Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
- a suspicious breast lesion (BIRADS > 3) referred to a cytological or histological examination;
- a suspicious lesion that had been studied with another conventional diagnostic exam US, MG, or breast MRI;
- CESM performed prior to cyto/histological assessment.
2.2. DE-CESM Technique
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Pfeiffer, R.M.; Webb-Vargas, Y.; Wheeler, W.; Gail, M.H. Proportion of US trends in breast cancer incidence attributable to long-term changes in risk factor distributions. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1214–1222. [Google Scholar] [CrossRef]
- Pokora, R.M.; Büttner, M.; Schulz, A.; Schuster, A.K.; Merzenich, H.; Teifke, A.; Michal, M.; Lackner, K.; Münzel, T.; Zeissig, S.R.; et al. Determinants of mammography screening participation-a cross-sectional analysis of the German population-based Gutenberg Health Study (GHS). PLoS ONE 2022, 17, e0275525. [Google Scholar] [CrossRef]
- Pace, L.E.; Keating, N.L. A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA 2014, 311, 1327–1335. [Google Scholar] [CrossRef]
- Duffy, S.W.; Tabár, L.; Yen, A.M.; Dean, P.B.; Smith, R.A.; Jonsson, H.; Törnberg, S.; Chen, S.L.; Chiu, S.Y.; Fann, J.C.; et al. Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women. Cancer 2020, 126, 2971–2979. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Working Group on the Evaluation of Cancer-Preventive Strategies. In Breast Cancer Screening; IARC Handbooks of Cancer Prevention; IARC Press: Lyon, France, 2016; Volume 15. [Google Scholar]
- Sardanelli, F.; Fallenberg, E.M.; Clauser, P.; Trimboli, R.M.; Camps-Herrero, J.; Helbich, T.H.; Forrai, G. European Society of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Mammography: An update of the EUSOBI recommendations on information for women. Insights Imaging 2017, 8, 11–18. [Google Scholar] [CrossRef]
- Jafari, S.H.; Saadatpour, Z.; Salmaninejad, A.; Momeni, F.; Mokhtari, M.; Nahand, J.S.; Rahmati, M.; Mirzaei, H.; Kianmehr, M. Breast Cancer Diagnosis: Imaging Techniques and Biochemical Markers. J. Cell. Physiol. 2018, 233, 5200–5213. [Google Scholar] [CrossRef]
- The Breast Cancer Surveillance Consortium and Its Data Collection and Sharing Activities are Funded by Grants from the National Cancer Institute (P01CA154292, U54CA163303), Patient-Centered Outcomes Research Institute (PCS-1504-30370), and Agency for Health Research and Quality (R01 HS018366-01A1). Downloaded from the Breast Cancer Surveillance Consortium Website. Available online: http://www.bcsc-research.org/ (accessed on 22 January 2023).
- Lee, C.I.; Chen, L.E.; Elmore, J.G. Risk-Based Breast Cancer Screening. Med. Clin. N. Am. 2017, 101, 725–741. [Google Scholar] [CrossRef]
- Wilkinson, L.; Thomas, V.; Sharma, N. Microcalcification on mammography: Approaches to interpretation and biopsy. Br. J. Radiol. 2017, 90, 20160594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balamou, C.; Koïvogui, A.; Rymzhanova, R.; Cornelis, S.; Rodrigue-Moulinie, C.; Sellier, N. Breast cancer incidence by age at discovery of mammographic abnormality in women participating in French organized screening campaigns. Public Health. 2022, 202, 121–130. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, C.; Wu, Y.; Zhu, Y.; Ren, Y.; Tong, Z. Microcalcification and BMP-2 in breast cancer: Correlation with clinicopathological features and outcomes. Onco. Targets Ther. 2019, 12, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Sickles, E.A.; D’Orsi, C.J.; Bassett, L.W. ACR BI-RADS Mammography. In ACR BI-RADS Atlas, Breast Imaging Reporting and Data System, 5th ed.; American College of Radiology: Reston, VA, USA, 2013; pp. 134–136. [Google Scholar]
