Effect of Pharmacoprophylaxis on Postoperative Outcomes in Adult Elective Colorectal Surgery: A Multi-Center Retrospective Cohort Study within an Enhanced Recovery after Surgery Framework †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Part 1—Descriptive Statistics
3.2. Part 2—Antibiotics and SSI
3.3. Part 3—Anticoagulants and VTE
3.4. Part 4—Antiemetics and PONV/PDNV
3.5. Part 5—Analgesics and POP and POI
4. Discussion
4.1. Part 1—Overview
4.2. Part 2—Antibiotics and Infection (SSI and Other)
4.3. Part 3—Anticoagulants and Venous Thromboembolism
4.4. Part 4—Antiemetics and Postoperative/Post-Discharge Nausea and Vomiting
4.5. Part 5—Analgesics and Pain/Ileus (Delayed Gastric Emptying)
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C/M | cefazolin/metronidazole |
ECRS | elective colorectal surgery patients |
EHR | electronic health record |
ERAS® | Enhanced Recovery After Surgery |
IV | intravenous |
IVA | intravenous antibiotic |
LA | local anesthetic |
LOS | length of hospital stay |
MBP | mechanical bowel preparation |
MME | morphine milligram equivalent |
OA | oral antibiotic |
OABP | oral antibiotic with bowel preparation |
PCA | patient-controlled analgesia |
PIV | peripheral intravenous fluid |
POC | postoperative complication |
PDNV | post-discharge nausea and vomiting |
PO | orally |
PONV | postoperative nausea and vomiting |
SC | subcutaneous |
SSI | surgical site infection |
TAP | transversus abdominis plane |
UFH | unfractionated heparin |
VTE | venous thromboembolism |
Appendix A. STOCSS Checklist
The STROCSS 2021 Guideline | ||
Item No. | Item Description | Page |
TITLE | ||
1 | Title
| 1 |
ABSTRACT | ||
2a | Introduction—briefly describe:
| 2 |
2b | Methods—briefly describe:
| 2 |
2c | Results—briefly describe:
| 2 |
2d | Conclusion—briefly describe:
| 2 |
INTRODUCTION | ||
3 | Introduction—comprehensively describe:
| 2–3 |
METHODS | ||
4a | Registration
| 4 |
4b | Ethical approval
| 4 |
4c | Protocol
| 3 |
4d | Patient and public involvement in research
| N/A |
5a | Study design
| 3 |
5b | Setting and timeframe of research—comprehensively describe:
| 3 |
5c | Study groups
| 3 |
5d | Subgroup analysis—comprehensively describe:
| 3 |
6a | Participants—comprehensively describe:
| 3 |
6b | Recruitment—comprehensively describe:
| 3 |
6c | Sample size—comprehensively describe:
| 3–4 |
METHODS—INTERVENTION AND CONSIDERATIONS | ||
7a | Pre-intervention considerations—comprehensively describe:
| N/A |
7b | Intervention—comprehensively describe:
| N/A |
7c | Intra-intervention considerations—comprehensively describe:
| N/A |
7d | Operator details—comprehensively describe:
| 3 |
7e | Quality control—comprehensively describe:
| 3 |
7f | Post-intervention considerations—comprehensively describe:
| N/A |
8 | Outcomes—comprehensively describe:
| 3 |
9 | Statistics—comprehensively describe:
| 3–4 |
RESULTS | ||
10a | Participants—comprehensively describe:
| 4 |
10b | Participant comparison
| 4 |
10c | Intervention—comprehensively describe:
| N/A |
11a | Outcomes—comprehensively describe:
| 4 |
11b | Tolerance—comprehensively describe:
| N/A |
11c | Complications—comprehensively describe:
| 4 |
12 | Key results—comprehensively describe:
| 4–19 |
DISCUSSION | ||
13 | Discussion—comprehensively describe:
| 19–23 |
14 | Strengths and limitations—comprehensively describe:
| 23 |
15 | Relevance and implications—comprehensively describe:
| 23 |
CONCLUSION | ||
16 | Conclusions
| 23–24 |
DECLARATIONS | ||
17a | Conflicts of interest
| 24 |
17b | Funding
| 24 |
17c | Contributorship
| 24 |
Appendix B. PICO Questions
- Is any IV antibiotic or combination of IV and oral antibiotics associated with a lower incidence of in-hospital or post-discharge SSI?
- Is preoperative iron therapy associated with a lower incidence?
- Is in-hospital insulin therapy associated with a lower incidence?
- Are preoperative oral antibiotics associated with a lower incidence?
- Is postoperative antibiotic dose/duration associated with a lower incidence?
- Is documentation of a penicillin and/or cephalosporin allergy associated with a higher incidence of in-hospital or post-discharge SSI?
- Is any anticoagulant associated with a lower incidence of in-hospital or post-discharge VTE or bleeding/hematoma?
- Is duration of post-discharge anticoagulation associated with a lower incidence?
- Is any antiemetic or combination of antiemetics associated with a lower incidence of in-hospital or post-discharge PONV?
- Is any anesthesia type associated with lower pain, PONV, and postoperative ileus complications?
- Is any analgesic(s) and adjunctive pain agents or combinations associated with lower total morphine milligram equivalents (MME) and lower incidences of pain and postoperative ileus?
- Is any combination of antibiotics, anticoagulants, and antiemetics associated with a lower incidence of postoperative complications?
- Is any IV antibiotic or combination of IV and oral antibiotics associated with a shorter LOS or 7- or 30-day readmission?
- Is any anticoagulant associated with a shorter LOS or 7- or 30-day readmission?
- Is any antiemetic or combination of antiemetics associated with a shorter LOS or lower 7- or 30-day readmission?
- Is any anesthesia type associated with a shorter LOS or lower 7- or 30-day readmission?
- Is any analgesic(s) and adjunctive pain agents or combinations associated with a shorter LOS or lower 7- or 30-day readmission?
- Is any surgical technique associated with a shorter LOS or lower 7- or 30-day readmission?
- Is any anatomical surgical site location associated with a shorter LOS or lower 7- or 30-day readmission?
