Pediatric Nephrolithiasis
Abstract
:1. Introduction
2. Evolving Epidemiology
2.1. Differences by Sex
2.2. Differences by Race
2.3. Risk of Recurrence
2.4. Stone Composition
2.5. Extrarenal Manifestations
2.6. Burden of Disease
3. Diagnostic Evaluation
3.1. Medical History and Physical Examination
3.2. Imaging
3.3. Metabolic Investigation
3.3.1. Hypercalciuria
3.3.2. Hyperoxaluria
3.3.3. Hypocitraturia
3.3.4. Cystinuria
3.3.5. Hyperuricosuria
4. Medical Management
5. Surgical Management
5.1. Goals of Therapy
5.2. Stone Clearance Definition
5.3. Radiation
5.4. Ancillary Procedures/Anesthesia
5.5. Surgical Antimicrobial Prophylaxis
5.6. Treatment of Asymptomatic Contralateral Stones
5.7. Ureteroscopic Management of Upper Urinary Tract Calculi
5.7.1. Key URS Equipment
5.7.2. Key URS Operative Considerations
5.7.3. Limitations and Complications
5.8. Extracorporeal Shock Wave Lithotripsy
5.8.1. Key ESWL Equipment
5.8.2. Key ESWL Operative Considerations
5.8.3. Limitations and Concerns
5.9. Percutaneous Nephrolithotomy
5.9.1. Key PCNL Equipment
5.9.2. PCNL Planning for Children
5.9.3. Key PCNL Operative Considerations
5.9.4. Limitations and Concerns
6. Lifestyle Modifications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, J.D.; Ellison, J.S.; Lendvay, T.S. Current Trends, Evaluation, and Management of Pediatric Nephrolithiasis. JAMA Pediatr. 2015, 169, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.J.; Basourakos, S.P.; Lewicki, P.; Wu, X.; Arenas-Gallo, C.; Chuang, D.; Bodner, D.; Jaeger, I.; Nevo, A.; Zell, M.; et al. Incidence of Kidney Stones in the United States: The Continuous National Health and Nutrition Examination Survey. J. Urol. 2022, 207, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Tasian, G.E.; Ross, M.E.; Song, L.; Sas, D.J.; Keren, R.; Denburg, M.R.; Chu, D.I.; Copelovitch, L.; Saigal, C.S.; Furth, S.L. Annual Incidence of Nephrolithiasis among Children and Adults in South Carolina from 1997 to 2012. Clin. J. Am. Soc. Nephrol. 2016, 11, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Alfandary, H.; Haskin, O.; Davidovits, M.; Pleniceanu, O.; Leiba, A.; Dagan, A. Increasing Prevalence of Nephrolithiasis in Association with Increased Body Mass Index in Children: A Population Based Study. J. Urol. 2018, 199, 1044–1049. [Google Scholar] [CrossRef]
- Routh, J.C.; Graham, D.A.; Nelson, C.P. Epidemiological trends in pediatric urolithiasis at United States freestanding pediatric hospitals. J. Urol. 2010, 184, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.B.; Feinstein, L.; Pierce, C.; Lim, J.; Abbott, K.C.; Bavendam, T.; Kirkali, Z.; Matlaga, B.R. Pediatric Urinary Stone Disease in the United States: The Urologic Diseases in America Project. Urology 2019, 129, 180–187. [Google Scholar] [CrossRef]
- Shin, S.; Srivastava, A.; Alli, N.A.; Bandyopadhyay, B.C. Confounding risk factors and preventative measuRes. driving nephrolithiasis global makeup. World J. Nephrol. 2018, 7, 129–142. [Google Scholar] [CrossRef]
- Sorokin, I.; Mamoulakis, C.; Miyazawa, K.; Rodgers, A.; Talati, J.; Lotan, Y. Epidemiology of stone disease across the world. World J. Urol. 2017, 35, 1301–1320. [Google Scholar] [CrossRef]
- Baştuğ, F.; Gündüz, Z.; Tülpar, S.; Poyrazoğlu, H.; Düşünsel, R. Urolithiasis in infants: Evaluation of risk factors. World J. Urol. 2013, 31, 1117–1122. [Google Scholar] [CrossRef]
- Trinchieri, A. Epidemiology of urolithiasis: An update. Clin. Cases Miner. Bone Metab. 2008, 5, 101–106. [Google Scholar]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2019. [Google Scholar]
- Bevill, M.; Kattula, A.; Cooper, C.S.; Storm, D.W. The Modern Metabolic Stone Evaluation in Children. Urology 2017, 101, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Schwaderer, A.L.; Raina, R.; Khare, A.; Safadi, F.; Moe, S.M.; Kusumi, K. Comparison of Risk Factors for Pediatric Kidney Stone Formation: The Effects of Sex. Front. Pediatr. 2019, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Gillams, K.; Juliebø-Jones, P.; Juliebø, S.; Somani, B.K. Gender Differences in Kidney Stone Disease (KSD): Findings from a Systematic Review. Curr. Urol. Rep. 2021, 22, 50. [Google Scholar] [CrossRef] [PubMed]
- Sas, D.J.; Hulsey, T.C.; Shatat, I.F.; Orak, J.K. Increasing incidence of kidney stones in children evaluated in the emergency department. J. Pediatr. 2010, 157, 132–137. [Google Scholar] [CrossRef]
- Bush, N.C.; Xu, L.; Brown, B.J.; Holzer, M.S.; Gingrich, A.; Schuler, B.; Tong, L.; Baker, L.A. Hospitalizations for pediatric stone disease in United States, 2002–2007. J. Urol. 2010, 183, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.I.; Tasian, G.E.; Copelovitch, L. Pediatric Kidney Stones—Avoidance and Treatment. Curr. Treat Options Pediatr. 2016, 2, 104–111. [Google Scholar] [CrossRef]
- Tasian, G.E.; Kabarriti, A.E.; Kalmus, A.; Furth, S.L. Kidney Stone Recurrence among Children and Adolescents. J. Urol. 2017, 197, 246–252. [Google Scholar] [CrossRef]
- Goka, S.Q.; Copelovitch, L. Prevention of recurrent urinary stone disease. Curr. Opin. Pediatr. 2020, 32, 295–299. [Google Scholar] [CrossRef]
- Lao, M.; Kogan, B.A.; White, M.D.; Feustel, P.J. High recurrence rate at 5-year followup in children after upper urinary tract stone surgery. J. Urol. 2014, 191, 440–444. [Google Scholar] [CrossRef]
