authors [Ref] | Methods | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | |||
Ni et al. [60] | MVP-Net and 3D UNet | Private | Per lobe—83 Per patient—94 | - | 96 100 | 86.54 86.08 |
Hu et al. [61] | DenseNet169 | C1 | 86.00 | - | - | 94.00 |
Loey et al. [62] | ResNet50 | C1 | 82.91 | 87.62 | 77.66 | - |
Song et al. [63] | BigBiGAN (DNN) | Private | - | 91 | 92 | 97 |
Chaganti et al. [64] | DenseUNet | Private | - | - | - | - |
Singh et al. [65] | Mode-based CNN | Private | 93.5 | 90 | 90 | - |
Ning et al. [66] | CNN | C17 | - | - | - | 89.6 |
Jaiswal et al. [67] | DenseNet201 | C4 | 96.25 | 96 | 96 | - |
Babukarthik et al. [68] * | GDCNN | C23 | 98.84 | 97.0 | 100 | - |
Mohammed et al. [69] | RenNext+ | C19 | 77.6 | 79.3 | 85.5 | - |
Han et al. [70] | AD3D-MIL | Private | 97.9 | - | - | 99 |
Jiang et al. [71] | UNet | C2 | - | - | - | - |
Gunraj et al. [72] | COVIDNet-CT | C3 | 99.1 | 99.9 | 97.3 | - |
Fan et al. [47] | Inf-Net Semi Inf-Net | C2 | - | 97.4 97.7 | 87.0 86.5 | - |
Mishra et al. [73] | Deep CNN based decision fusion | C1 | 86 | - | - | 88.3 |
Javor et al. [74] | ResNet50 | Private | - | 93.3 | 84.4 | 95.6 |
Silva et al. [75] | EfficientCovidNet | C1, C4 | 87.68 | - | - | - |
Pathak et al. [76] * | ResNet50 | C1 | 93.0 | 91.4 | 94.7 | - |
Wu et al. [77] | ResNet50 | Private | 76.0 | 61.5 | 81.1 | 81.9 |
Peng et al. [78] * | DenseNet121 | C13 | - | - | 78.0 | 89.1 |
Qian et al. [79] | 2D-CNN | Private | - | 97.49 | 98.99 | 99.93 |
Li et al. [80] | CovNet | private | - | - | - | 96.0 |
Lessmann et al. [81] * | CO-RADS | Private | - | 89.8 | 85.7 | 95 |
Jin et al. [82] * | ResNet152 | C9, C20 | 94.98 | 95.76 | 90.19 | 97.71 |
Jamshidi et al. [83] * | DCNN | C1, C16, C25 | 98.49 | - | - | - |
wang et al. [84] * | DeCoVNet | Private | 90.1 | - | - | 95.9 |
Zhang et al. [85] | CoVNet | Private | - | - | - | 95.9 |
Lai et al. [86] | DCNN | Private | - | - | - | 91 |
Liu et al. [87] | DenseNet | C1, C17 | - | - | - | 76.09 |
Panwar et al. [88] * | VGG19 | C4, C25 | 95.61 | 97.22 | 76 | - |
Misztal et al. [89] | CNNs | C1, C19 | - | - | - | - |
Amyar et al. [90] | UNet | C1, C2 | 94.67 | 92 | 96 | - |
Polsinelli et al. [91] | CNNs | C6 | 85.03 | 81.95 | 87.55 | - |
Ko et al. [92] * | ResNet50 | C6 | 96.97 | 100 | 99.58 | - |
El-Bana et al. [93] * | InceptionV3 | Private | 99.5 | 99.2 | 99.8 | - |
Wang et al. [94] | 3D ResNet | Private | 93.3 | - | 95.5 | 97.3 |
Deng et al. [95] | VGG16 | C25 | 75 | - | - | - |
Hu et al. [96] | NTS-NET | Private | 87.1 | 91.23 | 80.83 | 90.6 |
Li et al. [80] | CoVNet | Private | - | 96 | 90 | 96 |
Xu et al. [97] | CNN | Private | 86.7 | - | - | - |
Wang et al. [98] | Covid19Net | Private | 85.00 | 79.35 | 71.43 | 90.11 |
Kang et al. [99] | Multiview representation learning (Vnet + NN) | private | 95.5 | 96.6 | 93.2 | - |
Chen et al. [100] | UNet++ | Private | 98.85 | 99.16 | 94.34 | - |
Bai et al. [101] | DNN Efficient Net B4 | Private | 96 | 93.2 | 95 | 95 |
Zhu et al. [102] | VGG16 | C25 | - | - | - | - |
Benbrahim et al. [103] | InceptionV3 and ResNet | Private | 99.01 | 100 | 72 | - |
Sharma et al. [104] * | ResNet | C1, C9 | 91 | - | - |
Authors [Ref] | Methods | Data Collections | Performance (%) | |||
---|---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | |||
Ibrahim et al. [105] * | VGG19 + CNN | C6 | 98.05 | 99.5 | - | 99.66 |
Goncharov et al. [106] * | Multitask spatial-1 | C2 | - | - | - | 0.97 ± 0.01 |
Zhang et al. [107] | 5L-DCNN-SP-C | Private | 93.64 ± 1.42 | 94.00 ± 1.56 | 93.28 ± 1.50 | - |
Song et al. [108] | DRE-Net (ResNet50) | Private | 86 | 77 | - | 95 |
Yao et al. [109] | CNN | Private | - | 90.5 | 91.5 | 95.5 |
Acar et al. [110] | CNNs | C2, C1 | - | - | - | - |
Ravi et al. [111] * | EfficientNet-CNN | C16 | 99 | - | - | - |
Chen et al. [112] * | ResNet50 | private | 91.21 | 88.46 | 94.87 | - |
Huang et al. [113] * | FaNet | Private | 98.28 | - | - | - |
Jangam et al. [114] * | VGG19 + DenseNet169 | C1, C3, C4 | 91.49 | - | - | - |
Singh et al. [115] | MobileNetV2 | C4 | 96.40 | - | 98 | 99.5 |
Alirr et al. [116] | UNet (FCN) | C2, C6 | - | 95.1 | 82.2 | - |
Kundu et al. [117] | Bagging of VNNs (ET-NET) | C4 | 97.81 | 97.77 | 97.81 | - |
Saad et al. [118] | CNN (DFC) | C16 | 98.9 | - | - | - |
Fung et al. [119] | SSInfNet | C2 | - | - | - | 98.66 |
Tan et al. [120] | SRGAN +VGG16 | C1 | 98 | 94.9 | 99 | - |
Lascu et al. [121] * | ResNet101 | C1 | 94.9 | - | - | - |
Lassau et al. [122] | NN | Private | - | - | - | - |
Pan et al. [123] | CNN | Private | - | - | - | - |
Yan et al. [124] | ResNet50 | C4 | 96.3 | - | - | - |