References
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef] [PubMed]
- AlBalawi, Z.; Gramlich, L.; Nelson, G.; Senior, P.; Youngson, E.; McAlister, F.A. The impact of the implementation of the Enhanced Recovery After Surgery (ERAS®) program in an entire health system: A natural experiment in Alberta, Canada. World J. Surg. 2018, 42, 2691–2700. [Google Scholar] [CrossRef]
- Thanh, N.; Nelson, A.; Wang, X.; Faris, P.; Wasylak, T.; Gramlich, L.; Nelson, G. Return on investment of the Enhanced Recovery After Surgery (ERAS) multiguideline, multisite implementation in Alberta, Canada. Can. J. Surg. 2020, 63, E542–E550. [Google Scholar] [CrossRef]
- Martin, L.; Gillis, C.; Atkins, M.; Gillam, M.; Sheppard, C.; Buhlerm, S.; Hammond, C.B.; Nelson, G.; Gramlich, L. Implementation of an Enhanced Recovery After Surgery program can change nutrition care practice: A multicenter experience in elective colorectal surgery. J. Parenter. Enter. Nutr. 2019, 43, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Parrish, R.H., 2nd; Findley, R.; Elias, K.M.; Kramer, B.; Johnson, E.G.; Gramlich, L.; Nelson, G.S. Pharmacotherapeutic prophylaxis and post-operative outcomes within an Enhanced Recovery After Surgery (ERAS®) program: A randomized retrospective cohort study. Ann. Med. Surg. 2022, 73, 103178. [Google Scholar] [CrossRef]
- Gramlich, L.M.; Sheppard, C.E.; Wasylak, T.; Gilmour, L.E.; Ljungqvist, O.; Basualdo-Hammond, C.; Nelson, G. Implementation of Enhanced Recovery After Surgery: A strategy to transform surgical care across a health system. Implement. Sci. 2017, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Wijk, L.; Udumyan, R.; Pache, B.; Altman, A.D.; Williams, L.L.; Elias, K.M.; McGee, J.; Wells, T.; Gramlich, L.; Holcomb, K.; et al. International validation of Enhanced Recovery After Surgery Society guidelines on enhanced recovery for gynecologic surgery. Am. J. Obstet. Gynecol. 2019, 221, 237.e1–237.e11. [Google Scholar] [CrossRef] [PubMed]
- Bisch, S.P.; Wells, T.; Gramlich, L.; Faris, P.; Wang, X.; Tran, D.T.; Thanh, N.X.; Glaze, S.; Chu, P.; Ghatage, P.; et al. Enhanced Recovery After Surgery (ERAS) in gynecologic oncology: System-wide implementation and audit leads to improved value and patient outcomes. Gynecol. Oncol. 2018, 151, 117–123. [Google Scholar] [CrossRef]
- Nelson, G.; Wang, X.; Nelson, A.; Faris, P.; Lagendyk, L.; Wasylak, T.; Bathe, O.F.; Bigam, D.; Bruce, E.; Buie, W.D.; et al. Evaluation of the implementation of multiple Enhanced Recovery After Surgery pathways across a provincial health care system in Alberta, Canada. JAMA Netw. Open 2021, 4, e2119769. [Google Scholar] [CrossRef]
- Albert, H.; Bataller, W.; Masroor, N.; Doll, M.; Cooper, K.; Spencer, P.; Winborne, D.; Zierden, E.M.; Stevens, M.P.; Scott, M.; et al. Infection prevention and enhanced recovery after surgery: A partnership for implementation of an evidence-based bundle to reduce colorectal surgical site infections. Am. J. Infect. Control 2019, 47, 718–719. [Google Scholar] [CrossRef]
- Deery, S.E.; Cavallaro, P.M.; McWalters, S.T.; Reilly, S.R.; Bonnette, H.M.; Rattner, D.W.; Mort, E.A.; Hooper, D.C.; Del Carmen, M.G.; Bordeianou, L.G. Colorectal surgical site infection prevention kits prior to elective colectomy improve outcomes. Ann. Surg. 2020, 271, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dumville, J.C.; Norman, G.; Westby, M.J.; Blazeby, J.; McFarlane, E.; Welton, N.J.; O’Connor, L.; Cawthorne, J.; George, R.P.; et al. Intraoperative interventions for preventing surgical site infection: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2018, 2, CD012653. [Google Scholar] [CrossRef] [PubMed]
- Bowder, A.N.; Yen, C.F.; Bebell, L.M.; Fernandes, A.R. Intravenous cephalosporin versus non-cephalosporin-based prophylaxis to prevent surgical site infections in colorectal surgery patients: A systematic review and meta-analysis. Ann. Med. Surg. 2021, 67, 102401. [Google Scholar] [CrossRef] [PubMed]
- El-Dhuwaib, Y.; Selvasekar, C.; Corless, D.J.; Deakin, M.; Slavin, J.P. Venous thromboembolism following colorectal resection. Colorectal Dis. 2017, 19, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Wang, X.; Yao, W.; Li, H. Incidence of postoperative venous thromboembolism after laparoscopic versus open colorectal cancer surgery: A meta-analysis. Surg. Laparosc. Endosc. Percutaneous Tech. 2013, 23, 128–134. [Google Scholar] [CrossRef]
- Sammour, T.; Chandra, R.; Moore, J.W. Extended venous thromboembolism prophylaxis after colorectal cancer surgery: The current state of the evidence. J. Thromb. Thrombolysis 2016, 42, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Kakkos, S.K.; Caprini, J.A.; Geroulakos, G.; Nicolaides, A.N.; Stansby, G.P.; Reddy, D.J. Cochrane Library Cochrane Database of Systematic Reviews Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism. Cochrane Database Syst. Rev. 2016, 9, CD005258. [Google Scholar] [CrossRef] [PubMed]
- Fero, K.E.; Jalota, L.; Hornuss, C.; Apfel, C.C. Pharmacologic management of postoperative nausea and vomiting. Expert Opin. Pharmacother. 2011, 12, 2283–2296. [Google Scholar] [CrossRef]
- Gan, T.J.; Belani, K.G.; Bergese, S.; Chung, F.; Diemunsch, P.; Habib, A.S.; Jin, Z.; Kovac, A.L.; Meyer, T.A.; Urman, R.D.; et al. Fourth consensus guidelines for the management of postoperative nausea and vomiting. Anesth. Analg. 2020, 131, 411–448. [Google Scholar] [CrossRef]
- Antor, M.A.; Uribe, A.A.; Erminy-Falcon, N.; Werner, J.G.; Candiotti, K.A.; Pergolizzi, J.V.; Bergese, S.D. The effect of transdermal scopolamine for the prevention of postoperative nausea and vomiting. Front. Pharmacol. 2014, 5, 55. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, M.-S.; Choi, J.W.; Kim, H.; Kwon, Y.-S.; Lee, J.J. Comparison of the effects of sugammadex, neostigmine, and pyridostigmine on postoperative nausea and vomiting: A propensity matched study of five hospitals. J. Clin. Med. 2020, 9, 3477. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Gan, T.J. Management of postoperative nausea and vomiting in the context of an Enhanced Recovery after Surgery program. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 687–700. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, S.; Terrasa, S.A.; Ljungqvist, O.; Sanchez, G.; Garcia Fornari, G.; Alvarez, A.O. Nausea and vomiting in a colorectal ERAS program: Impact on nutritional recovery and the length of hospital stay. Clin. Nutr. ESPEN 2019, 34, 73–80. [Google Scholar] [CrossRef]
- Al-Mazrou, A.M.; Baser, O.; Kiran, R.P. Alvimopan, regardless of ileus risk, significantly impacts ileus, length of stay, and readmission after intestinal surgery. J. Gastrointest. Surg. 2018, 22, 2104–2116. [Google Scholar] [CrossRef]
- Kirchhoff, P.; Clavien, P.A.; Hahnloser, D. Complications in colorectal surgery: Risk factors and preventive strategies. Patient Saf. Surg. 2010, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Apfel, C.C.; Heidrich, F.M.; Jukar-Rao, S.; Jalota, L.; Hornuss, C.; Whelan, R.P.; Zhang, K.; Cakmakkaya, O.S. Evidence-based analysis of risk factors for postoperative nausea and vomiting. Br. J. Anaesth. 2012, 109, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Pędziwiatr, M.; Pisarska, M.; Kisielewski, M.; Matłok, M.; Major, P.; Wierdak, M.; Budzyński, A.; Ljungqvist, O. Is ERAS in laparoscopic surgery for colorectal cancer changing risk factors for delayed recovery? Med. Oncol. 2016, 33, 25. [Google Scholar] [CrossRef] [PubMed]