- Tekin, A.; Tekgul, S.; Atsu, N.; Bakkaloglu, M.; Kendi, S. Oral potassium citrate treatment for idiopathic hypocitruria in children with calcium urolithiasis. J. Urol. 2002, 168, 2572–2574. [Google Scholar] [CrossRef]
- Ljunghall, S.; Danielson, B.G. A prospective study of renal stone recurrences. Br. J. Urol. 1984, 56, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; Wilson, D.M.; O’Fallon, W.M.; Malek, R.S.; Kurland, L.T. Renal stone epidemiology: A 25-year study in Rochester, Minnesota. Kidney Int. 1979, 16, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Asi, T.; Dogan, H.S.; Bozaci, A.C.; Citamak, B.; Altan, M.; Tekgul, S. A single center’s experience in pediatric cystine stone disease management: What changed over time? Urolithiasis 2020, 48, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Copelovitch, L. Urolithiasis in children: Medical approach. Pediatr. Clin. N. Am. 2012, 59, 881–896. [Google Scholar] [CrossRef]
- Bonzo, J.R.; Tasian, G.E. The Emergence of Kidney Stone Disease during Childhood-Impact on Adults. Curr. Urol. Rep. 2017, 18, 44. [Google Scholar] [CrossRef]
- Letavernier, E.; Traxer, O.; Daudon, M.; Tligui, M.; Hubert-Brierre, J.; Guerrot, D.; Sebag, A.; Baud, L.; Haymann, J.P. Determinants of osteopenia in male renal-stone-disease patients with idiopathic hypercalciuria. Clin. J. Am. Soc. Nephrol. 2011, 6, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Asplin, J.R.; Donahue, S.; Kinder, J.; Coe, F.L. Urine calcium excretion predicts bone loss in idiopathic hypercalciuria. Kidney Int. 2006, 70, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Denburg, M.R.; Leonard, M.B.; Haynes, K.; Tuchman, S.; Tasian, G.; Shults, J.; Copelovitch, L. Risk of fracture in urolithiasis: A population-based cohort study using the health improvement network. Clin. J. Am. Soc. Nephrol. 2014, 9, 2133–2140. [Google Scholar] [CrossRef]
- Schwaderer, A.L.; Kusumi, K.; Ayoob, R.M. Pediatric nephrolithiasis and the link to bone metabolism. Curr. Opin. Pediatr. 2014, 26, 207–214. [Google Scholar] [CrossRef]
- Schwaderer, A.L.; Srivastava, T.; Schueller, L.; Cronin, R.; Mahan, J.D.; Hains, D. Dietary modifications alone do not improve bone mineral density in children with idiopathic hypercalciuria. Clin. Nephrol. 2011, 76, 341–347. [Google Scholar] [CrossRef]
- Alexander, R.T.; Hemmelgarn, B.R.; Wiebe, N.; Bello, A.; Morgan, C.; Samuel, S.; Klarenbach, S.W.; Curhan, G.C.; Tonelli, M. Kidney stones and kidney function loss: A cohort study. Bmj 2012, 345, e5287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denburg, M.R.; Jemielita, T.O.; Tasian, G.E.; Haynes, K.; Mucksavage, P.; Shults, J.; Copelovitch, L. Assessing the risk of incident hypertension and chronic kidney disease after exposure to shock wave lithotripsy and ureteroscopy. Kidney Int. 2016, 89, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Ece, A.; Ozdemir, E.; Gürkan, F.; Dokucu, A.I.; Akdeniz, O. Characteristics of pediatric urolithiasis in south-east Anatolia. Int. J. Urol. 2000, 7, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Kittanamongkolchai, W.; Mara, K.C.; Mehta, R.A.; Vaughan, L.E.; Denic, A.; Knoedler, J.J.; Enders, F.T.; Lieske, J.C.; Rule, A.D. Risk of Hypertension among First-Time Symptomatic Kidney Stone Formers. Clin. J. Am. Soc. Nephrol. 2017, 12, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Wiener, J.S.; Lipkin, M.E.; Scales, C.D., Jr.; Ross, S.S.; Routh, J.C. Estimating the nationwide, hospital based economic impact of pediatric urolithiasis. J. Urol. 2015, 193, 1855–1859. [Google Scholar] [CrossRef]
- Kusumi, K.; Becknell, B.; Schwaderer, A. Trends in pediatric urolithiasis: Patient characteristics, associated diagnoses, and financial burden. Pediatr. Nephrol. 2015, 30, 805–810. [Google Scholar] [CrossRef]
- Sturgis, M.R.; Becerra, A.Z.; Khusid, J.A.; Fink, L.E.; Roadman, D.F.; Ross, J.H.; Gupta, M.; Konety, B.R.; Olweny, E.O. The monetary costs of pediatric upper urinary tract stone disease: Analysis in a contemporary United States cohort. J. Pediatr. Urol. 2022, 18, 311.e1–311.e8. [Google Scholar] [CrossRef]
- Rizvi, S.A.; Sultan, S.; Zafar, M.N.; Ahmed, B.; Aba Umer, S.; Naqvi, S.A. Paediatric urolithiasis in emerging economies. Int. J. Surg. 2016, 36, 705–712. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M.; Trinchieri, A.; Gambaro, G. Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian-Vegan Diets. Nutrients 2020, 12, 779. [Google Scholar] [CrossRef]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- Matlaga, B.R.; Shah, O.D.; Assimos, D.G. Drug-induced urinary calculi. Rev. Urol. 2003, 5, 227–231. [Google Scholar] [PubMed]
- Gilsanz, V.; Fernal, W.; Reid, B.S.; Stanley, P.; Ramos, A. Nephrolithiasis in premature infants. Radiology 1985, 154, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Stephany, H.A.; Clayton, D.B.; Tanaka, S.T.; Thomas, J.C.; Pope, J.C.t.; Brock, J.W., 3rd; Adams, M.C. Development of upper tract stones in patients with congenital neurogenic bladder. J. Pediatr. Urol. 2014, 10, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, H.H.; Yencilek, F.; Eryildirim, B.; Sarica, K. Family history in stone disease: How important is it for the onset of the disease and the incidence of recurrence? Urol. Res. 2010, 38, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Pober, B.R.; Lacro, R.V.; Rice, C.; Mandell, V.; Teele, R.L. Renal findings in 40 individuals with Williams syndrome. Am. J. Med. Genet. 1993, 46, 271–274. [Google Scholar] [CrossRef]