Shalbaf et al. [125] | The majority voting of five deep transfer learning architecture (EfficientNetB0, EfficientNetB3, EfficientNetB5, InceptionResNetV2, Xception) | C1 | 85 | - | 85 | - |
Rahimzadeh et al. [126] | ResNet50V2 | C3 | 98.49 | - | 94.96 | - |
Lee et al. [127] | CNN | C5 | - | - | - | 80 |
Mishra et al. [128] * | CNN | C1 | 99 | - | - | 98.6 |
Zhang et al. [129] | ResAUNet | Private | - | - | - | - |
Barbosa et al. [130] * | CNN | Private | - | - | - | |
Zhao et al. [131] | SP-V-Net | Private | 94.60 | 92.70 | 96.70 | 94.70 |
Jadhav et al. [132] | Covid-View | Private | 95.2 | 94.9 | 95.3 | 98.5 |
Guiot et al. [133] * | VGG16 | Private | 85.18 | 91.63 | 69.52 | 88.2 |
Yao et al. [134] | CSGBBNet | C1, C5 | 98.49 | 97.95 | 99.0 | - |
Singh et al. [135] | Ps-ProtoPNet | C20 | 99.29 | - | - | - |
Zhu et al. [136] * | ResNet50 | C1 | 93 | 92 | 93 | - |
Kuchana et al. [137] | UNet | C14, C2 | - | - | - | - |
Khalifa et al. [138] | CNN | C8, C14 | 99.3 | 95 | 98.12 | - |
Bhuyan et al. [139] * | FrCN (CNN) | C2 | 99 | 99.41 | 96.66 | - |
Heidarian et al. [140] | COVID-FACT | C22 | 90.82 | 86.04 | 94.55 | 98.0 |
Ahsan et al. [141] * | MobileNetV2 | Private | 98.5 | - | - | 81.6 |
Zhang et al. [142] | GARCD | C4 | - | 91.16 | 96.97 | 98.7 |
Chaddad et al. [143] * | Deep CNNs | Private | 82.80 | 88.16 | ||
Yousefzadeh et al. [144] * | Ai-Corona (CNN) | C20, C9, | - | 92.7 | 94.5 | 95.6 |
Chen et al. [145] | ResNet50 | C1, C6, C2 | 86.8 | - | - | 93.1 |
Munusamy et al. [146] | FractalCovNet | C2 | 99 | - | - | - |
Wang et al. [147] * | CCSHNet | Private | - | - | 96.25 | - |
Jiang et al. [148] | CNNs | C1 | 96 | - | - | 98.89 |
Hu et al. [149] | DSN-SAAL | C1, C3, C2 | 95.43 | - | - | - |
Jingxin et al. [150] * | Ours-SP (ResNet50) | C1, C19 | 97.83 | - | 96.89 | - |
Balaha et al. [151] | CovH2SD (VGG19) | C1, C3, C24 | 99.33 | - | - | - |
Turkoglu et al. [152] | MKs-ELM-DNN | C1 | 98.36 | 98.44 | 98.28 | 98.36 |
Ahamed et al. [153] * | ResNet50V2 | C15 | 99.99 | - | - | - |
Pathan et al. [154] | CNN | C1 | 96 | 96 | 97 | - |
Cruz et al. [155] | CNNs | C1 | 86.70 | - | 89.52 | 90.82 |
Hasan et al. [156] * | Deep CNN | C4, C1 | 90.14 | 88.59 | - | 94.60 |
Basset et al. [157] * | U -Net | C22 | 96.80 | - | - | 98.86 |
Fu et al. [158] | DenseANet | C3 | 90.27 | 88.77 | 92.26 | 95.64 |
Aslan et al. [159] * | mAlexNet-BiLSTM (CNN) | C19 | 98.70 | - | - | 99 |
Kundu et al. [160] | CNNs | C3 | 98.93 | 98.93 | 98.93 | - |
Müller et al. [161] * | 3D UNet | C25 | - | - | - | - |
Li et al. [162] | CheXNet | C1 | 87 | - | - | 75 |
Zhang et al. [163] | MIDCAN | Private | 98.02 | 97.95 | 98.10 | - |
Xu et al. [164] * | Semi-CARes-UNet | C2 | 96.1 | - | 78.6 | - |
Mondal et al. [165] | CO-IRv2 | C2, C4 | 96.18 | 97.96 | - | - |
Chen et al. [166] | Covid-CNN | C10 | 96.7 | - | 95.6 | - |
Alshazly et al. [167] | Deep CNNs | C1, C4 | 96.15 | 96.75 | 95.9 | - |
Voulodimos et al. [168] * | Few-shot UNet | C2, C8 | - | - | - | - |
Khan et al. [169] | MC-SVM + AlexNet + VGG16 | C8 | 98 | - | - | 99 |
Rajasekar et al. [170] | CNN + MLP | C3 | 94.89 | 95 | - | - |
Xie et al. [171] * | CNN | Private | - | 80.0 | 83.6 | 90.6 |
Sethy et al. [172] * | VGG19 | Private | 64.80 | - | - | - |
Özyurt et al. [173] * | ShuffleNet | C25 | 99.98 | - | - | - |
Garain et al. [174] | DCSNN | C1 | 99.51 | 100 | 98.96 | - |
Elghamrawy et al. [175] | CNNs | Private | 98 | - | 98.8 | 96 |
Sen et al. [176] | CNN | C4, C1 | 94.19 | - | - | 95.5 |
Teodoro et al. [177] | EfficientNetB0 | C4 | - | 98.53 | 98.53 | - |
Yasar et al. [178] | CNN | C1, C4, C3 | 95.16 | 94.01 | 97.54 | 99.06 |
Brahim et al. [179] | COV-CAF | C9 | 97.67 | 98.41 | 97.57 | - |
Afshar et al. [180] | DNN | Private | 93 | - | - | - |
Liu et al. [181] * | COVIDNet | Private | 94.3 | 88.50 | 91.12 | 98 |
Kundu et al. [182] | CNNs | C4, C26 | 98.86 | 98.86 | 98.87 | - |
Pal et al. [183] * | CNN | C1 | 84 | - | - | - |
Biswas et al. [184] | Stacked model (VGG16 + Xception + ResNet50) | C4 | 98.79 | - | - | 98.80 |
Helwan et al. [185] | DCNN | Private | 98.7 | 97.3 | 98.1 | - |
Castiglione et al. [186] | ADECO-CNN | C4 | 99.99 | 99.97 | 99.92 | - |
Yan et al. [187] | COVID-SegNet | Private | - | - | 75.1 | - |
Suri et al. [188] | COVLIAS 1.0 | Private | - | - | - | 96.75 |
Nair et al. [189] | CorNet | C4 | - | 96 | 90 | 95 |
Wan et al. [190] | Modified AlexNet | Private | 94.75 | 96.69 | 93.22 | - |
Guo et al. [191] | Modified ResNet | Private | 99.34 | - | - | - |
Xia et al. [192] | DNN | Private | 96.15 | 81.2 | 94.2 | - |
Polat et al. [193] * | CNN | C6 | 93.26 | 93.24 | 92.37 | - |
Li et al. [194] | VGG19 | C20 | 93.57 | 94.21 | 93.93 | - |