- Renz, B.W.; Kasparek, M.S.; Seeliger, H.; Worthley, D.L.; Jauch, K.W.; Kreis, M.E.; Smith, M.J.; Mueller, M.H. The CR-POSSUM risk calculator predicts failure of enhanced recovery after colorectal surgery. Acta Chir. Belg. 2015, 115, 20–26. [Google Scholar] [CrossRef]
- Chan, D.K.H.; Ang, J.J.; Tan, J.K.H.; Chia, D.K.A. Age is an independent risk factor for increased morbidity in elective colorectal cancer surgery despite an ERAS protocol. Langenbecks Arch. Surg. 2020, 405, 673–689. [Google Scholar] [CrossRef]
- Hardt, J.; Pilz, L.; Magdeburg, J.; Kienle, P.; Post, S.; Magdeburg, R. Preoperative hypoalbuminemia is an independent risk factor for increased high-grade morbidity after elective rectal cancer resection. Int. J. Colorectal Dis. 2017, 32, 1439–1446. [Google Scholar] [CrossRef]
- Hassinger, T.E.; Krebs, E.D.; Turrentine, F.E.; Thiele, R.H.; Sarosiek, B.M.; Hoang, S.C.; Friel, C.M.; Hedrick, T.L. Preoperative opioid use is associated with increased risk of postoperative complications within a colorectal-enhanced recovery protocol. Surg. Endosc. 2021, 35, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Riedl, J.M.; Posch, F.; Bezan, A.; Szkandera, J.; Smolle, M.A.; Winder, T.; Rossmann, C.H.; Schaberl-Moser, R.; Pichler, M.; Stotz, M.; et al. Patterns of venous thromboembolism risk in patients with localized colorectal cancer undergoing adjuvant chemotherapy or active surveillance: An observational cohort study. BMC Cancer 2017, 17, 415. [Google Scholar] [CrossRef] [PubMed]
- Destan, C.; Brouquet, A.; De Carbonnières, A.; Genova, P.; Fessenmeyer, C.; De Montblanc, J.; Costaglioli, B.; Lambert, B.; Penna, C.; Benoist, S. What are the risk factors of failure of enhanced recovery after right colectomy? Results of a prospective study on 140 consecutive cases. Int. J. Colorectal Dis. 2020, 35, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, N.M.; Pring, E.T.; Malietzis, G.; Athanasiou, T.; Faiz, O.D.; Kennedy, R.H.; Jenkins, J.T. Perioperative risk prediction in the era of enhanced recovery: A comparison of POSSUM, ACPGBI, and E-PASS scoring systems in major surgical procedures of the colorectal surgeon. Int. J. Colorectal Dis. 2018, 33, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef]
- Sangiorgio, G.; Vacante, M.; Basile, F.; Biondi, A. Oral and parenteral vs. parenteral antibiotic prophylaxis for patients undergoing laparoscopic colorectal resection: An intervention review with meta-analysis. Antibiotics 2021, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Kulasegarah, J.; McGregor, K.; Mahadevan, M. Quality of information on the Internet—Has a decade made a difference? Ir. J. Med. Sci. 2018, 187, 873–876. [Google Scholar] [CrossRef]
- Rajyaguru, C.; Sandhu, U.; Hadjis, A.; Dere, J.; Panchal, S.; Ja, A.; Ong, N.; Yu, S.; Yu, J.; Lee, S.Y.; et al. US hospital webpages on atrial fibrillation ablation: A potential source for misinformation. J. Cardiovasc. Electrophysiol. 2022, 33, 1987–1991. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Lovely, J.K.; Hyland, S.J.; Smith, A.N.; Nelson, G.; Ljungqvist, O.; Parrish, R.H., 2nd. Clinical pharmacist perspectives for optimizing pharmacotherapy within Enhanced Recovery After Surgery (ERAS®) programs. Int. J. Surg. 2019, 63, 58–62. [Google Scholar] [CrossRef]
- Johnson, E.; Parrish, R.H., 2nd; Nelson, G.; Elias, K.; Kramer, B.; Gaviola, M. Expanding pharmacotherapy data collection, analysis, and implementation in ERAS® Programs—The methodology of an exploratory feasibility study. Healthcare 2020, 8, 252. [Google Scholar] [CrossRef]
- McAuley, D. Opioid Conversion Calculator Morphine Equivalents—Advanced. Available online: https://globalrph.com/medcalcs/opioid-pain-management-converter-advanced/ (accessed on 19 September 2022).
- Dindo, D.; Demartines, N.; Clavien, A.P. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Mathew, G.; Agha, R.; STROCSS group. STROCSS 2021: Strengthening the reporting of cohort, cross-sectional and case-control studies in surgery. Int. J. Surg. 2021, 96, 106165. [Google Scholar] [CrossRef]
- Jaber, S.; Garnier, M.; Asehnoune, K.; Bounes, F.; Buscail, L.; Chevaux, J.B.; Dahyot-Fizelier, C.; Darrivere, L.; Jabaudon, M.; Joannes-Boyau, O.; et al. Guidelines for the management of patients with severe acute pancreatitis, 2021. Anaesth. Crit. Care Pain Med. 2022, 41, 101060. [Google Scholar] [CrossRef]
- Berna, P.; Quesnel, C.; Assouad, J.; Bagan, P.; Etienne, H.; Fourdrain, A.; Le Guen, M.; Leone, M.; Lorne, E.; Nguyen, Y.N.; et al. Guidelines on enhanced recovery after pulmonary lobectomy. Anaesth. Crit. Care Pain Med. 2021, 40, 100791. [Google Scholar] [CrossRef]
- Goodman, S.M.; Springer, B.D.; Chen, A.F.; Davis, M.; Fernandez, D.R.; Figgie, M.; Finlayson, H.; George, M.D.; Giles, J.T.; Gilliland, J.; et al. 2022 American College of Rheumatology/American Association of Hip and Knee Surgeons Guideline for the Perioperative Management of Antirheumatic Medication in Patients with Rheumatic Diseases Undergoing Elective Total Hip or Total Knee Arthroplasty. Arthritis Care Res. 2022, 74, 1399–1408. [Google Scholar] [CrossRef]
- Douketis, J.D.; Spyropoulos, A.C.; Murad, M.H.; Arcelus, J.I.; Dager, W.E.; Dunn, A.S.; Fargo, R.A.; Levy, J.H.; Samama, C.M.; Shah, S.H.; et al. Perioperative Management of Antithrombotic Therapy. Chest 2022, 162, e207–e243. [Google Scholar] [CrossRef]
- Wilson, S.E.; Turpin, R.S.; Kumar, R.N.; Itani, K.M.; Jensen, E.H.; Pellissier, J.M.; Abramson, M.A. Comparative costs of ertapenem and cefotetan as prophylaxis for elective colorectal surgery. Surg. Infect. 2008, 9, 349–356. [Google Scholar] [CrossRef]
- Mahmoud, N.N.; Turpin, R.S.; Yang, G.; Saunders, W.B. Impact of surgical site infections on length of stay and costs in selected colorectal procedures. Surg. Infect. 2009, 10, 539–544. [Google Scholar] [CrossRef]
- Field, A.M.; Seabury, R.W.; Kufel, W.D.; Darko, W.; Miller, C.D.; Mastro, K.A.; Steele, J.M. Single-Dose Antibiotic Prophylaxis with Ertapenem Increases Compliance with Recommendations for Surgical Antibiotic Prophylaxis in Elective Colorectal Surgery: A Retrospective, Single-Center Analysis. Surg. Infect. 2023, 24, 177–182. [Google Scholar] [CrossRef]
- Itani, K.M.; Wilson, S.E.; Awad, S.S.; Jensen, E.H.; Finn, T.S.; Abramson, M.A. Ertapenem versus cefotetan prophylaxis in elective colorectal surgery. N. Engl. J. Med. 2006, 355, 2640–2651. [Google Scholar] [CrossRef]
- Itani, K.M.; Jensen, E.H.; Finn, T.S.; Tomassini, J.E.; Abramson, M.A. Effect of body mass index and ertapenem versus cefotetan prophylaxis on surgical site infection in elective colorectal surgery. Surg. Infect. 2008, 9, 131–137. [Google Scholar] [CrossRef]
- Nutman, A.; Temkin, E.; Harbarth, S.; Carevic, B.; Ris, F.; Fankhauser-Rodriguez, C.; Radovanovic, I.; Dubinsky-Pertzov, B.; Cohen-Percia, S.; Kariv, Y.; et al. Personalized ertapenem prophylaxis for carriers of extended-spectrum β-Lactamase-producing Enterobacteriaceae undergoing colorectal surgery. Clin. Infect. Dis. 2020, 70, 1891–1897. [Google Scholar] [CrossRef]