- Pook, M.A.; Wrong, O.; Wooding, C.; Norden, A.G.; Feest, T.G.; Thakker, R.V. Dent’s disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum. Mol. Genet. 1993, 2, 2129–2134. [Google Scholar] [CrossRef]
- Cassim, R.; Van Walraven, C.; Lavallée, L.T.; McAlpine, K.; Highmore, K.; Leonard, M.P.; Guerra, L.; Grandpierre, V.; Vethamuthu, J.; Keays, M.A. Systematic radiologic detection of kidney stones in Canadian children: A new era of asymptomatic stones? J. Pediatr. Urol. 2019, 15, 467.e1–467.e7. [Google Scholar] [CrossRef]
- Gearhart, J.P.; Herzberg, G.Z.; Jeffs, R.D. Childhood urolithiasis: Experiences and advances. Pediatrics 1991, 87, 445–450. [Google Scholar] [CrossRef]
- VanDervoort, K.; Wiesen, J.; Frank, R.; Vento, S.; Crosby, V.; Chandra, M.; Trachtman, H. Urolithiasis in pediatric patients: A single center study of incidence, clinical presentation and outcome. J. Urol. 2007, 177, 2300–2305. [Google Scholar] [CrossRef]
- The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann. ICRP 2007, 37, 1–332.
- Goske, M.J.; Applegate, K.E.; Boylan, J.; Butler, P.F.; Callahan, M.J.; Coley, B.D.; Farley, S.; Frush, D.P.; Hernanz-Schulman, M.; Jaramillo, D.; et al. The Image Gently campaign: Working togeTher. to change practice. Am. J. Roentgenol. 2008, 190, 273–274. [Google Scholar] [CrossRef] [PubMed]
- Passerotti, C.; Chow, J.S.; Silva, A.; Schoettler, C.L.; Rosoklija, I.; Perez-Rossello, J.; Cendron, M.; Cilento, B.G.; Lee, R.S.; Nelson, C.P.; et al. Ultrasound versus computerized tomography for evaluating urolithiasis. J. Urol. 2009, 182, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Oktar, S.O.; Yücel, C.; Ozdemir, H.; Ulutürk, A.; Işik, S. Comparison of conventional sonography, real-time compound sonography, tissue harmonic sonography, and tissue harmonic compound sonography of abdominal and pelvic lesions. Am. J. Roentgenol. 2003, 181, 1341–1347. [Google Scholar] [CrossRef]
- Partin, A.W.; Peters, C.A.; Kavoussi, L.R.; Dmochowski, R.R.; Wein, A.J. Campbell Walsh Wein Urology, 12th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Riccabona, M.; Avni, F.E.; Blickman, J.G.; Dacher, J.N.; Darge, K.; Lobo, M.L.; Willi, U. Imaging recommendations in paediatric uroradiology. Minutes of the ESPR uroradiology task force session on childhood obstructive uropathy, high-grade fetal hydronephrosis, childhood haematuria, and urolithiasis in childhood. ESPR Annual Congress, Edinburgh, UK, June 2008. Pediatr. Radiol. 2009, 39, 891–898. [Google Scholar] [PubMed]
- Masch, W.R.; Cohan, R.H.; Ellis, J.H.; Dillman, J.R.; Rubin, J.M.; Davenport, M.S. Clinical Effectiveness of Prospectively Reported Sonographic Twinkling Artifact for the Diagnosis of Renal Calculus in Patients without Known Urolithiasis. Am. J. Roentgenol. 2016, 206, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Gliga, M.L.; Chirila, C.N.; Podeanu, D.M.; Imola, T.; Voicu, S.L.; Gliga, M.G.; Gliga, P.M. Twinkle, twinkle little stone: An artifact improves the ultrasound performance! Med. Ultrason. 2017, 19, 272–275. [Google Scholar] [CrossRef]
- Tchelepi, H.; Ralls, P.W. Color comet-tail artifact: Clinical applications. Am. J. Roentgenol. 2009, 192, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Platt, J.F. Duplex Doppler evaluation of acute renal obstruction. Semin. Ultrasound CT MR 1997, 18, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Coll, D.M. Helical computed tomography in the diagnosis of ureteric colic. BJU Int. 2000, 86 (Suppl. S1), 33–41. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Lipson, J.; Marcus, R.; Kim, K.P.; Mahesh, M.; Gould, R.; Berrington de González, A.; Miglioretti, D.L. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 2009, 169, 2078–2086. [Google Scholar] [CrossRef]
- Katz, S.I.; Saluja, S.; Brink, J.A.; Forman, H.P. Radiation dose associated with unenhanced CT for suspected renal colic: Impact of repetitive studies. Am. J. Roentgenol. 2006, 186, 1120–1124. [Google Scholar] [CrossRef] [PubMed]
- Routh, J.C.; Graham, D.A.; Nelson, C.P. Trends in imaging and surgical management of pediatric urolithiasis at American pediatric hospitals. J. Urol. 2010, 184, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- Rob, S.; Bryant, T.; Wilson, I.; Somani, B.K. Ultra-low-dose, low-dose, and standard-dose CT of the kidney, ureters, and bladder: Is there a difference? Results from a systematic review of the literature. Clin. Radiol. 2017, 72, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Pietrow, P.K.; Pope, J.C.t.; Adams, M.C.; Shyr, Y.; Brock, J.W., 3rd. Clinical outcome of pediatric stone disease. J. Urol. 2002, 167, 670–673. [Google Scholar] [CrossRef]
- EAU Guidelines. In Proceedings of the EAU Annual Congress Amsterdam, Amsterdam, The Netherlands, 1–4 July 2022; EAU Guidelines Office: Arnhem, The Netherlands, 2022.