Owais [195] * | DAL-Net | C2, C9 | - | 85.68 | 99.4 | 97.80 |
Jia et al. [196] * | Modified ResNet | C25 | 99.30 | - | - | - |
He et al. [197] | M2U-Net | Private | 98.50 | - | - | 99.1 |
Murugan et al. [198] | Optimized ResNet50 | C4 | 98.78 | 99.19 | 98.37 | - |
Naeem et al. [199] * | CNN + LSTM | C4, C6 | 90.98 | - | - | - |
Kalane et al. [200] | UNet | C1, C6 | 94.10 | 93.47 | 94.86 | - |
Fouladi et al. [201] | CNNs | C4 | 93.3 | - | 87.67 | - |
Wang et al. [202] | FGCNet | Private | 96.66 | - | - | - |
Yu et al. [203] | ResGNet-C | Private | 96.62 | 95.91 | 97.33 | - |
Gao et al. [204] | DCN | Private | 94.80 | 94.45 | 95.42 | 98.17 |
Sahoo et al. [205] * | COVIDCon | C20 | 99.06 | - | - | - |
Lacerda et al. [206] * | VGG16 | C9 | 88 | - | 97 | - |
Siddiqui et al. [207] | CNN | Private | 95.54 | 97.06 | 94.38 | - |
Haikel et al. [208] | EfficienNet-B3- GAP-ensemble | C4, C1 | 99.72 | - | 99.80 | 99.99 |
Bekhet et al. [209] * | CNNs | Private | 92.08 | - | - | - |
Kaushik et al. [210] | VGG16 | C4 | 95.26 | 95.10 | 95.30 | - |
El-Shafai et al. [211] | SR-GAN + TCNN | C1, C25, C16 | 99.05 | - | - | - |
Masud et al. [212] | CNN | C16 | 96 | - | - | 99 |
El-Shafai et al. [213] | CNN | C16 | 100 | - | - | - |
Kassania et al. [214] * | DesNet +Bagging | C25 | 99.0 | 99.0 | 99.0 | - |
Wang et al. [215] | 3DUNet++–ResNet50 | Private | - | 99.2 | 97.4 | 99.1 |
Ahuja et al. [216] * | ResNet18 | C1 | 99.4 | 98.6 | 100 | 99.65 |
Pu et al. [217] | UNet BER algorithm | Private | - | 84 | 95 | - |
Maghdid et al. [218] | AlexNet (TL) | 526 | 94.1 | 100 | 72 | - |
Kumar et al. [219] | DNN | C1 | 98.4 | 98.3 | 98.5 | - |
Wang et al. [220] | Modified Inception TL | Private | 79.30 | 83 | 67 | - |
Authors [Ref] | Methods | Data Collection | Performance (in %) | |||
---|---|---|---|---|---|---|
ACC | SEN (rec) | SPEC | AUC | |||
Khurana and Soni [221] * | ResNet50 | C23 | 98.9 | 98.6 | 99.2 | - |
Canayaz et al. [222] | ResNet and MobileNet, SVM-KNN | C1 and C4 | 95.79, 99.06,99.37 | 95.83 | 95.75 | - |
Subhalakshmi et al. [223] | VGGNet16, InceptionV4 + Gaussian naïve Bayes | C1 | 96.81 | 96.53 | 95.81 | - |
Zouch et al. [224] * | ResNet50 and VGG19 | C1 | 98.06 | - | - | - |
Balaha et al. [225] | EfficientNetB7 | C18 | 99.61 | 99.62 | - | 99.98 |
Habib et al. [226] * | ResNet101 + DenseNet201 + WLD | Not provided | 99.3 | 99.1 | - | - |
Montalbo et al. [227] * | InceptionResNetV2-Tr | C22, C2, C9, C1, C18 | 97.41 | 97.52 | - | 99.0 |
Ali et al. [228] * | Modified CNN | C18 | 92.80 | - | - | - |
Pandey et al. [229] | VGG16 | C15 | 99.28 | - | - | - |
Liu et al. [230] | DCNN-IPMPA | C1, C4 | 97.21 and 97.94 | 96.21 and 95.22 | 95.76 and 95.43 | - |
Luo et al. [231] | UNet | Private | 93.84 | 93.15 | - | - |
Saheb et al. [232] | CNN | C3 | 98.49 | 96.83 | 96.83 | - |
Batra et al. [233] | InceptionV3 | C1 | 93 | 89.81 | - | - |
Cao et al. [234] | ResNet50 | Private | 82.7 | 79.1 | - | - |
Yazdani et al. [235] | CTFDF | Private | 91.61 | - | - | - |
Bhuyan et al. [139] * | CNN | C1 | 99 | 95.82 | 99.26 | - |
Ibrahim et al. [236] | VGGNet + CDBN + HRNet | C1 | 95 | 95 | 96 | - |
Akinyelu et al. [237] | NASNetLarge | Private | 99.86 | 99.83 | 99.90 | - |
Florescu et al. [238] | VGG16FL | Private | 1.57 | - | - | - |
Jingxin et al. [150] | ResNet50 | C8, C18, C1 | 98.39 | - | - | - |
Baghdadi et al. [239] * | Hybrid (SpaSA and CNN) | C15 | 99.73 | - | - | - |
Shaik et al. [240] | CNNs | C1, C4 | 93.33 | 93.25 | - | 93.25 |
Reis et al. [241] | CNNs | C4 | 97.60 | 100 | - | - |
Garg et al. [242] | EfficientNetB5 | C4 | 98.45 | 96.82 | 98.83 | - |
Fan et al. [243] | Trans-CNNNet | C25 | 96.73 | 97.76 | 96.01 | - |
Karthik et al. [244] | 3D CNN | C9 | - | - | - | - |
Verma et al. [245] | EffecientNetB0 | 99.58 | 99.69 | - | - | |
Smadi et al. [246] | CNNs | C4 | 98.79 | 98.8 | 98.8 | - |
Fallahpoor et al. [247] | ResNet50 | Private | 85% | - | - | - |
Sadik et al. [248] | P-DenseCOVNet | C19 | 93.8 | 97.5 | 90.0 | - |
Huang et al. [249] | LightEfficientNetV2 | C1, C4 | 97.48 | - | - | - |
Li et al. [250] | CNN | Private | 92.647 | 93.323 | - | - |
Hemalatha et al. [251] | MOMHTS optimized hybrid random forest deep learning | C1 | 99 | 99 | - | - |
Wang et al. [252] * | ResNet34 | C2 | - | - | - | - |
Qi et al. [253] | ResNet50 | C19 | 93.4 | - | - | 87.6 |
Oğuz and Yağanoğlu [254] | ResNet50 + SVM | Private | 96.29 | 95.082 | - | 98.21 |
Ravi et al. [111] | EfficientNet | C16 | 99.00 | 99.00 | - | - |
Yang et al. [255] | CNN | C4 | 97.55 | 96.41 | 98.14 | - |
Mijares et al. [256] | CNN | C4 | 94.89 | 90.43 | - | - |