- Hoffman, T.; Lellouche, J.; Nutman, A.; Temkin, E.; Frenk, S.; Harbarth, S.; Carevic, B.; Cohen-Percia, S.; Kariv, Y.; Fallach, N.; et al. The effect of prophylaxis with ertapenem versus cefuroxime/metronidazole on intestinal carriage of carbapenem-resistant or third-generation-cephalosporin-resistant Enterobacterales after colorectal surgery. Clin. Microbiol. Infect. 2021, 27, 1481–1487. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef]
- Koo, C.H.; Chok, A.Y.; Wee, I.J.Y.; Seow-En, I.; Zhao, Y.; Tan, E.J.K.W. Effect of preoperative oral antibiotics and mechanical bowel preparation on the prevention of surgical site infection in elective colorectal surgery, and does oral antibiotic regime matter? a Bayesian network meta-analysis. Int. J. Colorectal Dis. 2023, 38, 151. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. The effect of antibiotics on the composition of the intestinal microbiota—A systematic review. J. Infect. 2019, 79, 471–489. [Google Scholar] [CrossRef]
- Itani, K.M.F.; Dellinger, E.P.; Mazuski, J.; Solomkin, J.; Allen, G.; Blanchard, J.C.; Kelz, R.; Berríos-Torres, S.I. Surgical Site Infection Research Opportunities. Surg. Infect. 2017, 18, 401–408. [Google Scholar] [CrossRef]
- Emoto, S.; Nozawa, H.; Kawai, K.; Hata, K.; Tanaka, T.; Shuno, Y.; Nishikawa, T.; Sasaki, K.; Kaneko, M.; Hiyoshi, M.; et al. Venous thromboembolism in colorectal surgery: Incidence, risk factors, and prophylaxis. Asian J. Surg. 2019, 42, 863–873. [Google Scholar] [CrossRef]
- Streiff, M.B.; Holmstrom, B.; Angelini, D.; Ashrani, A.; Elshoury, A.; Fanikos, J.; Fertrin, K.Y.; Fogerty, A.E.; Gao, S.; Goldhaber, S.Z.; et al. Cancer-associated venous thromboembolic disease, version 2.21, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 1181–1201. [Google Scholar] [CrossRef]
- Anderson, D.R.; Morgano, G.P.; Bennett, C.; Dentali, F.; Francis, C.W.; Garcia, D.A.; Kahn, S.R.; Rahman, M.; Rajasekhar, A.; Rogers, F.B.; et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: Prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019, 3, 3898–3944. [Google Scholar] [CrossRef]
- Halabi, W.J.; Jafari, M.D.; Nguyen, V.Q.; Carmichael, J.C.; Mills, S.; Stamos, M.J.; Pigazzi, A. A nationwide analysis of the use and outcomes of epidural analgesia in open colorectal surgery. J. Gastrointest. Surg. 2013, 17, 1130–1137. [Google Scholar] [CrossRef]
- Veeranki, S.P.; Xiao, Z.; Levorsen, A.; Sinha, M.; Shah, B. A Real-World Comparative Effectiveness Analysis of Thromboprophylactic Use of Enoxaparin Versus Unfractionated Heparin in Abdominal Surgery Patients in a Large U.S. Hospital Database. Hosp. Pharm. 2022, 57, 121–129. [Google Scholar] [CrossRef]
- Ladha, D.; Mallick, R.; Wang, T.F.; Caiano, L.; Wells, P.S.; Carrier, M. Efficacy and safety of apixaban for primary prevention in gastrointestinal cancers: A post-hoc analysis of the AVERT trial. Thromb. Res. 2021, 202, 151–154. [Google Scholar] [CrossRef]
- Becattini, C.; Pace, U.; Pirozzi, F.; Donini, A.; Avruscio, G.; Rondelli, F.; Boncompagni, M.; Chiari, D.; De Prizio, M.; Visonà, A.; et al. Rivaroxaban vs placebo for extended antithrombotic prophylaxis after laparoscopic surgery for colorectal cancer. Blood 2022, 140, 900–908. [Google Scholar] [CrossRef]
- Aiken, T.J.; King, R.; Russell, M.M.; Regenbogen, S.E.; Lawson, E.; Zafar, S.N. Venous thromboembolism prophylaxis following colorectal surgery: A survey of American Society of Colon and Rectal Surgery (ASCRS) member surgeons. J. Thromb. Thrombolysis 2023, 55, 376–381. [Google Scholar] [CrossRef]
- Guntupalli, S.R.; Brennecke, A.; Behbakht, K.; Tayebnejad, A.; Breed, C.A.; Babayan, L.M.; Cheng, G.; Ramzan, A.A.; Wheeler, L.J.; Corr, B.R.; et al. Safety and efficacy of apixaban vs enoxaparin for preventing postoperative venous thromboembolism in women undergoing surgery for gynecologic malignant neoplasm: A randomized clinical trial. JAMA Netw. Open 2020, 3, e207410. [Google Scholar] [CrossRef]
- Zheng, Z.; Hu, Y.; Tang, J.; Xu, W.; Zhu, W.; Zhang, W. The implication of gut microbiota in recovery from gastrointestinal surgery. Front. Cell Infect. Microbiol. 2023, 28, 1110787. [Google Scholar] [CrossRef]
- Pierre, S.; Corno, G.; Benais, H.; Apfel, C.C. A risk score-dependent antiemetic approach effectively reduces postoperative nausea and vomiting—A continuous quality improvement initiative. Can. J. Anaesth. 2004, 51, 320–325. [Google Scholar] [CrossRef]
- Tan, H.S.; Dewinter, G.; Habib, A.S. The next generation of antiemetics for the management of postoperative nausea and vomiting. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 759–769. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, J.Y.; Lee, H.J.; Cheon, Y.J. Guidelines for the management of extravasation. J. Educ. Eval. Health Prof. 2020, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.W.; Bekker, T.B.; Carlsen, H.H.; Moffatt, C.H.; Slattery, P.J.; McClure, A.F. Postoperative nausea and vomiting are strongly influenced by postoperative opioid use in a dose-related manner. Anesth. Analg. 2005, 101, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Aleshi, P.; Esserman, L.J.; Inglis-Arkell, C.; Yap, E.; Whitlock, E.L.; Harbell, M.W. Improved analgesia and reduced post-operative nausea and vomiting after implementation of an enhanced recovery after surgery (ERAS) pathway for total mastectomy. BMC Anesthesiol. 2018, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Weibel, S.; Jokinen, J.; Pace, N.L.; Schnabel, A.; Hollmann, M.W.; Hahnenkamp, K.; Eberhart, L.H.; Poepping, D.M.; Afshari, A.; Kranke, P. Efficacy and safety of intravenous lidocaine for postoperative analgesia and recovery after surgery: A systematic review with trial sequential analysis. Br. J. Anaesth. 2016, 116, 770–783. [Google Scholar] [CrossRef]
- Sarakatsianou, C.; Perivoliotis, K.; Tzovaras, G.; Samara, A.A.; Baloyiannis, I. Efficacy of Intravenous Use of Lidocaine in Postoperative Pain Management After Laparoscopic Colorectal Surgery: A Meta-analysis and Meta-regression of RCTs. In Vivo 2021, 35, 3413–3421. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.T.; Yap, J.L.L.; Izham, I.N.; Teoh, W.Y.; Kwok, P.E.; Koh, W.J. The effect of intravenous magnesium on postoperative morphine consumption in noncardiac surgery: A systematic review and meta-analysis with trial sequential analysis. Eur. J. Anaesthesiol. 2020, 37, 212–223. [Google Scholar] [CrossRef]
- Hussain, N.; Brull, R.; Sheehy, B.; Essandoh, M.K.; Stahl, D.L.; Weaver, T.E.; Abdallah, F.W. Perineural Liposomal Bupivacaine Is Not Superior to Nonliposomal Bupivacaine for Peripheral Nerve Block Analgesia. Anesthesiology 2021, 134, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, J.H.; Patel, K.M.; Gaughan, J.P.; Dy, J.; Kwiatt, M.E.; McClane, S.J.; Desai, R.G. Oral Versus Intravenous Acetaminophen within an Enhanced Recovery after Surgery Protocol in Colorectal Surgery. Pain Physician 2020, 23, 57–64. [Google Scholar] [CrossRef]
- Vincent, W.R., 3rd; Huiras, P.; Empfield, J.; Horbowicz, K.J.; Lewis, K.; McAneny, D.; Twitchell, D. Controlling postoperative use of i.v. acetaminophen at an academic medical center. Am. J. Health Syst. Pharm. 2018, 75, 548–555. [Google Scholar] [CrossRef]
- Pharmaceutical Manufacturing Research Services Inc. Entereg® (Alvimopan) Package Insert. Horsham, PA. 2022. Available online: https://www.merck.com/product/usa/pi_circulars/e/entereg/entereg_pi.pdf (accessed on 26 July 2023).