- Paccaud, Y.; Rios-Leyvraz, M.; Bochud, M.; Tabin, R.; Genin, B.; Russo, M.; Rossier, M.F.; Bovet, P.; Chiolero, A.; Parvex, P. Spot urine samples to estimate 24-h urinary calcium excretion in school-age children. Eur. J. Pediatr. 2020, 179, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Janzen, N.; Moreno, L.; Bekheirnia, M. A Handbook of Pediatric Kidney Stones; Baylor College of Medicine; Texas Children’s Hospital: Houston, TX, USA, 2015. [Google Scholar]
- Milliner, D.S.; Murphy, M.E. Urolithiasis in pediatric patients. Mayo Clin. Proc. 1993, 68, 241–248. [Google Scholar] [CrossRef]
- Stapleton, F.B.; McKay, C.P.; Noe, H.N. Urolithiasis in children: The role of hypercalciuria. Pediatr. Ann. 1987, 16, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Esteghamati, M.; Ghasemi, K.; Nami, M. Prevalence of idiopathic hypercalciuria in children with urinary system related symptoms attending a pediatric hospital in Bandar Abbas in 2014. Electron. Physician 2017, 9, 5261–5264. [Google Scholar] [CrossRef] [PubMed]
- Worcester, E.M.; Coe, F.L. New insights into the pathogenesis of idiopathic hypercalciuria. Semin. Nephrol. 2008, 28, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Hoenderop, J.G.; Vennekens, R.; Eggert, P.; Harangi, F.; Méhes, K.; Garcia-Nieto, V.; Claverie-Martin, F.; Os, C.H.; Nilius, B.; et al. Epithelial Ca(2+) channel (ECAC1) in autosomal dominant idiopathic hypercalciuria. Nephrol. Dial. Transplant. 2002, 17, 1614–1620. [Google Scholar] [CrossRef]
- Coe, F.L.; Parks, J.H.; Moore, E.S. Familial idiopathic hypercalciuria. N. Engl. J. Med. 1979, 300, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Phulwani, P.; Bergwitz, C.; Jaureguiberry, G.; Rasoulpour, M.; Estrada, E. Hereditary hypophosphatemic rickets with hypercalciuria and nephrolithiasis-identification of a novel SLC34A3/NaPi-IIc mutation. Am. J. Med. Genet. A 2011, 155, 626–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhasin, B.; Ürekli, H.M.; Atta, M.G. Primary and secondary hyperoxaluria: Understanding the enigma. World J. Nephrol. 2015, 4, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Bergstralh, E.J.; Mehta, R.A.; Vaughan, L.E.; Olson, J.B.; Seide, B.M.; Meek, A.M.; Cogal, A.G.; Lieske, J.C.; Milliner, D.S. Predictors of Incident ESRD among Patients with Primary Hyperoxaluria Presenting Prior to Kidney Failure. Clin. J. Am. Soc. Nephrol. 2016, 11, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Milliner, D.S.; Harris, P.C.; Sas, D.J.; Cogal, A.G.; Lieske, J.C. Primary Hyperoxaluria Type 1; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Scott, L.J.; Keam, S.J. Lumasiran: First Approval. Drugs 2021, 81, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.D.; Ferree, P.M.; Lin, K.; Milliner, D.S.; Holmes, R.P. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Mol. Genet. 1999, 8, 2063–2069. [Google Scholar] [CrossRef]
- Rumsby, G.; Hulton, S.A. Primary Hyperoxaluria Type 2. GeneReviews 2008, 5, 2–22. [Google Scholar]
- Belostotsky, R.; Seboun, E.; Idelson, G.H.; Milliner, D.S.; Becker-Cohen, R.; Rinat, C.; Monico, C.G.; Feinstein, S.; Ben-Shalom, E.; Magen, D.; et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 2010, 87, 392–399. [Google Scholar] [CrossRef]
- Jones, D.P.; Stapleton, F.B.; Whitington, G.; Noe, H.N. Urolithiasis and enteric hyperoxaluria in a child with steatorrhea. Clin. Pediatr. 1987, 26, 304–306. [Google Scholar] [CrossRef]
- Hueppelshaeuser, R.; von Unruh, G.E.; Habbig, S.; Beck, B.B.; Buderus, S.; Hesse, A.; Hoppe, B. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr. Nephrol. 2012, 27, 1103–1109. [Google Scholar] [CrossRef]
- Nicar, M.J.; Hill, K.; Pak, C.Y. Inhibition by citrate of spontaneous precipitation of calcium oxalate in vitro. J. Bone Miner. Res. 1987, 2, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Ryall, R.L. Urinary inhibitors of calcium oxalate crystallization and their potential role in stone formation. World J. Urol. 1997, 15, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, J.M.; Assimos, D.G. Hypocitraturia: Pathophysiology and medical management. Rev. Urol. 2009, 11, 134–144. [Google Scholar] [PubMed]