Heidari et al. [257] | CNN | private | 99.76 | 99.40 | - | - |
Singh and Kolekar [115] | MobileNetV2 | C4 | 96 | 98 | - | - |
Ortiz et al. [258] * | InceptionResNetV2 | C19 | 91 | 33 | - | 80.0 |
Sangeetha et al. [259] | VGG19 and ResNet152V2 | C15 | 98 | - | - | - |
Mohammed et al. [260] | ResNet50 | C1 | 91.46 | - | - | - |
Joshi et al. [261] | CNN | C1, and C4 | 96.13 | - | - | 96.13 |
Zhang et al. [262] | VGG19 | Private | 94.12 | 91.40 | 96.95 | 97.44 |
Mouhafid et al. [263] | WAE | C4, C1 | 96.82 | 97.25 | - | - |
Dara et al. [264] | ResNet39 | C1, C2, C9 | 97.53 | 93 | - | - |
Ozdemir et al. [265] | ResNet50 | C1 | 95.57 | 95.71 | - | - |
Ahuja et al. [266] | ResNet18 | C9 | 98.07 | 95.66 | 98.83 | - |
Messaoud et al. [267] | VGG19 | C1 | 86 | 79 | - | - |
Manconi et al. [268] | InceptionV1 | C19 | 98.21 | 97.17 | 99.24 | 99.72 |
Cheng et al. [269] | VBNet + LSTM | Private | 89 | 84 | - | - |
Lu et al. [270] | ResNet18 | C15 | 97.78 | 97.94 | 97.65 | - |
Owais et al. [271] | DSSNet | C3 | 96.58 | - | - | 98.54 |
Yoo et al. [272] | 2D UNet | Private | - | - | - | - |
Suri et al. [273] | ResNet-UNet | Private | 98 | - | - | 87.00 |
Ghose et al. [274] | DenseNet169TL | C22 | 99.95 | - | 99.97 | - |
Gunraj et al. [275] | CNNs | C25 | 99 | 99.1 | - | - |
Yousefzadeh et al. [276] | UNet + KNN | C9 | - | - | - | - |
Choudhary et al. [277] | ResNet34 | C4 | 95.47 | 92.16 | 99.42 | - |
Chouat et al. [278] * | VGGNet19, Xception | C11 | 90.5, 89.5 | - | - | - |
Dialameh et al. [279] | DenseNet121 | C3 | - | 85.8 | - | - |
Venkatachalam et al. [280] | CNN | Private | 98.5 | 97 | 100 | - |
Latif et al. [281] | ResNet18 + GoogleNet2000 features with SVM | C19 | 99.9 | - | - | - |
El-Shafai et al. [282] | DCNN | C1 | 98.49 | - | - | - |
Xue et al. [283] | CNN | C1 | 97.67 | - | - | - |
El-Shafai et al. [284] | CNN | C9 | 100 | - | - | - |
Author [Ref] (Year) | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
Song et al. [63] (2020) | Private | - | 91 | 92 | 97 |
Singh et al. [65] (2020) | Private | 93.5 | 90 | 90 | - |
Ning et al. [66] (2020) | C17 | - | - | - | 89.6 |
Babukarthik et al. [68] (2020) * | C23 | 98.84 | 97.0 | 100 | - |
Han et al. [70] (2020) | Private | 97.9 | - | - | 99 |
Gunraj et al. [72] (2020) | C3 | 99.1 | 99.9 | 97.3 | - |
Heidarian et al. [140] (2020) | C22 | 90.82 | 86.04 | 94.55 | 98.0 |
Mishra et al. [73] (2020) | C1 | 86 | - | - | 88.3 |
Qian et al. [79] (2020) | Private | - | 97.49 | 98.99 | 99.93 |
Li et al. [80] (2020) | Private | - | - | - | 96.0 |
Silva et al. [75] (2020) | C1, C4 | 87.68 | - | - | - |
Jin et al. [82] (2020) * | C9, C20 | 94.98 | 95.76 | 90.19 | 97.71 |
Jamshidi et al. [83] (2020) * | C1, C16, C25 | 98.49 | - | - | - |
Zhang et al. [85] (2020) | Private | - | - | - | 95.9 |
Owais et al. [195] (2020) * | C2, C9 | 97.60 | 99.29 | 90.32 | 98.65 |
Misztal et al. [89] (2020) | C1, C19 | - | - | - | - |
Polsinelli et al. [91] (2020) | C6 | 85.03 | 81.95 | 87.55 | - |
Masud et al. [212] (2020) | C16 | 96 | - | - | 99 |
Hu et al. [96] (2020) | Private | 87.1 | 91.23 | 80.83 | 90.6 |
Kang et al. [99] (2020) | private | 95.5 | 96.6 | 93.2 | - |
Bai et al. [101] (2020) | Private | 96 | 93.2 | 95 | 95 |
Zhu et al. [102] (2020) | C25 | - | - | - | - |
Zhang et al. [107] (2021) | Private | 93.64 ± 1.42 | 94.00 ± 1.56 | 93.28 ± 1.50 | - |
Yao et al. [109] (2021) | Private | - | 90.5 | 91.5 | 95.5 |
Acar et al. [110] (2021) | C2, C1 | - | - | - | - |
Ravi et al. [111] (2021) * | C16 | 99 | - | - | - |
Huang et al. [113] (2021) * | Private | 98.28 | - | - | - |
Kundu et al. [117] (2021) | C4 | 97.81 | 97.77 | 97.81 | - |
Saad et al. [118] (2021) | C16 | 98.9 | - | - | - |
Lee et al. [127] (2021) | C5 | - | - | - | 80 |
Mishra et al. [128] (2021) * | C1 | 99 | - | - | 98.6 |
Barbosa et al. [130] (2021) * | Private | - | - | - | |
Jadhav et al. [132] (2021) | Private | 95.2 | 94.9 | 95.3 | 98.5 |
Yao et al. [134] (2021) | C1, C5 | 98.49 | 97.95 | 99.0 | - |
Khalifa et al. [138] (2021) | C8, C14 | 99.3 | 95 | 98.12 | - |
Bhuyan et al. [139] (2021) * | C2 | 99 | 99.41 | 96.66 | - |
Chaddad et al. [143] (2021) * | Private | 82.80 | 88.16 | ||
Yousefzadeh et al. [144] (2021) * | C20, C9 | - | 92.7 | 94.5 | 95.6 |
Jiang et al. [148] (2021) | C1 | 96 | - | - | 98.89 |
Pathan et al. [154] (2021) | C1 | 96 | 96 | 97 | - |
Cruz et al. [155] (2021) | C1 | 86.70 | - | 89.52 | 90.82 |
Basset et al. [157] (2021) * | C22 | 96.80 | - | - | 98.86 |
Aslan et al. [159] (2021) * | C19 | 98.70 | - | - | 99 |
Kundu et al. [160] (2021) | C3 | 98.93 | 98.93 | 98.93 | - |
Zhang et al. [163] (2021) | Private | 98.02 | 97.95 | 98.10 | - |