- Logullo, A.F.; Prigenzi, K.C.K.; Nimir, C.C.B.A.; Franco, A.F.V.; Campos, M.S.D.A. Breast microcalcifications: Past, present and future (Review). Mol. Clin. Oncol. 2022, 16, 81. [Google Scholar] [CrossRef]
- Morgan, M.P.; Cooke, M.M.; McCarthy, G.M. Microcalcifications associated with breast cancer: An epiphenomenon or biologically significant feature of selected tumors? J. Mammary Gland. Biol. Neoplasia 2005, 10, 181–187. [Google Scholar] [CrossRef]
- Giannini, E.M.; Antonacci, C.; Pistolese, C.A.; Spagnoli, L.G.; Bonanno, E. Microcalcifications in breast cancer: An active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer 2014, 14, 286. [Google Scholar]
- Bent, C.K.; Bassett, L.W.; D’Orsi, C.J.; Sayre, J.W. The positive predictive value of bi-rads microcalcification descriptors and final assessment categories. Am. J. Roentgenol. 2010, 194, 1378–1383. [Google Scholar] [CrossRef]
- Luiten, J.D.; Voogd, A.C.; Luiten, E.J.T.; Broeders, M.J.M.; Roes, K.C.B.; Tjan-Heijnen, V.C.G.; Duijm, L.E.M. Recall and Outcome of Screen-detected Microcalcifications during 2 Decades of Mammography Screening in the Netherlands National Breast Screening Program. Radiology 2020, 294, 528–537. [Google Scholar] [CrossRef]
- Hofvind, S.; Ponti, A.; Patnick, J.; Ascunce, N.; Njor, S.; Broeders, M.; Giordano, L.; Frigerio, A.; Törnberg, S. False-positive results in mammographic screening for breast cancer in Europe: A literature review and survey of service screening programmes. J. Med. Screen 2012, 19, 57–66. [Google Scholar] [CrossRef]
- James, J.J.; Tennant, S.L. Contrast-Enhanced Spectral Mammography (CESM). Clin. Radiol. 2018, 73, 715–723. [Google Scholar] [CrossRef]
- Ghaderi, K.F.; Phillips, J.; Perry, H.; Lotfi, P.; Mehta, T.S. Contrast-Enhanced Mammography: Current Applications and Future Directions. RadioGraphics 2019, 39, 1907–1920. [Google Scholar] [CrossRef]
- Richter, V.; Hatterman, V.; Preibsch, H.; Bahrs, S.D.; Hahn, M.; Nikolaou, K.; Wiesinger, B. Contrast-enhanced spectral mammography in patients with MRI contraindications. Acta Radiol. 2018, 59, 798–805. [Google Scholar] [CrossRef]
- Cozzi, A.; Magni, V.; Zanardo, M.; Schiaffino, S.; Sardanelli, F. Contrast-enhanced mammography: A systematic review and meta-analysis of diagnostic performance. Radiology 2022, 302, 568–581. [Google Scholar] [CrossRef]
- Hobbs, M.M.; Taylor, D.B.; Buzynski, S.; Peake, R.E. Contrast-enhanced spectral mammography (CESM) and contrast enhanced MRI (CEMRI): Patient preferences and tolerance. J. Med. Imaging Radiat. Oncol. 2015, 59, 300–305. [Google Scholar] [CrossRef]
- Patel, B.K.; Gray, R.J.; Pockaj, B.A. Potential cost savings of contrast-enhanced digital mammography. AJR Am. J. Roentgenol. 2017, 208, W231–W237. [Google Scholar] [CrossRef]
- Warner, E. Screening BRCA1 and BRCA2 Mutation Carriers for Breast Cancer. Cancers 2018, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Hoon Tan, P.; Ellis, I.; Allison, K.; Brogi, E.; Fox, S.B.; Lakhani, S.; Lazar, A.J.; Morris, E.A.; Sahin, A.; Salgado, R.; et al. The 2019 World Health Organization Classification of Tumours of the Breast. Histopathology 2020, 77, 181–185. [Google Scholar] [CrossRef]
- Lalji, U.C.; Jeukens, C.R.L.P.N.; Houben, I.; Nelemans, P.J.; Van Engen, R.E.; Van Wylick, E.; Beets-Tan, R.G.H.; Wildberger, J.E.; Paulis, L.E.; Lobbes, M.B.I. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria. Eur. Radiol. 2015, 25, 2813–2820. [Google Scholar] [CrossRef]