- Sarica, K.; Inal, Y.; Erturhan, S.; Yağci, F. The effect of calcium channel blockers on stone regrowth and recurrence after shock wave lithotripsy. Urol. Res. 2006, 34, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Fink, H.A.; Wilt, T.J.; Eidman, K.E.; Garimella, P.S.; MacDonald, R.; Rutks, I.R.; Brasure, M.; Kane, R.L.; Ouellette, J.; Monga, M. Medical management to prevent recurrent nephrolithiasis in adults: A systematic review for an AmeriCan. College of Physicians Clinical Guideline. Ann. Intern. Med. 2013, 158, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.; Kemper, M.J. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr. Nephrol. 2010, 25, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Breslau, N.A.; Brinkley, L.; Hill, K.D.; Pak, C.Y. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J. Clin. Endocrinol. Metab. 1988, 66, 140–146. [Google Scholar] [CrossRef]
- Reddy, S.T.; Wang, C.Y.; Sakhaee, K.; Brinkley, L.; Pak, C.Y. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am. J. Kidney Dis. 2002, 40, 265–274. [Google Scholar] [CrossRef]
- Knoll, T.; Zöllner, A.; Wendt-Nordahl, G.; Michel, M.S.; Alken, P. Cystinuria in childhood and adolescence: Recommendations for diagnosis, treatment, and follow-up. Pediatr. Nephrol. 2005, 20, 19–24. [Google Scholar] [CrossRef]
- Andreassen, K.H.; Pedersen, K.V.; Osther, S.S.; Jung, H.U.; Lildal, S.K.; Osther, P.J. How should patients with cystine stone disease be evaluated and treated in the twenty-first century? Urolithiasis 2016, 44, 65–76. [Google Scholar] [CrossRef]
- Dello Strologo, L.; Laurenzi, C.; Legato, A.; Pastore, A. Cystinuria in children and young adults: Success of monitoring free-cystine urine levels. Pediatr. Nephrol. 2007, 22, 1869–1873. [Google Scholar] [CrossRef] [PubMed]
- Edvardsson, V.O.; Goldfarb, D.S.; Lieske, J.C.; Beara-Lasic, L.; Anglani, F.; Milliner, D.S.; Palsson, R. Hereditary causes of kidney stones and chronic kidney disease. Pediatr. Nephrol. 2013, 28, 1923–1942. [Google Scholar] [CrossRef] [PubMed]
- Kirejczyk, J.K.; Porowski, T.; Filonowicz, R.; Kazberuk, A.; Stefanowicz, M.; Wasilewska, A.; Debek, W. An association between kidney stone composition and urinary metabolic disturbances in children. J. Pediatr. Urol. 2014, 10, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, P.; Bonny, O. Diagnosis and prevention of uric acid stones. Ther. Umsch. 2004, 61, 571–574. [Google Scholar] [CrossRef]
- Cameron, J.S.; Moro, F.; Simmonds, H.A. Gout, uric acid and purine metabolism in paediatric nephrology. Pediatr. Nephrol. 1993, 7, 105–118. [Google Scholar] [CrossRef]
- Sperling, O. Hereditary renal hypouricemia. Mol. Genet. Metab. 2006, 89, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.O.; Ihm, C.G.; Jeong, K.H.; Kang, H.J.; Kim, J.M.; Lim, H.S.; Kim, J.S.; Lee, T.W. A Case Report of Familial Renal Hypouricemia ConfirMed. by Genotyping of SLC22A12, and a Literature Review. Electrolyte Blood Press. 2015, 13, 52–57. [Google Scholar] [CrossRef]
- Ruiz, A.; Gautschi, I.; Schild, L.; Bonny, O. Human Mutations in SLC2A9 (Glut9) Affect Transport Capacity for Urate. Front. Physiol. 2018, 9, 476. [Google Scholar] [CrossRef]
- Assimos, D.; Krambeck, A.; Miller, N.L.; Monga, M.; Murad, M.H.; Nelson, C.P.; Pace, K.T.; Pais, V.M., Jr.; Pearle, M.S.; Preminger, G.M.; et al. Surgical Management of Stones: AmeriCan. Urological Association/Endourological Society Guideline, PART I. J. Urol. 2016, 196, 1153–1160. [Google Scholar] [CrossRef]
- Hollingsworth, J.M.; Canales, B.K.; Rogers, M.A.; Sukumar, S.; Yan, P.; Kuntz, G.M.; Dahm, P. Alpha blockers for treatment of ureteric stones: Systematic review and meta-analysis. Bmj 2016, 355, i6112. [Google Scholar] [CrossRef]
- Ye, Z.; Zeng, G.; Yang, H.; Tang, K.; Zhang, X.; Li, H.; Li, W.; Wu, Z.; Chen, L.; Chen, X.; et al. Efficacy and Safety of Tamsulosin in Medical Expulsive Therapy for Distal Ureteral Stones with Renal Colic: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial. Eur. Urol. 2018, 73, 385–391. [Google Scholar] [CrossRef]
- Meltzer, A.C.; Burrows, P.K.; Wolfson, A.B.; Hollander, J.E.; Kurz, M.; Kirkali, Z.; Kusek, J.W.; Mufarrij, P.; Jackman, S.V.; Brown, J. Effect of Tamsulosin on Passage of Symptomatic Ureteral Stones: A Randomized Clinical Trial. JAMA Intern. Med. 2018, 178, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Pickard, R.; Starr, K.; MacLennan, G.; Lam, T.; Thomas, R.; Burr, J.; McPherson, G.; McDonald, A.; Anson, K.; N’Dow, J.; et al. Medical expulsive therapy in adults with ureteric colic: A multicentre, randomised, placebo-controlled trial. Lancet 2015, 386, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Destro, F.; Selvaggio, G.G.O.; Lima, M.; Riccipetitoni, G.; Klersy, C.; Di Salvo, N.; Marinoni, F.; Calcaterra, V.; Pelizzo, G. Minimally Invasive Approaches in Pediatric Urolithiasis. The Experience of Two Italian Centers of Pediatric Surgery. Front. Pediatr. 2020, 8, 377. [Google Scholar] [CrossRef] [PubMed]