Chen et al. [166] (2021) | C10 | 96.7 | - | 95.6 | - |
Alshazly et al. [167] (2021) | C1, C4 | 96.15 | 96.75 | 95.9 | - |
Rajasekar et al. [170] (2021) | C3 | 94.89 | 95 | - | - |
Xie et al. [171] (2021) * | Private | - | 80.0 | 83.6 | 90.6 |
Garain et al. [174] (2021) | C1 | 99.51 | 100 | 98.96 | - |
Elghamrawy et al. [175] (2021) | Private | 98 | - | 98.8 | 96 |
Sen et al. [176] (2021) | C4, C1 | 94.19 | - | - | 95.5 |
Teodoro et al. [177] (2021) | C4 | - | 98.53 | 98.53 | - |
Yasar et al. [178] (2021) | C1, C4, C3 | 95.16 | 94.01 | 97.54 | 99.06 |
Afshar et al. [180] (2021) | Private | 93 | - | -- | - |
Kundu et al. [182] (2021) | C4, C26 | 98.86 | 98.86 | 98.87 | - |
Pal et al. [183] (2021) * | C1 | 84 | - | - | - |
Helwan et al. [185] (2021) | Private | 98.7 | 97.3 | 98.1 | - |
Castiglione et al. [186] (2021) | C4 | 99.99 | 99.97 | 99.92 | - |
Yan et al. [187] (2021) | Private | - | - | 75.1 | - |
Wan et al. [190] (2021) | Private | 94.75 | 96.69 | 93.22 | - |
Polat et al. [193] (2021) * | C6 | 93.26 | 93.24 | 92.37 | - |
Naeem et al. [199] (2021) * | C4, C6 | 90.98 | - | - | - |
Fouladi et al. [201] (2021) | C4 | 93.3 | - | 87.67 | - |
Wang et al. [202] (2021) | Private | 96.66 | - | - | - |
Siddiqui et al. [207] (2021) | Private | 95.54 | 97.06 | 94.38 | - |
Haikel et al. [208] (2021) | C4, C1 | 99.72 | - | 99.80 | 99.99 |
Bekhet et al. [209] (2021) * | Private | 92.08 | - | - | - |
El-Shafai et al. [211] (2021) | C1, C25, C16 | 99.05 | - | - | - |
El-Shafai et al. [213] (2021) | C16 | 100 | - | - | - |
Liu et al. [230] (2022) | C1, C4 | 97.21 and 97.94 | 95.76 and 95.43 | 96.21 and 95.22 | - |
Saheb et al. [232] (2022) | C3 | 98.49 | 96.83 | 96.83 | - |
Bhuyan et al. [139] * (2022) | C1 | 99 | 99.26 | 95.82 | - |
Shaik et al. [240] (2022) | C1, C4 | 93.33 | - | 93.25 | 93.25 |
Reis et al. [241] (2022) | C4 | 97.60 | - | 100 | - |
Fan et al. [243] (2022) | C25 | 96.73 | 96.01 | 97.76 | - |
Karthik et al. [244] (2022) | C9 | - | - | - | - |
Smadi et al. [246] (2022) | C4 | 98.79 | 98.8 | 98.8 | - |
Li et al. [275] (2022) | Private | 92.647 | - | 93.323 | - |
Yang et al. [255] (2022) | C4 | 97.55 | 98.14 | 96.41 | - |
Mijares et al. [256] (2022) | C4 | 94.89 | - | 90.43 | - |
Heidari et al. [257] (2022) | Private | 99.76 | - | 99.40 | - |
Joshi et al. [261] (2022) | C1, and C4 | 96.13 | - | - | 96.13 |
Gunraj et al. [275] (2022) | C25 | 99 | - | 99.1 | - |
Venkatachalam et al. [280] (2022) | Private | 98.5 | 100 | 97 | - |
Xue et al. [283] (2022) | C1 | 97.67 | - | - | - |
El-Shafai et al. [284] (2022) | C9 | 100 | - | - | - |
Author [Ref] (Year) | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
Song et al. [108] (2020) | Private | 86 | 77 | - | 95 |
Loey et al. [62] (2020) | C1 | 82.91 | 87.62 | 77.66 | - |
Mohammed et al. [69] (2020) | C19 | 77.6 | 79.3 | 85.5 | - |
Chen et al. [100] (2020) | C1, C6, C2 | 86.8 | - | - | 93.1 |
Javor et al. [74] (2020) | Private | - | 93.3 | 84.4 | 95.6 |
Pathak et al. [76] (2020) * | C1 | 93.0 | 91.4 | 94.7 | - |
Ko et al. [92] (2020) * | C6 | 96.97 | 100 | 99.58 | - |
Wang et al. [94] (2020) | 93.3 | - | 95.5 | 97.3 | - |
Jin et al. [82] (2020) * | C9, C20 | 94.98 | 95.76 | 90.19 | 97.71 |
Sharma et al. [104] (2020) * | C1, C9 | 91 | - | - | - |
Li et al. [80] (2020) | Private | - | 96 | 90 | 96 |
Wang et al. [98] (2020) | Private | 85.00 | 79.35 | 71.43 | 90.11 |
Goncharov et al. [106] (2021) * | C2 | - | - | - | 0.97 ± 0.01 |
Chen et al. [112] (2021) * | Private | 91.21 | 88.46 | 94.87 | - |
Lascu et al. [121] (2021) * | C1 | 94.9 | - | - | - |
Yan et al. [124] (2021) | C4 | 96.3 | - | - | - |
Shalbaf et al. [125] (2021) | C1 | 85 | - | 85 | - |
Rahimzadeh et al. [126] (2021) | C3 | 98.49 | - | 94.96 | - |
Zhu et al. [136] (2021) * | C1 | 93 | 92 | 93 | - |
Wang et al. [147] (2021) * | Private | - | - | 96.25 | - |
Jingxin et al. [150] (2021) * | C1, C19 | 97.83 | - | 96.89 | - |
Ahamed et al. [153] (2021) * | C15 | 99.99 | - | - | - |
Mondal et al. [165] (2021) | C2, C4 | 96.18 | 97.96 | - | - |
Biswas et al. [184] (2021) | C4 | 98.79 | - | - | 98.80 |
Suri et al. [188] (2021) | Private | - | - | - | 96.75 |
Nair et al. [189] (2021) | C4 | - | 96 | 90 | 95 |
Guo et al. [191] (2021) | Private | 99.34 | - | - | - |
Jia et al. [196] (2021) * | C25 | 99.3 | - | - | - |
Murugan et al. [198] (2021) | C4 | 98.78 | 99.19 | 98.37 | - |
Yu et al. [203] (2021) | Private | 96.62 | 95.91 | 97.33 | - |
Wang et al. [215] (2021) | Private | - | 99.2 | 97.4 | 99.1 |
Ahuja et al. [216] (2021) * | C1 | 99.4 | 98.6 | 100 | 99.65 |
Benbrahim et al. [103] (2021) | Private | 99.01 | 100 | 72 | - |