- Nicosia, L.; Bozzini, A.C.; Palma, S.; Montesano, M.; Pesapane, F.; Ferrari, F.; Dominelli, V.; Rotili, A.; Meneghetti, L.; Frassoni, S.; et al. A Score to Predict the Malignancy of a Breast Lesion Based on Different Contrast Enhancement Patterns in Contrast-Enhanced Spectral Mammography. Cancers 2022, 14, 4337. [Google Scholar] [CrossRef]
- Bozzini, A.; Nicosia, L.; Pruneri, G.; Maisonneuve, P.; Meneghetti, L.; Renne, G.; Vingiani, A.; Cassano, E.; Mastropasqua, M.G. Clinical performance of contrast-enhanced spectral mammography in pre-surgical evaluation of breast malignant lesions in dense breasts: A single center study. Breast. Cancer Res. Treat. 2020, 184, 723–731. [Google Scholar] [CrossRef]
- Nicosia, L.; Bozzini, A.C.; Latronico, A.; Cassano, E. Contrast-Enhanced Spectral Mammography: Importance of the Assessment of Breast Tumor Size. Korean J. Radiol. 2021, 22, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, L.; Bozzini, A.C.; Palma, S.; Montesano, M.; Signorelli, G.; Pesapane, F.; Latronico, A.; Bagnardi, V.; Frassoni, S.; Sangalli, C.; et al. Contrast-Enhanced Spectral Mammography and tumor size assessment: A valuable tool for appropriate surgical management of breast lesions. Radiol. Med. 2022, 127, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Houben, I.P.; Vanwetswinkel, S.; Kalia, V.; Thywissen, T.; Nelemans, P.J.; Heuts, E.M.; Smidt, M.L.; Meyer-Baese, A.; Wildberger, J.E.; Lobbes, M. Contrast-enhanced spectral mammography in the evaluation of breast suspicious calcifications: Diagnostic accuracy and impact on surgical management. Acta Radiol. 2019, 60, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.-C.; Juan, Y.-H.; Lin, Y.-C.; Lo, Y.-F.; Tsai, H.-P.; Ueng, S.-H.; Chen, S.-C. Dual-energy contrast-enhanced spectral mammography: Enhancement analysis on BI-RADS 4 non-mass microcalcifications in screened women. PLoS ONE 2016, 11, e0162740. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.C.; Tsai, H.P.; Lo, Y.F.; Ueng, S.H.; Huang, P.C.; Chen, S.C. Clinical utility of dual-energy contrast-enhanced spectral mammography for breast microcalcifications without associated mass: A preliminary analysis. Eur. Radiol. 2016, 26, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Lalji, U.C.; Houben, I.P.; Prevos, R.; Gommers, S.; van Goethem, M.; Vanwetswinkel, S.; Pijnappel, R.; Steeman, R.; Frotscher, C.; Mok, W.; et al. Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program: Validation of results in a large multireader, multicase study. Eur. Radiol. 2016, 26, 4371–4379. [Google Scholar] [CrossRef]
- Bennani-Baiti, B.; Baltzer, P.A. MR Imaging for Diagnosis of Malignancy in Mammographic Microcalcifications: A Systematic Review and Meta-Analysis. Radiology 2017, 283, 692–701. [Google Scholar] [CrossRef]
- Coffey, K.; Jochelson, M.S. Contrast-enhanced mammography in breast cancer screening. Eur. J. Radiol. 2022, 156, 110513. [Google Scholar] [CrossRef]
Variable | Level | Overall (N = 377) |
---|---|---|
Mammograph, N (%) | Fuji | 35 (9.3) |
GE | 325 (86.2) | |
Hologic | 17 (4.5) | |
Type of lesion, N (%) | Microcalcifications | 101 (26.8) |
Mass | 249 (66.0) | |
Mass with microcalcifications | 10 (2.7) | |
Architectural distortion | 8 (2.1) | |
Enhancement MRI | 5 (1.3) | |
Lesion occasionally identified at surgery | 4 (1.1) | |
Type of lesion, N (%) | Microcalcifications | 101 (26.8) |
No microcalcifications | 276 (73.2) | |
Quadrant, N (%) | Lower | 68 (18.0) |
Middle | 83 (22.0) | |
Upper | 226 (59.9) | |
Side, N (%) | Left | 177 (46.9) |
Right | 200 (53.1) | |
BIRADS, N (%) | 4a | 117 (31.4) |
4b | 82 (22.0) | |
4c | 110 (29.5) | |