- Streur, C.S.; Lin, P.J.; Hollingsworth, J.M.; Kamdar, N.S.; Kraft, K.H. Impact of the Image Gently® Campaign on Computerized Tomography Use for Evaluation of Pediatric Nephrolithiasis. J. Urol. 2019, 201, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Ristau, B.T.; Dudley, A.G.; Casella, D.P.; Dwyer, M.E.; Fox, J.A.; Cannon, G.M.; Schneck, F.X.; Ost, M.C. Tracking of radiation exposure in pediatric stone patients: The time is now. J. Pediatr. Urol. 2015, 11, 339.e1–339.e5. [Google Scholar] [CrossRef]
- Wrixon, A.D. New ICRP recommendations. J. Radiol. Prot. 2008, 28, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Sharifiaghdas, F.; Tabibi, A.; Nouralizadeh, A.; Sotoudeh, M.; Ayanifard, M.; Pakmanesh, H.; Soltani, M.H. Our Experience with Totally Ultrasonography-Guided Percutaneous Nephrolithotomy in Children. J. EndoUrol. 2021, 35, 749–752. [Google Scholar] [CrossRef]
- Morrison, J.C.; Van Batavia, J.P.; Darge, K.; Long, C.J.; Shukla, A.R.; Srinivasan, A.K. Ultrasound guided ureteroscopy in children: Safety and success. J. Pediatr. Urol. 2018, 14, 64.e1–64.e6. [Google Scholar] [CrossRef]
- Eryildirim, B.; Turkoglu, O.; Goktas, C.; Kavukoglu, O.; Guzel, R.; Sarica, K. Radiologic evaluation of children prior to SWL: To what extent they are exposed to radiation? Urolithiasis 2018, 46, 485–491. [Google Scholar] [CrossRef]
- Raza, A.; Smith, G.; Moussa, S.; Tolley, D. Ureteroscopy in the management of pediatric urinary tract calculi. J. EndoUrol. 2005, 19, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Minevich, E.; Defoor, W.; Reddy, P.; Nishinaka, K.; Wacksman, J.; Sheldon, C.; Erhard, M. Ureteroscopy is safe and effective in prepubertal children. J. Urol. 2005, 174, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Rigotti, E.; Argentiero, A.; Caminiti, C.; Castagnola, E.; Lancella, L.; Venturini, E.; De Luca, M.; La Grutta, S.; Lima, M.; et al. Antimicrobial Prophylaxis for Urologic ProceduRes. in Paediatric Patients: A RAND/UCLA Appropriateness Method Consensus Study in Italy. Antibiotics 2022, 11, 296. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, M.D.; Harper, J.D.; Borofsky, M.S.; Hameed, T.A.; Smoot, K.J.; Burke, B.H.; Levchak, B.J.; Williams, J.C., Jr.; Bailey, M.R.; Liu, Z.; et al. Removal of Small, Asymptomatic Kidney Stones and Incidence of Relapse. N. Engl. J. Med. 2022, 387, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.P. Pediatric ureteroscopy. Urol. Clin. N. Am. 2004, 31, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Riedmiller, H.; Androulakakis, P.; Beurton, D.; Kocvara, R.; Gerharz, E. EAU guidelines on paediatric urology. Eur. Urol. 2001, 40, 589–599. [Google Scholar] [CrossRef]
- De Dominicis, M.; Matarazzo, E.; Capozza, N.; Collura, G.; Caione, P. Retrograde ureteroscopy for distal ureteric stone removal in children. BJU Int. 2005, 95, 1049–1052. [Google Scholar] [CrossRef]
- Jaeger, C.D.; Nelson, C.P.; Cilento, B.G.; Logvinenko, T.; Kurtz, M.P. Comparing Pediatric Ureteroscopy Outcomes with SuperPulsed Thulium Fiber Laser and Low-Power Holmium: YAG Laser. J. Urol. 2022, 208, 426–433. [Google Scholar] [CrossRef]
- Ishii, H.; Griffin, S.; Somani, B.K. Ureteroscopy for stone disease in the paediatric population: A systematic review. BJU Int. 2015, 115, 867–873. [Google Scholar] [CrossRef]
- Manzoor, H.; Saikali, W.S. Renal Extracorporeal Lithotripsy; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chaussy, C.; Schmiedt, E.; Jocham, D.; Brendel, W.; Forssmann, B.; Walther, V. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J. Urol. 1982, 127, 417–420. [Google Scholar] [CrossRef]
- Tailly, G.G. Extracorporeal shock wave lithotripsy today. Indian J. Urol. 2013, 29, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, D.A.; Lingeman, J.E.; Zafar, F.S.; Hollensbe, D.W.; Nyhuis, A.W.; Evan, A.P. Alterations in predicted growth rates of pediatric kidneys treated with extracorporeal shockwave lithotripsy. J. EndoUrol. 1998, 12, 469–475. [Google Scholar] [CrossRef]
- Newman, D.M.; Coury, T.; Lingeman, J.E.; Mertz, J.H.; Mosbaugh, P.G.; Steele, R.E.; Knapp, P.M. Extracorporeal shock wave lithotripsy experience in children. J. Urol. 1986, 136, 238–240. [Google Scholar] [CrossRef] [PubMed]
- McAdams, S.; Shukla, A.R. Pediatric extracorporeal shock wave lithotripsy: Predicting successful outcomes. Indian J. Urol. 2010, 26, 544–548. [Google Scholar] [PubMed]
