Association of Self-Reported Sleep Characteristics and Hip Fracture: Observational and Mendelian Randomization Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Sleep Habits, Hip Fracture, and Potential Confounders
2.3. Two-Sample MR Analysis
2.4. Statistical Analyses
3. Results
3.1. Observational Analysis
3.2. Two-Sample MR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calder, S.J.; Anderson, G.H.; Harper, W.M.; Gregg, P.J. Ethnic variation in epidemiology and rehabilitation of hip fracture. BMJ 1994, 309, 1124–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pech-Ciau, B.A.; Lima-Martinez, E.A.; Espinosa-Cruz, G.A.; Pacho-Aguilar, C.R.; Huchim-Lara, O.; Alejos-Gomez, R.A. Hip fracture in the elderly: Epidemiology and costs of care. Acta Ortop. Mex. 2021, 35, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Maggi, S. Epidemiology and social costs of hip fracture. Injury 2018, 49, 1458–1460. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Gong, X.F.; Li, X.P.; Zhang, L.X.; Center, J.R.; Bliuc, D.; Shi, Y.; Wang, H.B.; He, L.; Wu, X.B. Current status and distribution of hip fractures among older adults in China. Osteoporos. Int. 2021, 32, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Lamb, S.E.; Bruce, J.; Hossain, A.; Ji, C.; Longo, R.; Lall, R.; Bojke, C.; Hulme, C.; Withers, E.; Finnegan, S.; et al. Screening and Intervention to Prevent Falls and Fractures in Older People. N. Engl. J. Med. 2020, 383, 1848–1859. [Google Scholar] [CrossRef]
- Zhu, X.N.; Chen, L.; Pan, L.; Zeng, Y.X.; Fu, Q.; Liu, Y.B.; Peng, Y.D.; Wang, Y.F.; You, L. Risk factors of primary and recurrent fractures in postmenopausal osteoporotic Chinese patients: A retrospective analysis study. BMC Womens Health 2022, 22, 465. [Google Scholar] [CrossRef]
- Dewan, N.; MacDermid, J.C.; Grewal, R.; Beattie, K. Risk factors predicting subsequent falls and osteoporotic fractures at 4 years after distal radius fracture-a prospective cohort study. Arch. Osteoporos. 2018, 13, 32. [Google Scholar] [CrossRef]
- Slemenda, C. Prevention of hip fractures: Risk factor modification. Am. J. Med. 1997, 103, 65S–71S; discussion 71S–73S. [Google Scholar] [CrossRef]
- Kawai, M.; Kinoshita, S.; Yamazaki, M.; Yamamoto, K.; Rosen, C.J.; Shimba, S.; Ozono, K.; Michigami, T. Intestinal clock system regulates skeletal homeostasis. JCI Insight 2019, 4, e121798. [Google Scholar] [CrossRef] [Green Version]
- Swanson, C.M.; Kohrt, W.M.; Buxton, O.M.; Everson, C.A.; Wright, K.P.; Orwoll, E.S., Jr.; Shea, S.A. The importance of the circadian system & sleep for bone health. Metabolism 2018, 84, 28–43. [Google Scholar] [PubMed]
- Chen, W.; Lv, H.; Liu, S.; Liu, B.; Zhu, Y.; Chen, X.; Yang, G.; Liu, L.; Zhang, T.; Wang, H.; et al. National incidence of traumatic fractures in China: A retrospective survey of 512 187 individuals. Lancet Glob. Health 2017, 5, e807–e817. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Patel, M.S.; Bradley, A.; Wagner, E.F.; Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 2005, 122, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Takarada, T.; Xu, C.; Ochi, H.; Nakazato, R.; Yamada, D.; Nakamura, S.; Kodama, A.; Shimba, S.; Mieda, M.; Fukasawa, K.; et al. Bone Resorption Is Regulated by Circadian Clock in Osteoblasts. J. Bone Miner. Res. 2017, 32, 872–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samsa, W.E.; Vasanji, A.; Midura, R.J.; Kondratov, R.V. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 2016, 84, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maronde, E.; Schilling, A.F.; Seitz, S.; Schinke, T.; Schmutz, I.; van der Horst, G.; Amling, M.; Albrecht, U. The Clock Genes Period 2 and Cryptochrome 2 Differentially Balance Bone Formation. PLoS ONE 2010, 5, e11527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Hilaire, M.A.; Rahman, S.A.; Gooley, J.J.; Witt-Enderby, P.A.; Lockley, S.W. Relationship between melatonin and bone resorption rhythms in premenopausal women. J. Bone Miner. Metab. 2019, 37, 60–71. [Google Scholar] [CrossRef]