- Gemma, M.; Pennoni, F.; Braga, M. Studying Enhanced Recovery After Surgery (ERAS®) Core Items in Colorectal Surgery: A Causal Model with Latent Variables. World J. Surg. 2021, 45, 928–939. [Google Scholar] [CrossRef]
Age (yrs.) | Female | 59.4 (±14.7) |
Male | 56.2 (±16.0) | |
Sex (n; %) | Female | 247 (51.9) |
Male | 229 (48.1) | |
Race (n; %) | Asian | 12 (2.5) |
Native Hawaiian or other Pacific Islander | 1 (0.2) | |
Black or African-American | 59 (12.4) | |
White | 382 (80.3) | |
Hispanic | 6 (1.3) | |
Unknown/Not reported | 16 (3.3) | |
Weight (kg) | 82 ± 21 | |
Preoperative eGFR (mL/min/1.73 m2) | 80.9 ± 24.91 | |
Ethanol history/week | None | 329 (72.5) |
1–7 drinks | 109 (24.0) | |
8–14 drinks | 9 (2.0) | |
Greater than 14 drinks | 7 (1.5) | |
Documented drug allergy | None | 255 (53.6) |
Non-penicillin/non-cephalosporin | 177 (80.1) | |
Penicillin | 60 (27.1) | |
Cephalosporin | 9 (4.1) | |
Preoperative cancer diagnosis | Yes | 210 (44.1) |
No | 266 (55.9) | |
Neoadjuvant therapy | None | 144 (68.6) |
Chemotherapy | 64 (30.5) | |
Radiation | 34 (16.2) |
Procedure-Related Variable (n; %) | ||
---|---|---|
Intestinal segment (includes multiple colonic segments) | Sigmoid colon | 242 (50.8) |
Rectum | 150 (31.5) | |
Ascending colon (including hepatic flexure) | 146 (30.7) | |
Descending colon (including splenic flexure) | 145 (30.5) | |
Small intestine | 122 (25.6) | |
Transverse colon | 119 (25.0) | |
Cecum | 75 (15.8) | |
Appendix | 16 (3.4) | |
Surgical technique | Laparoscopic | 243 (51.0) |
Open | 137 (28.8) | |
Robotic | 96 (20.2) | |
American Society of Anesthesiologists (ASA) score | I | 2 (0.4) |
II | 167 (35.1) | |
III | 289 (60.7) | |
IV | 18 (3.8) | |
Estimated blood loss during surgery (mL ± S.D.) | 119.6 ± 190.2 |
In-hospital SSI | 16 (3.4) | |
In-hospital infections | 35 (7.4) | |
Post-discharge infections | 40 (8.5) | |
Pre-incisional IVA administered? | Yes | 467 (98.1) |
More than 1 IVA administered? | Yes | 246 (52.7) |
Intraoperative IVA re-dose administered? | Yes | 177 (37.2) |
First (or only) IVA administered | Cefazolin 2 g | 124 (26.6) |
Cefoxitin 2 g | 106 (22.7) | |
Ertapenem 1 g | 80 (17.1) | |
Metronidazole 500 mg | 62 (13.3) | |
Cefotetan 2 g | 52 (11.1) | |
Ampicillin 1 g | 9 (1.9) | |
Piperacillin/tazobactam 3.375 g | 4 (0.8) | |
Ceftriaxone 2 g | 3 (0.6) | |
Piperacillin/tazobactam 4.5 g | 2 (0.4) | |
Ampicillin/sulbactam 3 g | 1 (0.2) | |
Vancomycin 1 g | 1 (0.2) | |
Second IVA administered | Metronidazole 500 mg | 126 (51.6) |
Cefazolin 2 g | 49 (20.1) | |
Ampicillin 1 g | 30 (12.2) | |
Combination IVA administered | Cefazolin 2 g/metronidazole 500 mg | 158 (33.2) |
Cefoxitin 2 g/ampicillin 1 g | 39 (8.2) | |
Metronidazole 500 mg/gentamicin 5 mg/kg | 9 (1.9) | |
Clindamycin 600 mg/gentamicin 5 mg/kg | 5 (1.0) | |
Cefazolin combinations (other) | 5 (1.0) | |
Ciprofloxacin 400 mg/metronidazole 500 mg | 3 (0.6) | |
Cefotetan 2 g/metronidazole 500 mg | 1 (0.2) | |
Levofloxacin 500 mg/metronidazole 500 mg | 1 (0.2) | |
Postoperative IVA administered? | Yes | 98 (24.1) |
Duration of postoperative IVA | 1 dose | 7 (7.1) |
2 doses | 12 (12.1) | |
3 doses | 14 (14.3) | |
4 doses | 21 (21.4) | |
>4 doses | 44 (44.9) | |
Timing of IVA prior to incision | 0–15 min | 158 (33.8) |
16–30 min | 170 (36.4) | |
31–45 min | 68 (14.6) | |
46–60 min | 31 (6.6) | |
>60 min | 35 (7.5) | |
Skin preparation administered | Chlorhexidine | 382 (80.3) |
Povidone-iodine | 104 (21.8) | |
None | 15 (3.2) |
Antibiotic (N of Patients Treated— Doses in Table 3) | Ave LOS | Hospital Infection Rate (%) | Discharge Infection Rate (%) | 7-Day Readmit Rate (%) | 30-Day Readmit Rate (%) |
---|---|---|---|---|---|
C/M (158) | 5.0 | 9.7 | 7.1 | 2.6 | 10.3 |
ertapenem (80) | 5.0 | 5.0 | 11.4 | 8.9 | 8.0 |
cefoxitin (76) | 7.1 | 10.4 | 6.5 | 5.2 | 6.5 |
cefotetan (52) | 5.9 | 0 | 11.5 | 5.8 | 7.7 |
ampicillin/cefoxitin (39) | 5.7 | 3.0 | 6.0 | 9.1 | 6.0 |
Sub-total (405) | 5.6 | 7.1 | 8.3 | 5.3 | 8.3 |
Penicillin or cephalosporin allergic patients | |||||
metronidazole/ gentamicin (9) | 7.7 | 0 | 0 | 0 | 11.1 |
metronidazole (5) | 2.0 | 0 | 0 | 0 | 0 |
clindamycin/ gentamicin (5) | 5.5 | 20.0 | 0 | 20.0 | 0 |
levofloxacin (4) | 6.0 | 0 | 25.0 | 0 | 0 |
ciprofloxacin/ metronidazole (3) | 4.7 | 0 | 33.3 | 0 | 0 |
vancomycin (1) | 6 | 0 | 0 | 0 | 0 |
Sub-total (27) | 6.7 | 3.7 | 7.4 | 3.7 | 3.7 |
Miscellaneous beta-lactams and combinations | |||||
cefazolin (7) | 6.3 | 14.3 | 28.6 | 28.6 | 14.3 |
piperacillin/tazobactam (6) | 11.5 | 16.7 | 16.7 | 16.7 | 0 |
cefazolin combinations (other) (5) | 4.6 | 0 | 0 | 0 | 0 |
ceftriaxone (3) | 5.7 | 33.3 | 0 | 0 | 0 |
ampicillin/sulbactam (1) | 11 | 0 | 0 | 0 | 0 |
cefotetan/ metronidazole (1) | 2 | 0 | 0 | 0 | 0 |
Sub-total (23) | 7.2 | 13.0 | 13.0 | 13.0 | 0 |
None (21) | 3.7 | 0 | 0 | 0 | 0 |
Totals (476) | 5.5 | 6.7 | 8.0 | 5.3 | 7.4 |
Preoperative anticoagulant administered? | Yes | 368 (77.3) |
UFH 5000 units SC w/in 6 h | 364 (98.9) | |
Postoperative in-hospital anticoagulant administered? | Yes | 453 (95,2) |
Enoxaparin 40 mg SC daily | 262 (57.8) | |
UFH 5000 units SC q8h | 125 (27.6) | |
UFH 5000 units SC q8h followed by enoxaparin 40 mg SC daily | 31 (6.8) | |
UFH 5000 units SC q12h | 21 (4.6) | |
Enoxaparin 40 mg SC q12h | 7 (1.5) | |
UFH 5000 units SC q8h followed by enoxaparin 40 mg SC q12h | 4 (0.9) | |
