Operations Research to Solve Kidney Allocation Problems: A Systematic Review
Abstract
:1. Introduction
1.1. Kidney Transplantation and Allocation
1.2. Operations Research
1.3. Review Objectives
2. Materials and Methods
2.1. Review Design and Literature Searches
2.2. Eligibility Criteria
2.3. Study Selection and Data Synthesis
2.4. Risk-of-Bias Assessment
3. Results
3.1. Search Results
3.2. Summary of Findings
3.2.1. Provider-Facing Decision Aids to Determine the Timing of Transplantation for Single or Multiple Patients
3.2.2. System-Level Planning on Kidney Allocation Based on Blood Type Matching Rules
3.2.3. Patient-Facilitated Wait Times Estimation Using Incomplete Information
3.3. Quality Assessment
4. Discussion
4.1. Study Implications
4.2. Recommendations
- Prioritize the use of operations research to answer managerial questions related to kidney transplantation.
- Test the usability of Subben’s checklist in different medical contexts.
- Revise Subben’s checklist by giving more weight to domains that judge the rigor in methodology, especially on the validity of inferences.
- Enhance Subben’s checklist by giving clear instructions on how to assess the nuances in the study methodology.
- Conduct a more comprehensive sensitivity analysis to quantify model uncertainties (e.g., by varying the level of confidence in the model assumptions and changing the underlying distribution of model parameters).
- Establish the real-world reliability of model-driven dynamic solutions derived from operations research.
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Literature Search Strategies
References
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Chronic Kidney Disease Epidemiology Collaboration Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Chadban, S.J.; Ahn, C.; Axelrod, D.A.; Foster, B.J.; Kasiske, B.L.; Kher, V.; Kumar, D.; Oberbauer, R.; Pascual, J.; Pilmore, H.L.; et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020, 104, S11. [Google Scholar] [CrossRef]
- Fu, R.; Sekercioglu, N.; Berta, W.; Coyte, P.C. Cost-Effectiveness of Deceased-Donor Renal Transplant versus Dialysis to Treat End-Stage Renal Disease: A Systematic Review. Transpl. Direct 2020, 6, e522. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Qi, R.; Yang, B. Pathogenesis of Chronic Allograft Dysfunction Progress to Renal Fibrosis. In Renal Fibrosis: Mechanisms and Therapies; Liu, B.-C., Lan, H.-Y., Lv, L.-L., Eds.; Springer: Singapore, 2019; pp. 101–116. ISBN 978-981-13-8871-2. [Google Scholar]
- Joosten, S.A.; Sijpkens, Y.W.J.; van Kooten, C.; Paul, L.C. Chronic Renal Allograft Rejection: Pathophysiologic Considerations. Kidney Int. 2005, 68, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippone, E.J.; McCue, P.A.; Farber, J.L. Transplant Glomerulopathy. Mod. Pathol. 2018, 31, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Afzali, B.; Taylor, A.L.; Goldsmith, D.J.A. What We CAN Do about Chronic Allograft Nephropathy: Role of Immunosuppressive Modulations. Kidney Int. 2005, 68, 2429–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solez, K.; Colvin, R.B.; Racusen, L.C.; Sis, B.; Halloran, P.F.; Birk, P.E.; Campbell, P.M.; Cascalho, M.; Collins, A.B.; Demetris, A.J.; et al. Banff ’05 Meeting Report: Differential Diagnosis of Chronic Allograft Injury and Elimination of Chronic Allograft Nephropathy (‘CAN’). Am. J. Transpl. 2007, 7, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.; Loupy, A.; Lefaucheur, C.; Roufosse, C.; Glotz, D.; Seron, D.; Nankivell, B.J.; Halloran, P.F.; Colvin, R.B.; Akalin, E.; et al. The Banff 2017 Kidney Meeting Report: Revised Diagnostic Criteria for Chronic Active T Cell–Mediated Rejection, Antibody-Mediated Rejection, and Prospects for Integrative Endpoints for next-Generation Clinical Trials. Am. J. Transpl. 2018, 18, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Afzali, B.; Edozie, F.C.; Fazekasova, H.; Scottà, C.; Mitchell, P.J.; Canavan, J.B.; Kordasti, S.Y.; Chana, P.S.; Ellis, R.; Lord, G.M.; et al. Comparison of Regulatory T Cells in Hemodialysis Patients and Healthy Controls: Implications for Cell Therapy in Transplantation. Clin. J. Am. Soc. Nephrol. 2013, 8, 1396. [Google Scholar] [CrossRef] [Green Version]