- Elsobky, E.; Sheir, K.Z.; Madbouly, K.; Mokhtar, A.A. Extracorporeal shock wave lithotripsy in children: Experience using two second-generation lithotripters. BJU Int. 2000, 86, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Wang, Z.; Song, R.; Wang, X.; Qi, K.; Dai, Q.; Zhang, W.; Gu, M. The clinical efficacy of extracorporeal shock wave lithotripsy in pediatric urolithiasis: A systematic review and meta-analysis. Urolithiasis 2015, 43, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Landau, E.H.; Shenfeld, O.Z.; Pode, D.; Shapiro, A.; Meretyk, S.; Katz, G.; Katz, R.; Duvdevani, M.; Hardak, B.; Cipele, H.; et al. Extracorporeal shock wave lithotripsy in prepubertal children: 22-year experience at a single institution with a single lithotriptor. J. Urol. 2009, 182, 1835–1839. [Google Scholar] [CrossRef]
- Vinit, N.; Khoury, A.; Lopez, P.; Heidet, L.; Botto, N.; Traxer, O.; Boyer, O.; Blanc, T.; Lottmann, H.B. Extracorporeal Shockwave Lithotripsy for Cystine Stones in Children: An Observational, Retrospective, Single-Center Analysis. Front. Pediatr. 2021, 9, 763317. [Google Scholar] [CrossRef]
- Nelson, C.P.; Diamond, D.A.; Cendron, M.; Peters, C.A.; Cilento, B.G. Extracorporeal shock wave lithotripsy in pediatric patients using a late generation portable lithotriptor: Experience at Children’s Hospital Boston. J. Urol. 2008, 180, 1865–1868. [Google Scholar] [CrossRef]
- Cevik, B.; Tuncer, M.; Erkal, K.H.; Eryildirim, B.; Sarica, K. Procedural sedation and analgesia for pediatric shock wave lithotripsy: A 10 year experience of single institution. Urolithiasis 2018, 46, 363–367. [Google Scholar] [CrossRef]
- Kaygısız, O.; Kılıçarslan, H.; Mert, A.; Coşkun, B.; Kordan, Y. Comparison of intermediate- and low-frequency shock wave lithotripsy for pediatric kidney stones. Urolithiasis 2018, 46, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.A. Use of double-J. stents prior to extracorporeal shock wave lithotripsy is not beneficial: Results of a prospective randomized study. Int. Urol. Nephrol. 2008, 40, 19–22. [Google Scholar] [CrossRef]
- Shen, P.; Jiang, M.; Yang, J.; Li, X.; Li, Y.; Wei, W.; Dai, Y.; Zeng, H.; Wang, J. Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: A systematic review and meta-analysis. J. Urol. 2011, 186, 1328–1335. [Google Scholar]
- Wang, H.; Man, L.; Li, G.; Huang, G.; Liu, N.; Wang, J. Meta-Analysis of Stenting versus Non-Stenting for the Treatment of Ureteral Stones. PLoS ONE 2017, 12, e0167670. [Google Scholar] [CrossRef] [PubMed]
- Yucel, S.; Akin, Y.; Danisman, A.; Guntekin, E. Complications and associated factors of pediatric extracorporeal shock wave lithotripsy. J. Urol. 2012, 187, 1812–1816. [Google Scholar] [CrossRef] [PubMed]
- Akin, Y.; Yucel, S. Long-term effects of pediatric extracorporeal shockwave lithotripsy on renal function. Res. Rep. Urol. 2014, 6, 21–25. [Google Scholar] [CrossRef]
- Krishnamurthi, V.; Streem, S.B. Long-term radiographic and functional outcome of extracorporeal shock wave lithotripsy induced perirenal hematomas. J. Urol. 1995, 154, 1673–1675. [Google Scholar] [CrossRef]
- Maziak, D.E.; Ralph-Edwards, A.; Deitel, M.; Wait, J.; Watt, H.J.; Marcuzzi, A. Massive perirenal and intra-abdominal bleeding after shock-wave lithotripsy: Case report. Can. J. Surg. 1994, 37, 329–332. [Google Scholar] [PubMed]
- Shang, W.; Li, Y.; Ren, Y.; Yang, Y.; Li, H.; Dong, J. Nephrolithiasis and risk of hypertension: A meta-analysis of observational studies. BMC Nephrol. 2017, 18, 344. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Zhong, H.; Hu, B.; Zhao, S. Minimally invasive surgery for pediatric renal and ureteric stones: A therapeutic update. Front. Pediatr. 2022, 10, 902573. [Google Scholar] [CrossRef]
- Tekgul, S.; Stein, R.; Bogaert, G.; Undre, S.; Nijman, R.J.M.; Quaedackers, J.; ‘t Hoen, L.; Kocvara, R.; Silay, M.S.; Radmayr, C.; et al. EAU-ESPU guidelines recommendations for daytime lower urinary tract conditions in children. Eur. J. Pediatr. 2020, 179, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Sabler, I.M.; Katafigiotis, I.; Gofrit, O.N.; Duvdevani, M. Present indications and techniques of percutaneous nephrolithotomy: What the future holds? Asian J. Urol. 2018, 5, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Halinski, A.; Steyaert, H.; Wojciech, M.; Sobolewski, B.; Haliński, A. Endourology Methods in Pediatric Population for Kidney Stones Located in Lower Calyx: FlexURS vs. Micro PCNL (MicroPERC®). Front. Pediatr. 2021, 9, 640995. [Google Scholar] [CrossRef] [PubMed]