UFH 5000 units SC q12h followed by enoxaparin 40 mg SC daily | 3 (0.7) | |
N of postoperative in-hospital doses administered | 0 | 1 (0.2) |
1 | 25 (5.5) | |
2 | 72 (15.8) | |
3 | 73 (16.0) | |
4 | 45 (9.9) | |
5 | 32 (7.0) | |
6 | 31 (6.8) | |
7 | 25 (5.5) | |
>7 * | 152 (33.3) | |
Non-pharmacologic VTE prophylaxis in hospital (multiple methods included) | None | 18 (3.8) |
Ambulation | 274 (57.6) | |
Compression stockings | 4 (0.8) | |
Sequential compression device | 364 (76.5) | |
Post-discharge at-home anticoagulant given? | Yes | 128 (26.9) |
Enoxaparin 40 mg SC daily | 83 (64.8) | |
Apixaban 2.5 mg PO twice daily | 29 (22.7) | |
Rivaroxaban 10 mg PO daily | 11 (8.6) | |
Warfarin daily (various doses) | 5 (3.9) | |
Days postoperative at-home anticoagulant | 1–7 days | 2 (1.6) |
8–14 days | 8 (6.4) | |
15–21 days | 30 (21.0) | |
22–28 days | 54 (43.2) | |
>28 days | 31 (24.8) | |
Cancer patients receiving at-home VTE prophylaxis (96/210) | Enoxaparin 40 mg SC daily | 64 (66.7) |
Apixaban 2.5 mg PO twice daily | 16 (16.7) | |
Warfarin PO daily at various doses | 5 (5.2) | |
Apixaban 5 mg PO twice daily | 4 (4.2) | |
Rivaroxaban 20 mg PO daily | 4 (4.2) | |
Rivaroxaban 15 mg PO daily | 2 (2.0) | |
Rivaroxaban 10 mg PO daily | 1 (1.0) | |
Anticoagulant dose adjusted based on weight | Yes | 7 (1.2) |
Anticoagulant dose adjusted based on renal function | Yes | 6 (1.6) |
Anticoagulant Regimen (Frequency of Use) | Ave LOS (d) | VTE Rate (%) | Hospital Bleeding/Hematoma Rate % | Discharge Bleeding/Hematoma Rate (%) | 7-Day Readmit Rate (%) | 30-Day Readmit Rate (%) |
---|---|---|---|---|---|---|
enoxaparin 40 mg SC daily (262) | 5.1 | 0 | 9.5 | 2.7 | 4.9 | 7.2 |
heparin 5000 units SC q8h (125) | 5.8 | 4.8 | 4.8 | 0.8 | 5.6 | 8.8 |
heparin 5000 units q8h/ enoxaparin 40 mg daily (31) | 8.5 | 3.2 | 6.4 | 0 | 12.9 | 12.9 |
heparin 5000 units SC q12h (21) | 6.5 | 0 | 4.2 | 4.2 | 4.2 | 8.4 |
enoxaparin 40 mg SC q12h (7) | 11.8 | 0 | 14.3 | 0 | 0 | 0 |
heparin 5000 units q8h/ enoxaparin 40 mg q12h (4) | 23 | 0 | 25 | 0 | 0 | 0 |
heparin 5000 units q12h/ enoxaparin 40 mg SC daily (3) | 7 | 0 | 0 | 0 | 0 | 0 |
Totals (453) | 5.7 | 1.5 | 7.9 | 1.9 | 5.5 | 7.9 |
Anticoagulant Administered (n Includes Sequential Dual Agent Therapy) | Significance (p-Values) | |||||
---|---|---|---|---|---|---|
LOS | VTE | In-Hospital Bleeding/Hematoma | Discharge Bleeding/Hematoma | 7-Day Readmit | 30-Day Readmit | |
enoxaparin 40 mg SC (307) compared to UFH 5000 units SC (184) | <0.0001 | 0.004 | 0.190 | 0.398 | 0.834 | 0.613 |
Anticoagulant Regimen | Ave Days of Home Therapy | Discharge Bleeding/Hematoma Rate (%) | 7-Day Readmit Rate (%) | 30-Day Readmit Rate (%) |
---|---|---|---|---|
enoxaparin 40 mg SC daily (83) | 15–22 | 1.2 | 8.4 | 9.6 |
apixaban 2.5 mg BID (22) | 22–28 | 0 | 0 | 13.6 |
rivaroxaban 20 mg daily (11) | >28 | 18.1 | 0 | 18.1 |
apixaban 5 mg BID (7) | >28 | 0 | 14.2 | 14.2 |
warfarin daily (5) | >28 | 0 | 20 | 0 |
Totals (128) | 1.6 | 7.0 | 10.9 |
Preoperative/intraoperative antiemetic? | Yes | 417 (87.6) |
Antiemetics given prior to induction (includes multiple agents) | Dexamethasone IV | 186 (44.6) |
Ondansetron IV | 84 (20.1) | |
Scopolamine patch | 64 (15.3) | |
Aprepitant PO | 4 (1.0) | |
Prochlorperazine IV | 3 (0.7) | |
Metoclopramide IV | 2 (0.5) | |
Promethazine IV | 2 (0.5) | |
Perphenazine PO | 1 (0.2) | |
Antiemetic given prior to extubation (298) | Yes | 234 (78.5) |
Ondansetron | 216 (72.5) | |
Dexamethasone | 100 (33.6) | |
Scopolamine patch | 12 (4.0) | |
Promethazine | 5 (1.7) | |
Metoclopramide | 4 (1.3) | |
Prochlorperazine | 3 (1.0) | |
Aprepitant PO | 1 (0.3) | |
Postoperative antiemetic (PACU/ward) for rescue | Yes | 310 (65.1) |
Ondansetron IV | 251 (81.0) | |
Ondansetron PO | 92 (29.7) | |
Promethazine IV | 75 (24.2) | |
Prochlorperazine IV | 59 (19.0) | |
Promethazine PO | 40 (12.9) | |
Prochlorperazine PO | 16 (5.2) | |
Metoclopramide IV | 7 (2.3) | |
Metoclopramide PO | 5 (1.6) | |
Palonosetron | 2 (0.6) | |
Number of rescue antiemetic doses administered postoperatively (excluding aprepitant and scopolamine patch) | None | 48 (16.1) |
1 dose | 82 (27.3) | |
2 doses | 51 (17.1) | |
3 doses | 32 (10.7) | |
4 doses | 14 (4,7) | |
5 doses | 11 (3.7) | |
6 doses | 11 (3.7) | |
7 doses | 4 (1.3) | |
>7 doses | 45 (15.1) | |
Postoperative nausea and vomiting (PONV) | Yes | 228 (47.9) |
PONV time of occurrence | In PACU | 68 (30.5) |
<12 h on ward | 69 (30.9) | |
12–24 h on ward | 68 (30.5) | |
>24 h on ward | 131 (58.7) |
Medication or IV Fluid | p Value |
---|---|
Lower PONV | |
Scopolamine | <0.001 |
Lidocaine IV | <0.05 |
Spinal opioid | <0.05 |
Higher PONV | |
Prochlorperazine | <0.05 |
Albumin | <0.05 |
Lower PDNV | |
Ondansetron | <0.05 |
Saline-containing IV | <0.05 |
Scopolamine | <0.05 |
Higher PDNV | |
Spinal opioid | <0.01 |
Packed red blood | <0.05 |
Albumin | <0.05 |
Prochlorperazine | <0.05 |
Administered during hospitalization | Propofol | 436 (91.6) |
Sugammadex | 268 (56.3) | |
Alvimopan | 227 (47.7) | |
Gabapentin | 212 (44.5) | |
Famotidine IV | 158 (33.2) | |
Ketamine IV analgesia bolus | 157 (33.0) | |
Neostigmine | 152 (31.9) | |
Acetaminophen IV | 97 (20.4) | |
Pregabalin | 78 (16.4) | |
Magnesium sulfate IV for pain | 75 (15.8) | |
Dexmedetomidine | 65 (13.7) | |
Ketamine IV continuous | 10 (2.1) |