- Baran, T.; Boratyńska, M. Immunoregulatory Role of B Lymphocytes in Alloresponse to Kidney Transplant. Adv. Hyg. Exp. Med. 2017, 71, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Whiting, J.F.; Woodward, R.S.; Zavala, E.Y.; Cohen, D.S.; Martin, J.E.; Singer, G.G.; Lowell, J.A.; First, M.R.; Brennan, D.C.; Schnitzler, M.A. Economic Cost of Expanded Criteria Donors in Cadaveric Renal Transplantation: Analysis of Medicare Payments. Transplantation 2000, 70, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Segev, D.L.; Gentry, S.E.; Warren, D.S.; Reeb, B.; Montgomery, R.A. Kidney Paired Donation and Optimizing the Use of Live Donor Organs. JAMA Netw. Open 2005, 293, 1883–1890. [Google Scholar] [CrossRef] [Green Version]
- Roth, A.E.; Sonmez, T.; Unver, M.U. Kidney Exchange. Q. J. Econ. 2004, 119, 457–488. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.H.; Chadban, S.J.; Clayton, P.; Budgeon, C.A.; Murray, K.; Campbell, S.B.; Cohney, S.; Russ, G.R.; McDonald, S.P. Human Leukocyte Antigen Mismatches Associated with Increased Risk of Rejection, Graft Failure, and Death Independent of Initial Immunosuppression in Renal Transplant Recipients. Clin. Transpl. 2012, 26, E428–E437. [Google Scholar] [CrossRef] [PubMed]
- Held, P.J.; Kahan, B.D.; Hunsicker, L.G.; Liska, D.; Wolfe, R.A.; Port, F.K.; Gaylin, D.S.; Garcia, J.R.; Agodoa, L.Y.; Krakauer, H. The Impact of HLA Mismatches on the Survival of First Cadaveric Kidney Transplants. N. Engl. J. Med. 1994, 331, 765–770. [Google Scholar] [CrossRef]
- Fabrizii, V.; Winkelmayer, W.C.; Klauser, R.; Kletzmayr, J.; Säemann, M.D.; Steininger, R.; Kramar, R.; Hörl, W.H.; Kovarik, J. Patient and Graft Survival in Older Kidney Transplant Recipients: Does Age Matter? J. Am. Soc. Nephrol. 2004, 15, 1052–1060. [Google Scholar] [CrossRef]
- Jassal, S.V.; Krahn, M.D.; Naglie, G.; Zaltzman, J.S.; Roscoe, J.M.; Cole, E.H.; Redelmeier, D.A. Kidney Transplantation in the Elderly: A Decision Analysis. J. Am. Soc. Nephrol. 2003, 14, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.; Howard, K.; Chapman, J.R.; Chadban, S.; Cross, N.; Tong, A.; Webster, A.C.; Craig, J.C. Comparative Survival and Economic Benefits of Deceased Donor Kidney Transplantation and Dialysis in People with Varying Ages and Co-Morbidities. PLoS ONE 2012, 7, e29591. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.; Lee, V.; Lim, J.; Chow, W.; Tong, S.; Kee, T.; Madhavan, K. Is Simultaneous Pancreas Kidney Transplant the Most Cost-Effective Strategy for Type 1 Diabetes Patients with Renal Failure? Proc. Singap. Healthc. 2016, 25, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.-H.; Hornberger, J.C. Involving Patients in the Cadaveric Kidney Transplant Allocation Process: A Decision-Theoretic Perspective. Manag. Sci. 1996, 42, 629–641. [Google Scholar] [CrossRef]
- Mutinga, N.; Brennan, D.C.; Schnitzler, M.A. Consequences of Eliminating HLA-B in Deceased Donor Kidney Allocation to Increase Minority Transplantation. Am. J. Transpl. 2005, 5, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R.R.; Manns, B.J.; McLaughlin, K.M. Restricting Cadaveric Kidney Transplantation Based on Age: The Impact on Efficiency and Equity. Transpl. Proc. 2007, 39, 1362–1367. [Google Scholar] [CrossRef]
- Fu, R.; Kim, S.J.; de Oliveira, C.; Coyte, P.C. An Instrumental Variable Approach Confirms That the Duration of Pretransplant Dialysis Has a Negative Impact on the Survival of Kidney Transplant Recipients and Quantifies the Risk. Kidney Int. 2019, 96, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.A.; Thomas, L.; Zaroff, J.G.; Nguyen, J.; Menza, R.; Khush, K.K. Assessment of Heart Transplant Waitlist Time and Pre- and Post-Transplant Failure: A Mixed Methods Approach. Epidemiology 2016, 27, 469–476. [Google Scholar] [CrossRef]