5 | 64 (17.2) | |
Not applicable (referred to lesion occasionally identified at surgery) | 4 | |
Density (ACR), N (%) | A | 4 (1.1) |
B | 79 (21.0) | |
C | 247 (65.5) | |
D | 47 (12.5) | |
Background, N (%) | Minimal | 250 (66.3) |
Mild | 70 (18.6) | |
Moderated | 35 (9.3) | |
Marked | 22 (5.8) |
Histological Result | ||||||
---|---|---|---|---|---|---|
with Microcalcifications without Other Radiological Findings | with Other Types of Radiological Manifestations | |||||
Intensity | Benign lesion | Malignant lesion | Total | Benign lesion | Malignant lesion | Total |
Benign lesion | 68 | 14 | 82 | 48 | 39 | 87 |
Malignant lesion | 3 | 16 | 19 | 9 | 180 | 189 |
Total | 71 | 30 | 101 | 57 | 219 | 276 |
with Microcalcifications without Other Radiological Findings | with Other Types of Radiological Manifestations | p-Value | |
---|---|---|---|
Sensitivity (SE) [95% CI] | 53.3% [35.5–71.2%] | 82.2% [77.1–87.3%] | <0.001 |
Specificity (SP) [95% CI] | 95.8% [91.1–100%] | 84.2% [74.7–93.7%] | 0.026 |
Positive predictive value (PPV) [95% CI] | 84.2% [67.8–100%] | 95.2% [92.2–98.3%] | 0.049 |
Negative predictive value (NPV) [95% CI] | 82.9% [74.8–91.1%] | 55.2% [44.7–65.6%] | <0.001 |
Diagnostic accuracy (DA) [95% CI] | 83.2% [75.9–90.5%] | 82.6% [78.1–87.1%] | 0.90 |
Histological Result | ||||||
---|---|---|---|---|---|---|
with Microcalcifications without Other Radiological Findings | with Other Types of Radiological Manifestations | |||||
Intensity | Benign lesion | Malignant lesion | Total | Benign lesion | Malignant lesion | Total |
Benign lesion | 61 | 6 | 67 | 29 | 7 | 36 |
Malignant lesion | 10 | 24 | 34 | 28 | 212 | 240 |
Total | 71 | 30 | 101 | 57 | 219 | 276 |
with Microcalcifications without Other Radiological Findings | with Other Types of Radiological Manifestations | p-Value | |
---|---|---|---|
Sensitivity (SE) [95% CI] | 80.0% [65.7–94.3%] | 96.8% [94.5–99.1%] | <0.001 |
Specificity (SP) [95% CI] | 85.9% [77.8–94.0%] | 50.9% [37.9–63.9%] | <0.001 |
Positive predictive value (PPV) [95% CI] | 70.6% [55.3–85.9%] | 88.3% [84.3–92.4%] | 0.005 |
Negative predictive value (NPV) [95% CI] | 91.0% [84.2–97.9%] | 80.6% [67.6–93.5%] | 0.13 |
Diagnostic accuracy (DA) [95% CI] | 84.2% [77.0–91.3%] | 87.3% [83.4–91.2%] | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicosia, L.; Bozzini, A.C.; Signorelli, G.; Palma, S.; Pesapane, F.; Frassoni, S.; Bagnardi, V.; Pizzamiglio, M.; Farina, M.; Trentin, C.; et al. Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management. Healthcare 2023, 11, 511. https://doi.org/10.3390/healthcare11040511
Nicosia L, Bozzini AC, Signorelli G, Palma S, Pesapane F, Frassoni S, Bagnardi V, Pizzamiglio M, Farina M, Trentin C, et al. Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management. Healthcare. 2023; 11(4):511. https://doi.org/10.3390/healthcare11040511
Chicago/Turabian StyleNicosia, Luca, Anna Carla Bozzini, Giulia Signorelli, Simone Palma, Filippo Pesapane, Samuele Frassoni, Vincenzo Bagnardi, Maria Pizzamiglio, Mariagiorgia Farina, Chiara Trentin, and et al. 2023. "Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management" Healthcare 11, no. 4: 511. https://doi.org/10.3390/healthcare11040511
APA StyleNicosia, L., Bozzini, A. C., Signorelli, G., Palma, S., Pesapane, F., Frassoni, S., Bagnardi, V., Pizzamiglio, M., Farina, M., Trentin, C., Penco, S., Meneghetti, L., Sangalli, C., & Cassano, E. (2023). Contrast-Enhanced Spectral Mammography in the Evaluation of Breast Microcalcifications: Controversies and Diagnostic Management. Healthcare, 11(4), 511. https://doi.org/10.3390/healthcare11040511