Intraoperative anesthesia (includes multiple types) (n; %) | Gaseous general | 459 (96.4) |
Propofol | 379 (79.4) | |
Short-acting opioid (fentanyl, remifentanil) | 319 (67.0) | |
Midazolam | 248 (52.1) | |
TAP block w/long-acting local anesthetics | 114 (23.9) | |
Dexmedetomidine | 65 (13.7) | |
Epidural | 63 (13.2) | |
Lidocaine continuous IV | 55 (11.6) | |
Wound infiltration w/non- liposomal bupivacaine without epinephrine | 28 (5.9) | |
Wound infiltration w/non- liposomal bupivacaine with epinephrine | 27 (5.7) | |
Spinal opioid and LA | 25 (5.3) | |
Wound infiltration w/liposomal bupivacaine only | 17 (3.6) | |
Spinal opioid | 12 (2.5) | |
Nonopioids (includes multiple agents) (n; %) | Acetaminophen PO | 446 (93.7) |
Gabapentin | 176 (37.0) | |
Ketamine IV analgesia bolus | 157 (33.0) | |
Ketorolac IV | 143 (30.0) | |
Methocarbamol | 93 (19.5) | |
Acetaminophen IV | 81 (17.0) | |
Lidocaine 5% patch | 79 (16.6) | |
Ibuprofen PO | 75 (15.8) | |
Magnesium sulfate IV for pain | 75 (15.8) | |
Celecoxib | 58 (12.2) | |
Ibuprofen IV | 25 (5.3) | |
Pregabalin | 24 (5.0) | |
Naproxen | 14 (2.9) | |
Ketamine IV continuous | 10 (2.1) | |
Ketorolac PO | 4 (0.9) | |
Meloxicam PO | 3 (0.7) | |
Additional agents administered during hospitalization (n; %) | Sugammadex | 268 (56.3) |
Alvimopan | 227 (47.7) | |
Famotidine IV | 158 (33.2) | |
Neostigmine | 152 (31.9) |
Medication or IV Fluid | p-Value |
---|---|
Lower in-hospital pain | |
TAP block w/long-acting local anesthetics | <0.001 |
Lidocaine IV | <0.001 |
Alvimopan | <0.001 |
Ketorolac IV | <0.001 |
Pregabalin | <0.001 |
Celecoxib | <0.01 |
Ketamine non-anesthetic bolus | <0.05 |
Propofol | <0.05 |
Midazolam | <0.05 |
Famotidine | <0.05 |
Higher in-hospital pain | |
Lidocaine patch | <0.001 |
Ibuprofen IV | <0.001 |
Methocarbamol | <0.001 |
Acetaminophen PO | <0.01 |
Acetaminophen IV | <0.05 |
Ibuprofen PO | <0.05 |
Lower post-discharge pain | |
Short-acting opioid (fentanyl, remifentanil) | <0.001 |
TAP block w/long-acting local anesthetics | <0.001 |
Propofol | <0.001 |
Alvimopan | <0.001 |
Lidocaine IV | <0.01 |
Famotidine | <0.05 |
Ketamine bolus | <0.05 |
Midazolam | <0.05 |
Pregabalin | <0.05 |
Higher post-discharge pain | |
Spinal opioid with local anesthetics | <0.001 |
Spinal opioid | <0.01 |
Gabapentin | <0.01 |
Acetaminophen PO | <0.01 |
Lower ileus | |
Alvimopan | <0.001 |
Ketorolac IV | <0.01 |
Gabapentin | <0.01 |
Midazolam | <0.01 |
TAP block w/long-acting local anesthetics | <0.05 |
Wound infiltration w/non-liposomal bupivacaine w/epinephrine | <0.05 |
Higher ileus | |
Ibuprofen IV | <0.001 |
Magnesium sulfate IV | <0.05 |
Lower post-discharge ileus | |
None | |
Higher post-discharge ileus | |
Lidocaine IV | <0.05 |
Less than 50 MME intraoperative | |
None | |
Higher than 50 MME intraoperative | |
Ibuprofen IV | <0.01 |
Less than 50 MME postoperative | |
Alvimopan | <0.01 |
Higher than 50 MME postoperative | |
Dexmedetomidine | <0.01 |
Magnesium sulfate | <0.05 |
Sugammadex | <0.05 |
Shorter LOS | |
Acetaminophen PO | <0.01 |
Alvimopan | <0.01 |
Acetaminophen IV | <0.01 |
Lidocaine patch | <0.01 |
Famotidine | <0.05 |
Longer LOS | |
Pregabalin | <0.01 |
TAP block w/long-acting local anesthetic | <0.05 |
Lower 7-day readmission | |
None | |
Higher 7-day readmission | |
Promethazine | <0.01 |
Gabapentin | <0.05 |
Lower 30-day readmission | |
None | |
Higher 30-day readmission | |
Ketamine continuous infusion | <0.01 |
Dexmedetomidine | <0.05 |
Wound infiltration w/liposomal bupivacaine | <0.05 |
PICO Question—In Elective Colorectal Surgery (ECRS): | Recommendation Summary |
---|---|
Antibiotics and surgical site infection (SSI) | |
| There is no relationship between OA and SSI, in-hospital infection, or post-discharge infection. |
| Preoperative use of oral iron products is associated with a higher incidence of in-hospital infection (p < 0.05). |
| No type of insulin therapy in-hospital was associated with lower SSI or post-discharge infection. Use of NPH insulin was associated with higher post-discharge infections (p < 0.05). |
| Lower in-hospital infection will occur when either cefotetan or ertapenem are used (p < 0.05). Cefoxitin and C/M use were associated with the highest SSI rates (6/106; 5,7% and 7/158; 4.4%, respectively). |
| Lower post-discharge infection will occur when cefazolin is used (p < 0.05). |
| Longer LOS when cefoxitin or piperacillin/tazobactam are used (p < 0.01). |
Anticoagulants and venous thromboembolism (VTE) | |
| Enoxaparin 40 mg subcutaneously (SC) daily was associated with lower in-hospital VTE incidence (OR: 11.3; 95% CI: 1.36–95.25; p = 0.025). All VTE events occurred when unfractionated heparin (UFH) 5000 units SC q8h (UFH) was ordered (n = 7; 3.8%; p = 0.004). |
| There was no difference between enoxaparin and UFH regimens for in-hospital bleeding (p = 0.19). |
| Average LOS for enoxaparin (5.1 days) and UFH (5.9 days) alone were significantly shorter than for sequential UFH (q8h or q12h) and enoxaparin (daily or q12h (9.7 days) (p = 0.004). |
| There was no difference between enoxaparin and UFH regimens for 7-day (p = 0.83) and 30-day readmission (p = 0.61). |
Antiemetics and postoperative/post-discharge nausea and vomiting | |