- Abdalkareem, Z.A.; Amir, A.; Al-Betar, M.A.; Ekhan, P.; Hammouri, A.I. Healthcare Scheduling in Optimization Context: A Review. Health Technol. 2021, 11, 445–469. [Google Scholar] [CrossRef]
- Carreras-García, D.; Delgado-Gómez, D.; Baca-García, E.; Artés-Rodriguez, A. A Probabilistic Patient Scheduling Model with Time Variable Slots. Comput. Math. Methods Med. 2020, 2020, 9727096. [Google Scholar] [CrossRef]
- Ma, X.; Sauré, A.; Puterman, M.L.; Taylor, M.; Tyldesley, S. Capacity Planning and Appointment Scheduling for New Patient Oncology Consults. Health Care Manag. Sci. 2016, 19, 347–361. [Google Scholar] [CrossRef]
- Santibáñez, P.; Aristizabal, R.; Puterman, M.L.; Chow, V.S.; Huang, W.; Kollmannsberger, C.; Nordin, T.; Runzer, N.; Tyldesley, S. Operations Research Methods Improve Chemotherapy Patient Appointment Scheduling. Jt. Comm. J. Qual. Patient Saf. 2012, 38, 541-AP2. [Google Scholar] [CrossRef]
- Patrick, J.; Montazeri, A.; Michalowski, W.; Banerjee, D. Automated Pathologist Scheduling at The Ottawa Hospital. INFORMS J. Appl. Anal. 2019, 49, 93–103. [Google Scholar] [CrossRef]
- Santibáñez, P.; Begen, M.; Atkins, D. Surgical Block Scheduling in a System of Hospitals: An Application to Resource and Wait List Management in a British Columbia Health Authority. Health Care Manag. Sci. 2007, 10, 269–282. [Google Scholar] [CrossRef] [PubMed]
- KC, D.S.; Terwiesch, C. Benefits of Surgical Smoothing and Spare Capacity: An Econometric Analysis of Patient Flow. Prod. Oper. Manag. 2017, 26, 1663–1684. [Google Scholar] [CrossRef]
- Fathi, M.; Khazifirooz, M. Kidney-Related Operations Research: A Review. IISE Trans. Healthc. Syst. Eng. 2019, 9, 226–242. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Larsson, T.; Patriksson, M. “Subben’s Checklist” and the Assessment of Articles in Mathematical Optimization / Operation Research: In Memoriam of Subhash C. Narula. Comput. Oper. Res. 2016, 71, 163–164. [Google Scholar] [CrossRef]
- Su, X.; Zenios, S.A. Patient Choice in Kidney Allocation: A Sequential Stochastic Assignment Model. Oper. Res. 2005, 53, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Bandi, C.; Trichakis, N.; Vayanos, P. Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems. Manag. Sci. 2019, 65, 152–187. [Google Scholar] [CrossRef] [Green Version]
- Stanford, D.A.; Lee, J.M.; Chandok, N.; McAlister, V. A Queuing Model to Address Waiting Time Inconsistency in Solid-Organ Transplantation. Oper. Res. Health Care 2014, 3, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Perlman, Y.; Elalouf, A.; Yechiali, U. Dynamic Allocation of Stochastically-Arriving Flexible Resources to Random Streams of Objects with Application to Kidney Cross-Transplantation. Eur. J. Oper. Res. 2018, 265, 169–177. [Google Scholar] [CrossRef]
- Fu, R.; Kundu, A.; Mitsakakis, N.; Elton-Marshall, T.; Wang, W.; Hill, S.; Bondy, S.J.; Hamilton, H.; Selby, P.; Schwartz, R.; et al. Machine Learning Applications in Tobacco Research: A Scoping Review. Tob. Control. 2023, 32, 99–109. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekercioglu, N.; Fu, R. Operations Research to Solve Kidney Allocation Problems: A Systematic Review. Healthcare 2023, 11, 768. https://doi.org/10.3390/healthcare11050768
Sekercioglu N, Fu R. Operations Research to Solve Kidney Allocation Problems: A Systematic Review. Healthcare. 2023; 11(5):768. https://doi.org/10.3390/healthcare11050768
Chicago/Turabian StyleSekercioglu, Nigar, and Rui Fu. 2023. "Operations Research to Solve Kidney Allocation Problems: A Systematic Review" Healthcare 11, no. 5: 768. https://doi.org/10.3390/healthcare11050768
APA StyleSekercioglu, N., & Fu, R. (2023). Operations Research to Solve Kidney Allocation Problems: A Systematic Review. Healthcare, 11(5), 768. https://doi.org/10.3390/healthcare11050768