Khurana and Soni* [221] (2022) | C23 | 98.9 | 99.2 | 98.6 | - |
Canayaz et al. [222] (2022) | C1 and C4 | 95.79 | 95.75 | 95.83 | - |
Zouch et al. [224] (2022) * | C1 | 98.06 | - | - | - |
Habib et al. [226] * (2022) | Not provided | 99.30 | - | 99.10 | - |
Cao et al. [234] (2022) | Private | 82.7 | - | 79.1 | - |
Jingxin et al. [150] (2022) | C8, C18, C1 | 98.39 | - | - | - |
Fallahpoor et al. [247] (2022) | Private | 85.00 | - | - | - |
Q et al. [252] * (2022) | C2 | - | - | - | - |
Qi et al. [253] (2022) | C19 | 93.4 | - | - | 87.6 |
Oğuz and Yağanoğlu [254] (2022) | Private | 96.29 | - | 95.082 | 98.21 |
Sangeetha et al. [259] (2022) | C15 | 98 | - | - | - |
Mohammed et al. [260] (2022) | C1 | 91.46 | - | - | - |
Dara et al. [264] (2022) | C1, C2, C9 | 97.53 | - | 93 | - |
Ozdemir et al. [265] (2022) | C1 | 95.57 | - | 95.71 | - |
Ahuja et al. [266] (2022) | C9 | 98.07 | 98.83 | 95.66 | - |
Lu et al. [270] (2022) | C15 | 97.78 | 97.65 | 97.94 | - |
Suri et al. [273] (2022) | Private | 98 | - | - | 87.00 |
Choudhary et al. [277] (2022) | C4 | 95.47 | 99.42 | 92.16 | |
Latif et al. [281] (2022) | C19 | 99.9 | - | - | - |
Authors [Ref] (Year) | Data Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
Panwar et al. [88] (2020) * | C4, C25 | 95.61 | 97.22 | 76 | - |
Deng et al. [95] (2020) | C25 | 75 | - | - | - |
Zhu et al. [102] (2020) | C25 | - | - | - | - |
Ibrahim et al. [105] (2021) * | C6 | 98.05 | 99.5 | - | 99.66 |
Jangam et al. [114] (2021) * | C1, C3, C4 | 91.49 | - | - | - |
Tan et al. [120] (2021) | C1 | 98 | 94.9 | 99 | - |
Guiot et al. [133] (2021) * | Private | 85.18 | 91.63 | 69.52 | 88.2 |
Singh et al. [135] (2021) | C20 | 99.29 | - | - | - |
Hu et al. [149] (2021) | C1, C3, C2 | 95.43 | - | - | - |
Balaha et al. [151] (2021) | C1, C3, C24 | 99.33 | - | - | - |
Khan et al. [169] (2021) | C8 | 98 | - | - | 99 |
Sethy et al. [172] (2021) * | Private | 64.80 | - | - | - |
Brahim et al. [179] (2021) | C9 | 97.67 | 98.41 | 97.57 | - |
Biswas et al. [184] (2021) | C4 | 98.79 | - | - | 98.80 |
Suri et al. [188] (2021) | Private | - | - | - | 96.75 |
Li et al. [194] (2021) | C20 | 93.57 | 94.21 | 93.93 | - |
Lacerda et al. [206] * (2021) | C9 | 88 | - | 97 | - |
Kaushik et al. [210] (2021) | C4 | 95.26 | 95.10 | 95.30 | - |
Subhalakshmi et al. [223] (2022) | C1 | 96.81 | 95.81 | 96.53 | - |
Zouch et al. [224] (2022) * | C1 | 98.06 | - | - | - |
Pandey et al. [229] (2022) | C15 | 99.28 | - | - | - |
Ibrahim et al. [236] (2022) | C1 | 95 | 96 | 95 | - |
Florescu et al. [238] (2022) | Private | 1.57 | - | - | - |
Sangeetha et al. [259] (2022) | C15 | 98 | - | - | - |
Zhang et al. [262] (2022) | Private | 94.12 | 96.95 | 91.40 | 97.44 |
Messaoud et al. [267] (2022) | C1 | 86 | - | 79 | - |
Chouat et al. [278] * (2022) | C11 | 90.5 | - | - | - |
Author [Ref] (Year) | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
Hu et al. [61] (2020) | C1 | 86.00 | - | - | 94.00 |
Jaiswal et al. [67] (2020) | C4 | 96.25 | 96 | 96 | - |
Peng et al. [78] (2020) * | C13 | - | - | 78.0 | 89.1 |
Jin et al. [82] (2020) | Private | 90.8 | 93 | 84 | - |
Liu et al. [87] (2020) | C1, C17 | - | - | - | 76.09 |
Jangam et al. [114] (2021) * | C1, C3, C4 | 91.49 | - | - | - |
Wang et al. [147] (2021) * | Private | - | - | 96.25 | - |
Li et al. [162] (2021) | C1 | 87 | - | - | 75 |
Liu et al. [181] (2021) * | Private | 94.3 | 88.50 | 91.12 | 98 |
Kassania et al. [214] (2021) * | C25 | 99.0 | 99.0 | 99.0 | - |
Habib et al. [226] * (2022) | Not provided | 99.3 | - | 99.1 | - |
Sadik et al. [248] (2022) | C19 | 93.8 | 90.0 | 97.5 | - |
Ghose et al. [274] (2022) | C22 | 99.95 | 99.97 | - | |
Dialameh et al. [279] (2022) | C3 | - | - | 85.8 | - |
Authors [Ref] (Year) | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
El-Bana et al. [93] (2020) * | Private | 99.5 | 99.2 | 99.8 | - |
Benbrahim et al. [103] (2020) | Private | 99.01 | 100 | 72 | - |
Shalbaf et al. [125] (2021) | C1 | 85 | - | 85 | - |
Wang et al. [220] (2021) | Private | 79.30 | 83 | 67 | - |
Subhalakshmi et al. [223] (2022) | C1 | 96.81 | 95.81 | 96.53 | - |
Montalbo et al. [227] * (2022) | C22, C2, C9, C1, C18 | 97.41 | - | 97.52 | 99.0 |
Batra et al. [233] (2022) | C1 | 93 | - | 89.81 | - |
Ortiz et al. [258] * (2022) | C19 | 91 | - | 33 | 80.0 |
Manconi et al. [268] (2022) | C19 | 98.21 | 99.24 | 97.17 | 99.72 |
Authors [Ref] (year) | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
Ni et al. [60] (2019) | Private | Per lobe—83 Per patient—94 | - | 96 100 | 86.54 86.08 |
Chaganti et al. [64] (2020) | Private | - | - | - | - |