- Celik, H.; Camtosun, A.; Dede, O.; Dagguli, M.; Altintas, R.; Tasdemir, C. Comparison of the results of pediatric percutaneous nephrolithotomy with different sized instruments. Urolithiasis 2017, 45, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Assimos, D.; Krambeck, A.; Miller, N.L. Surgical management of stones: AmeriCan urological Association/Endourological Society Guideline. J. Urol. 2016, 196, 1153–1160. [Google Scholar] [CrossRef]
- Sultana, R.; Allen, J.C.; Siow, Y.N.; Bong, C.L.; Lee, S.Y. Development of local guidelines to prevent perioperative hypothermia in children: A prospective observational cohort study. Can. J. Anaesth. 2022, 69, 1360–1374. [Google Scholar] [CrossRef]
- Amaresh, M.; Hegde, P.; Chawla, A.; de la Rosette, J.; Laguna, M.P.; Kriplani, A. Safety and efficacy of superior calyceal access versus inferior calyceal access for pelvic and/or lower calyceal renal calculi- a prospective observational comparative study. World J. Urol. 2021, 39, 2155–2161. [Google Scholar] [CrossRef]
- Chiancone, F.; Meccariello, C.; Fedelini, M.; Giannella, R.; Fedelini, P. Four dilation techniques in percutaneous nephrolithotomy: A single-institute comparative analysis. Minerva Urol. Nephrol. 2021, 73, 253–259. [Google Scholar] [CrossRef]
- Ozden, E.; Mercimek, M.N. Percutaneous nephrolithotomy in pediatric age group: Assessment of effectiveness and complications. World J. Nephrol. 2016, 5, 84–89. [Google Scholar] [CrossRef]
- Karkin, K.; Erçil, H. Is percutaneous nephrolithotomy effective and safe for children with solitary kidney? Pediatr. Surg. Int. 2022, 38, 1171–1175. [Google Scholar] [CrossRef]
- Zeid, M.; Sayedin, H.; Alsaid, A.; Sridharan, N.; Narayanaswa, A.; Giri, S.; Abul, F.; Almousawi, S. Outcomes of Mini-Percutaneous Nephrolithotomy in Children and Adolescents: A 10-Year Single-Centre Experience from Kuwait. Cureus 2022, 14, e25022. [Google Scholar] [CrossRef] [PubMed]
- Penido, M.G.; de Sousa Tavares, M. Pediatric primary urolithiasis: Symptoms, medical management and prevention strategies. World J. Nephrol. 2015, 4, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.B.; Lin, M.E.; Huang, R.H.; Hong, Y.K.; Lin, B.L.; He, X.J. Dietary and lifestyle factors for primary prevention of nephrolithiasis: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 267. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.C.; Avendt-Reeber, M. Urolithiasis in Children—Treatment and Prevention. Curr. Treat. Options Pediatr. 2016, 2, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Scales, C.D., Jr.; Desai, A.C.; Harper, J.D.; Lai, H.H.; Maalouf, N.M.; Reese, P.P.; Tasian, G.E.; Al-Khalidi, H.R.; Kirkali, Z.; Wessells, H. Prevention of Urinary Stones With Hydration (PUSH): Design and Rationale of a Clinical Trial. Am. J. Kidney Dis. 2021, 77, 898–906.e1. [Google Scholar] [CrossRef]
- Hannallah, A.; Baker, Z.G.; Saker, S.; Khouzam, N.; Sparks, S.S. BMI Differences in Pediatric Patients with and without Nephrolithiasis by Pubertal Status. In Proceedings of the SPU 2021 Pediatric Urology Fall Congress, InterContinental Miami, FL, USA, 2–5 December 2021. [Google Scholar]
Oxalate | <50 mg/1.73 m2/day | |
Cystine | <60 mg/1.73 m2/day | |
Citrate | Boys | >125 mg/g creatinine |
Girls | >300 mg/g creatinine | |
Uric acid | <8 years old | 11 mg/kg/day |
8–12 years old | 10 mg/kg/day | |
>12 years old | 7 mg/kg/day | |
Magnesium | <8 years old | 2.5 mg/kg/day |
8–12 years old | 1.9 mg/kg/day | |
>12 years old | 1.8 mg/kg/day | |
Phosphorus | <8 years old | 30 mg/kg/day |
8–12 years old | 30 mg/kg/day | |
>12 years old | 20 mg/kg/day | |
Creatinine | 1–5 years old | 20 mg/kg/day |
>5 years old | 25 mg/kg/day | |
Volume | >20 mL/kg/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, B.; Daniel, R.; McGregor, R.; Tasian, G.E. Pediatric Nephrolithiasis. Healthcare 2023, 11, 552. https://doi.org/10.3390/healthcare11040552
Cao B, Daniel R, McGregor R, Tasian GE. Pediatric Nephrolithiasis. Healthcare. 2023; 11(4):552. https://doi.org/10.3390/healthcare11040552
Chicago/Turabian StyleCao, Brent, Roby Daniel, Ryan McGregor, and Gregory E. Tasian. 2023. "Pediatric Nephrolithiasis" Healthcare 11, no. 4: 552. https://doi.org/10.3390/healthcare11040552
APA StyleCao, B., Daniel, R., McGregor, R., & Tasian, G. E. (2023). Pediatric Nephrolithiasis. Healthcare, 11(4), 552. https://doi.org/10.3390/healthcare11040552