- Feskanich, D.; Hankinson, S.E.; Schernhammer, E.S. Nightshift work and fracture risk: The Nurses’ Health Study. Osteoporos. Int. 2009, 20, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, K.; Bracchi, R.; Hewitt, J.; Routledge, P.A.; Carter, B. Benzodiazepines, Z-drugs and the risk of hip fracture: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0174730. [Google Scholar] [CrossRef] [Green Version]
- Hallstrom, H.; Wolk, A.; Glynn, A.; Michaelsson, K. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos. Int. 2006, 17, 1055–1064. [Google Scholar] [CrossRef]
- Zeng, H.B.; Li, L.K.; Zhang, B.; Xu, X.; Li, G.W.; Chen, M.S. Relationship between sleep pattern and bone mineral density in patients with osteoporotic fracture. Ther. Adv. Endocrinol. 2022, 13, 20420188221106884. [Google Scholar] [CrossRef] [PubMed]
- Li, L.K.; Zeng, H.B.; Zhang, B.; Xu, X.; Chen, M.S.; Li, G.W. Sleep pattern in relation to recurrent osteoporotic fracture in the elderly. Front. Public Health 2022, 10, 2740. [Google Scholar] [CrossRef] [PubMed]
- Ochs-Balcom, H.M.; Hovey, K.M.; Andrews, C.; Cauley, J.A.; Hale, L.; Li, W.J.; Bea, J.W.; Sarto, G.E.; Stefanick, M.L.; Stone, K.L.; et al. Short Sleep Is Associated With Low Bone Mineral Density and Osteoporosis in the Women’s Health Initiative. J. Bone Miner. Res. 2020, 35, 261–268. [Google Scholar] [CrossRef]
- Li, Y.; Sahakian, B.J.; Kang, J.; Langley, C.; Zhang, W.; Xie, C.; Xiang, S.; Yu, J.; Cheng, W.; Feng, J. The brain structure and genetic mechanisms underlying the nonlinear association between sleep duration, cognition and mental health. Nat. Aging 2022, 2, 425–437. [Google Scholar] [CrossRef]
- Koren, D.; Taveras, E.M. Association of sleep disturbances with obesity, insulin resistance and the metabolic syndrome. Metabolism 2018, 84, 67–75. [Google Scholar] [CrossRef]
- Copinschi, G.; Caufriez, A. Sleep and Hormonal Changes in Aging. Endocrin. Metab. Clin. 2013, 42, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99, 1325–1380. [Google Scholar] [CrossRef] [Green Version]
- Cauley, J.A.; Hovey, K.M.; Stone, K.L.; Andrews, C.A.; Barbour, K.E.; Hale, L.; Jackson, R.D.; Johnson, K.C.; LeBlanc, E.S.; Li, W.J.; et al. Characteristics of Self-Reported Sleep and the Risk of Falls and Fractures: The Women’s Health Initiative (WHI). J. Bone Miner. Res. 2019, 34, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.L.; Ewing, S.K.; Lui, L.Y.; Ensrud, K.E.; Ancoli-Israel, S.; Bauer, D.C.; Cauley, J.A.; Hillier, T.A.; Cummings, S.R. Self-reported sleep and nap habits and risk of falls and fractures in older women: The study of osteoporotic fractures. J. Am. Geriatr. Soc. 2006, 54, 1177–1183. [Google Scholar] [CrossRef]
- Qian, Y.; Xia, J.W.; Liu, K.Q.; Xu, L.; Xie, S.Y.; Chen, G.B.; Cong, P.K.; Khederzadeh, S.; Zheng, H.F. Observational and genetic evidence highlight the association of human sleep behaviors with the incidence of fracture. Commun. Biol. 2021, 4, 1339. [Google Scholar] [CrossRef]
- Wang, D.; Ruan, W.; Peng, Y.; Li, W. Sleep duration and the risk of osteoporosis among middle-aged and elderly adults: A dose-response meta-analysis. Osteoporos. Int. 2018, 29, 1689–1695. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, A.H.; Johnell, O.; Nilsson, P.M.; Nilsson, J.A.; Berglund, G.; Akesson, K. Risk factors for hip fractures in a middle-aged population: A study of 33,000 men and women. Osteoporos. Int. 2005, 16, 2185–2194. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.Y.; Redline, S.; Gordon, C.M.; Schernhammer, E.; Curhan, G.C.; Paik, J.M. Self-reported sleep characteristics and risk for incident vertebral and hip fracture in women. Sleep Health 2022, 8, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Richmond, R.C.; Davey Smith, G. Mendelian Randomization: Concepts and Scope. Cold Spring Harb. Perspect. Med. 2022, 12, a040501. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Use of allele scores as instrumental variables for Mendelian randomization. Int. J. Epidemiol. 2013, 42, 1134–1144. [Google Scholar] [CrossRef] [Green Version]