Alirr et al. [116] (2021) | C2, C6 | - | 95.1 | 82.2 | - |
Fung et al. [119] (2021) | C2 | - | - | - | 98.66 |
Zhang et al. [129] (2021) | Private | - | - | - | - |
Jiang et al. [71] (2020) | C2 | - | - | - | - |
Kuchana et al. [137] (2021) | C14, C2 | - | - | - | - |
Munusamy et al. [146] (2021) | C2 | 99 | - | - | - |
Hasan et al. [156] (2021) * | C4, C1 | 90.14 | 88.59 | - | 94.60 |
Basset et al. [157] (2021) * | C22 | 96.80 | - | - | 98.86 |
Müller et al. [161] (2021) * | C25 | - | - | - | - |
Xu et al. [164] (2021) * | C2 | 96.1 | - | 78.6 | - |
Lessmann et al. [81] * (2020) | Private | - | 89.8 | 85.7 | 95 |
Voulodimos et al. [168] (2021) * | C2, C8 | - | - | - | - |
Wang et al. [84] (2020) * | Private | 90.1 | - | - | 95.9 |
Amyar et al. [90] (2020) | C1, C2 | 94.67 | 92 | 96 | - |
He et al. [197] (2021) | Private | 98.5 | - | - | 99.1 |
Kalane et al. [200] (2021) | C1, C6 | 94.10 | 93.47 | 94.86 | - |
Gao et al. [204] (2021) | Private | 94.80 | 94.45 | 95.42 | 98.17 |
Wang et al. [215] (2021) | Private | - | 99.2 | 97.4 | 99.1 |
Kang et al. [99] (2020) | Private | 95.5 | 96.6 | 93.2 | - |
Chen et al. [100] (2020) | Private | 98.85 | 99.16 | 94.34 | - |
Pu et al. [217] (2021) | Private | - | 84 | 95 | - |
Luo et al. [231] (2022) | Private | 93.84 | - | 93.15 | - |
Suri et al. [273] (2022) | Private | 98.00 | - | - | 87.00 |
Yoo et al. [272] (2022) | Private | - | - | - | - |
Yousefzadeh et al. [276] (2022) | C9 | - | - | - |
Authors [Ref] (Year) | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
Singh et al. [135] (2021) | C4 | 96.40 | - | 98 | 99.5 |
Canayaz et al. [222] (2022) | C1 and C4 | 99.06 | 95.75 | 95.83 | - |
Singh and Kolekar [115] (2022) | C4 | 96 | - | 98 | - |
Authors [Ref] (Year) | Dataset Collection | Performance (%) | |||
---|---|---|---|---|---|
ACC | SPEC | SEN | AUC | ||
Balaha et al. [225] (2022) | C18 | 99.61 | - | 99.62 | 99.98 |
Garg et al. [242] (2022) | C4 | 98.45 | 98.83 | 96.82 | - |
Verma et al. [245] (2022) | 99.58 | - | 99.69 | - | |
Huang et al. [249] (2022) | C1, C4 | 97.48 | - | - | - |
Ravi et al. [111] (2022) | C16 | 99.00 | - | 99.00 | - |
Author [Ref] (Year) | Used Methods | Motivation | Dataset Collection | Dataset (Augmentation) | Performance (%) | |||
---|---|---|---|---|---|---|---|---|
ACC | SEN | SPEC | AUC | |||||
Loey et al. [62] (2020) | CGAN | Model accuracy improvement | C1 | 1502 (4843) | 82.91 | 77.66 | 87.62 | - |
Mohammed et al. [69] (2020) | Contrast stretching, the addition of Gaussian noise, blur, and spatial transformations such as zooming, scaling, rotation, and elastic deformation | Augment positive samples count | C19 | 22,873 (-) | 77.6 | 85.5 | 79.3 | - |
Jiang et al. [71] (2020) | GAN (random resizing and cropping, random rotation, Gaussian noise, and elastic transform) | Increase image number | C2 | 373 (2220) | - | - | - | - |
Chen et al. [145] (2020) | Random cropping, resizing, color distortion | Classification performance improvement | C1, C2 | 1286 (-) | 86.8 | - | - | 93.1 |
Silva et al. [75] (2020) | Rotation (0–15° clockwise or anticlockwise), horizontal flip, scaling, 20% zoom | Increase data size | C1, C4 | 1693 (-) | 87.68 | - | - | - |
Wang et al. [84] (2020) | Random affine transformation (horizontal and vertical translations, shearing in the width dimension) and color jittering (adjusted brightness and contrast) | Avoid overfitting | Private | - (310,055) | 90.1 | - | - | 95.9 |
Zhang et al. [85] (2020) | Crop square patches, rotation with an angle, random horizontal reflection, and adjusted contrast by random darkening and brightening | Increase number of images | Private | - (630) | - | - | - | 95.9 |
Ko et al. [92] (2020) | Rotation between –10° and 10° and 90% (zoom-in) and 110% (zoom-out) | Increase number of images | Private | - (3993) | 96.97 | 99.58 | 100 | - |
El-Bana et al. [93] (2020) | Crop square patches, rotation with an angle (Δ = −25 to 25), random horizontal reflection, adjust contrast (factor ranging from 0.5 to 1.5) | Avoid overfitting | Private | - (499) | 99.5 | 99.8 | 99.2 | - |
Hu et al. [96] (2020) | Cropping square patches, rotation with an angle of −25 to + 25 degrees, random horizontal reflection, and contrast adjustment (factor ranging between 0.5 and 1.5) | Increase dataset size | Private | - (-) | 87.1 | 80.83 | 91.23 | 90.6 |
Ibrahim et al. [105] (2021) | Resizing, rotating, flipping, skewing | Increase number of Images | C6 | 33,676 (75,000) | 98.05 | - | 99.5 | 99.66 |
Acar et al. [110] (2021) | GAN | Increase effectiveness of DL models | C2, C1 | 1607 (3921) | - | - | - | - |