| Lower PONV (p = 0.001) and PDNV (p < 0.05) will occur when a scopolamine patch is used. Lower PONV will occur when lidocaine IV (p < 0.05) is used. Lower PDNV will occur when ondansetron and 0.9% NaCl-containing IV infusion are used (p < 0.05). Higher PONV and PDNV will occur when prochlorperazine and albumin are used (p < 0.05). Higher PDNV will occur when packed red cells are used (p < 0.05). |
| No antiemetic was associated with lower 7- or 30-day readmission. Shorter LOS will occur when preoperative famotidine (p < 0.05) is used. Lower 7-day readmission will occur when promethazine is not used (p < 0.05). |
| Lower PONV (p < 0.05) but higher PDNV (p < 0.01) will occur when spinal opioids are used. |
| None are associated with lower PONV or PDNV. |
Analgesics, anesthetics, and adjunctive agents and pain and ileus | |
| Lower ileus will occur when midazolam (p < 0.01) and TAP block with long-acting anesthetics and wound infiltration with non-liposomal bupivacaine w/epinephrine (p < 0.05) are used and when lidocaine IV is not used (p < 0.05). |
| Less than 50 mg intraoperative MME were administered when ibuprofen IV (p < 0.01) was not used. Less than 50 mg postoperative MME were administered when alvimopan (p < 0.01) was used and when dexmedetomidine (p < 0.01), and when magnesium sulfate IV and sugammadex (p < 0.05) were not used. |
| Lower in-hospital pain complication when celecoxib, lidocaine IV, ketorolac IV, TAP block with long-acting local anesthetics, and pregabalin (p < 0.001), celecoxib (p < 0.01), ketamine non-anesthetic bolus, and propofol are used (p < 0.05). Lower pain complication when ibuprofen IV, lidocaine patch, methocarbamol (p < 0.001), acetaminophen PO (p < 0.01), and acetaminophen IV and ibuprofen PO (p < 0.05) are used. |
| None are associated with lower post-discharge ileus; in fact, lower post-discharge ileus when lidocaine IV (p < 0.05) was not used. Lower in-hospital ileus when alvimopan (p < 0.001), ketorolac IV, and gabapentin (p < 0.01) are used. Lower in-hospital ileus when ibuprofen IV (p < 0.001) and magnesium sulfate IV for pain (p < 0.05) are not used. |
| Shorter LOS when acetaminophen PO and IV, alvimopan, and lidocaine patch (p < 0.01) and famotidine (p < 0.05) are used. Pregabalin was associated with longer LOS (p < 0.01). Lower 7-day readmit when gabapentin is not used (p < 0.05). |
| Shorter LOS when TAP block with long-acting local anesthetic (p < 0.05) was not used. Lower 30-day readmit when ketamine continuous infusion (p < 0.01), liposomal bupivacaine, and dexmedetomidine (p <0.05) are not used. |
Procedure-related effects | |
| Procedures that included the appendix had the highest LOS and the lowest 7- and 30-day readmission rates of all procedures and combinations. Procedures including the cecum had the lowest LOS. Procedures including the transverse colon and small intestine had the highest 7-day readmission rates, and those including the descending colon and sigmoid had the highest 30-day readmission rates. For LOS, procedures involving the transverse, small intestine, and rectum had significant variability. There was no difference in 7- and 30-day readmission for any colonic location. |
| Laparoscopic procedures had the lowest LOS, with manual procedures having the highest 7-day readmission rate and robotic having the highest 30-day readmission rate as compared to open procedures. Open manual procedures had the lowest 7-day and similar 30-day readmission rates compared to laparoscopic. Converted to open from laparoscopic had the highest 30-day readmission rate and a comparable LOS to open manual. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blair, W.O.; Ellis, M.A.; Fada, M.; Wiggins, A.A.; Wolfe, R.C.; Patel, G.P.; Brockhaus, K.K.; Droege, M.; Ebbitt, L.M.; Kramer, B.; et al. Effect of Pharmacoprophylaxis on Postoperative Outcomes in Adult Elective Colorectal Surgery: A Multi-Center Retrospective Cohort Study within an Enhanced Recovery after Surgery Framework. Healthcare 2023, 11, 3060. https://doi.org/10.3390/healthcare11233060
Blair WO, Ellis MA, Fada M, Wiggins AA, Wolfe RC, Patel GP, Brockhaus KK, Droege M, Ebbitt LM, Kramer B, et al. Effect of Pharmacoprophylaxis on Postoperative Outcomes in Adult Elective Colorectal Surgery: A Multi-Center Retrospective Cohort Study within an Enhanced Recovery after Surgery Framework. Healthcare. 2023; 11(23):3060. https://doi.org/10.3390/healthcare11233060
Chicago/Turabian StyleBlair, William Olin, Mary Allison Ellis, Maria Fada, Austin Allen Wiggins, Rachel C. Wolfe, Gourang P. Patel, Kara K. Brockhaus, Molly Droege, Laura M. Ebbitt, Brian Kramer, and et al. 2023. "Effect of Pharmacoprophylaxis on Postoperative Outcomes in Adult Elective Colorectal Surgery: A Multi-Center Retrospective Cohort Study within an Enhanced Recovery after Surgery Framework" Healthcare 11, no. 23: 3060. https://doi.org/10.3390/healthcare11233060
APA StyleBlair, W. O., Ellis, M. A., Fada, M., Wiggins, A. A., Wolfe, R. C., Patel, G. P., Brockhaus, K. K., Droege, M., Ebbitt, L. M., Kramer, B., Likar, E., Petrucci, K., Shah, S., Taylor, J., Bingham, P., Krabacher, S., Moon, J. H., Rogoz, M., Jean-Jacques, E., ... Parrish, R. H., II, on behalf of the Enhanced Recovery Comparative Pharmacotherapy Collaborative. (2023). Effect of Pharmacoprophylaxis on Postoperative Outcomes in Adult Elective Colorectal Surgery: A Multi-Center Retrospective Cohort Study within an Enhanced Recovery after Surgery Framework. Healthcare, 11(23), 3060. https://doi.org/10.3390/healthcare11233060