Huang et al. [113] (2021) | Vertical–horizontal flip, rotation (90, 180, 270 degrees) | Acquire richer samples | FaNet | 422 (12,924) | 98.28 | - | - | - |
Jangam et al. [114] (2021) | Random resized crop, rotation, horizontal flip, color jittering | Increase size of dataset | C1, C3, C4 | 15,286 (-) | 91.49 | - | - | - |
Tan et al. [120] (2021) | SRGAN | Enhancement in model accuracy | C1 | 746(-) | 97.9 | 99 | 94.9 | - |
Lascu et al. [121] (2021) | Random patching, resized | Generate more samples | C1 | 746 (-) | 94.9 | - | - | - |
Bhuyan et al. [139] (2021) | RAIOSS | Changing image | C2 | - (3855) | 99 | 96.66 | 99.41 | - |
Wang et al. [147] (2021) | Noise injection, HS transform, vs. transform, rotation, GC, RT, and scaling | Improve generalization of model | Private | 1164 (-) | - | 96.25 | - | - |
Jiang et al. [148] (2021) | CycleGAN | Increase data size | C1 | 600 (2000) | 96 | - | - | 98.89 |
Jingxin et al. [150] (2021) | Coronal view, squeezing | Improve model performance | C1, C19 | -(-) | 97.83 | 96.89 | - | - |
Balaha et al. [151] (2021) | Cropping, zooming, shearing, rotating, flipping, and changing the brightness | Increase Data size | C1, C3, C24 | - (15,535) | 99.33 | - | - | - |
Turkoglu et al. [152] (2021) | Symmetrical rotation (90 and 270 degree), reflection | Increase classification accuracy | C1 | 746 (3730) | 98.36 | 98.28 | 98.44 | 98.36 |
Ahamed et al. [153] (2021) * | Rescaling, zooming, horizontal flipping and shearing operations | Reduce network generalization error | C15 | 3000 (7593) | 99.99 | - | - | - |
Aslan et al. [159] (2021) | Crop, rotation | Increase number of images | C19 | - (1095) | 98.70 | - | - | 99 |
Zhang et al. [163] (2021) | Salt and pepper noise (SAPN) and speckle noise | Avoid overfitting | Private | - (-) | 98.02 | 98.10 | 97.95 | - |
El-Shafai et al. [211] (2021) | GAN | Improve model accuracy | C1, C25, C16 | - (-) | 99.05 | - | - | - |
Zouch et al. [224] (2022) | Random rotation with angle ranging from +20 to -20 degrees, random noise, horizontal flip | Increase dataset size | C1 | - (-) | 76.32 (ResNet50) and 84.87 (VGG19) | - | - | - |
Balaha et al. [225] (2022) | GANs, CycleGAN, CCGAN | Avoid overfitting | C18 | - (-) | 99.57 and 99.14 | - | - | - |
Habib et al. [226] (2022) | Contrast enhancement | developed robust system | Not mentioned | 21,165 (47,440) | 99.3 | 99.1 | - | |
Bhuyan et al. [139] (2022) | RAIOSS | generated different quality images | C1 | 746 (3855) | 99 | 95.82 | 99.26 | |
Ibrahim et al. [236] (2022) | Rotation of all images to 90, 180, 270 | To increase number of images and attain high generalizability | C1 | 746 (2984) | 95 | 95 | 96 | |
Akinyelu et al. [237] (2022) | Rotation, zoom, width shift, height shift, shear | Increase dataset size | Private | - (194,922) | 97.50 (B), 99.86 | 100, 99.83 | 93.19, 99.90 | |
Baghdadi et al. [239] * (2022) | Rotation, width shift ratio, height shift ratio, shear ratio, zoom ratio, brightness change, vertical flip, horizontal flip | To balance datasets | C15 | 14,486 (15,186) | 99.73 | - | - | |
Karthik et al. [244] (2022) | Random rotation, random translation, shearing, horizontal flip | Improve generalizability | C9 | - | - | - | - | |
Fallahpoor et al. [247] (2022) | Random rotation, 90 degree rotation, scaling, translation | Prevent overfitting and improve model performance | Private | - | - | - | - | |
Joshi et al. [261] (2022) | Horizontal flip, anticlockwise rotation (5 degree angle), clockwise rotation (5 degree angle), gaussian noise | Increase sample size | C1, and C4 | - | 93.59, 98.79 | - | - | |
Chouat et al. [278] (2022) | Scaling, rotating, shifts, and flips | Increase data and improve network efficiency | C11 | - | 90.5, 89.5 | - | - | |
El-Shafai et al. [284] (2022) | Rotation, width shift range, feature wise center, sample-wise center, brightness adjustment | Increase sample size | C1 | - | 98.49 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santosh, K.; GhoshRoy, D.; Nakarmi, S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare 2023, 11, 2388. https://doi.org/10.3390/healthcare11172388
Santosh K, GhoshRoy D, Nakarmi S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare. 2023; 11(17):2388. https://doi.org/10.3390/healthcare11172388
Chicago/Turabian StyleSantosh, KC, Debasmita GhoshRoy, and Suprim Nakarmi. 2023. "A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022" Healthcare 11, no. 17: 2388. https://doi.org/10.3390/healthcare11172388
APA StyleSantosh, K., GhoshRoy, D., & Nakarmi, S. (2023). A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare, 11(17), 2388. https://doi.org/10.3390/healthcare11172388