- Richmond, R.C.; Anderson, E.L.; Dashti, H.S.; Jones, S.E.; Lane, J.M.; Strand, L.B.; Brumpton, B.; Rutter, M.K.; Wood, A.R.; Straif, K.; et al. Investigating causal relations between sleep traits and risk of breast cancer in women: Mendelian randomisation study. BMJ 2019, 365, l2327. [Google Scholar] [CrossRef] [Green Version]
- Lane, J.M.; Jones, S.E.; Dashti, H.S.; Wood, A.R.; Aragam, K.G.; van Hees, V.T.; Strand, L.B.; Winsvold, B.S.; Wang, H.; Bowden, J.; et al. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 2019, 51, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.E.; Lane, J.M.; Wood, A.R.; van Hees, V.T.; Tyrrell, J.; Beaumont, R.N.; Jeffries, A.R.; Dashti, H.S.; Hillsdon, M.; Ruth, K.S.; et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 2019, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G.; et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.N.; Ma, X.C.; Wang, W. Relationship between Cognitive Performance and Depressive Symptoms in Chinese Older Adults: The China Health and Retirement Longitudinal Study (CHARLS). J. Affect. Disord. 2021, 281, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhang, X.; Moore, J.B.; Wang, B.; Li, R. Midday Nap Duration and Hypertension among Middle-Aged and Older Chinese Adults: A Nationwide Retrospective Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 3680. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; So, H.C.; Ai, S.; Wang, N.; Tan, X.; Wing, Y.K. Association of Sleep Traits and Heel Bone Mineral Density: Observational and Mendelian Randomization Studies. J. Bone Miner. Res. 2021, 36, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J. Sleep Health: Can We Define It? Does It Matter? Sleep 2014, 37, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, S.; Shab-bidar, S.; Alizadeh, S.; Djafarian, K. Association between sleep duration and osteoporosis risk in middle-aged and elderly women: A systematic review and meta-analysis of observational studies. Metab. Clin. Exp. 2017, 69, 199–206. [Google Scholar] [CrossRef]
- Swanson, C.M. Sleep disruptions and bone health: What do we know so far? Curr. Opin. Endocrinol. 2021, 28, 348–353. [Google Scholar] [CrossRef]
- Tomiyama, H.; Okazaki, R.; Inoue, D.; Ochiai, H.; Shiina, K.; Takata, Y.; Hashimoto, H.; Yamashina, A. Link between obstructive sleep apnea and increased bone resorption in men. Osteoporos. Int. 2008, 19, 1185–1192. [Google Scholar] [CrossRef]
- Meyer, N.; Harvey, A.G.; Lockley, S.W.; Dijk, D.J. Circadian rhythms and disorders of the timing of sleep. Lancet 2022, 400, 1061–1078. [Google Scholar] [CrossRef]
- Dowd, J.B.; Goldman, N.; Weinstein, M. Sleep duration, sleep quality, and biomarkers of inflammation in a Taiwanese population. Ann. Epidemiol. 2011, 21, 799–806. [Google Scholar] [CrossRef] [Green Version]
Variables | Sleep Duration, Hours/Night | Midday Napping, Minutes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<5 (n = 1821) | 5–6 (n = 1441) | 6–7 (n = 2305) | 7–8 (n = 2117) | 8–9 (n = 2357) | >9 (n = 888) | p-Value a | 0 (n = 5123) | 1–30 (n = 1826) | 31–60 (n = 2399) | 61–90 (n = 332) | >90 (n = 1249) | p-Value a | |
Age (mean ± SD) | 61.65 ± 9.37 | 59.93 ± 8.70 | 58.92 ± 8.84 | 57.76 ± 8.37 | 58.54 ± 9.02 | 59.79 ± 9.68 | <0.0001 | 58.93 ± 8.83 | 59.49 ± 8.88 | 59.39 ± 9.25 | 59.41 ± 8.70 | 60.11 ± 9.53 | 0.0006 |
Male (n,%) | 699 (38.4) | 666 (46.2) | 1146 (49.7) | 1024 (48.4) | 1204 (51.1) | 430 (48.4) | <0.0001 | 2070 (40.4) | 847 (46.4) | 1336 (55.7) | 204 (61.4) | 712 (57.0) | <0.0001 |
Hypertension (n,%) | 462 (25.4) | 354 (24.6) | 526 (22.8) | 494 (23.3) | 524 (22.2) | 206 (23.2) | 0.1869 | 1038 (20.3) | 494 (27.1) | 615 (25.6) | 85 (25.6) | 334 (26.7) | <0.0001 |
Dyslipidemia (n,%) | 161 (8.8) | 142 (9.9) | 211 (9.2) | 173 (8.2) | 206 (8.7) | 65 (7.3) | 0.2989 | 340 (6.6) | 207 (11.3) | 251 (10.5) | 42 (12.7) | 118 (9.4) | <0.0001 |
Diabetes or High Blood Sugar (n,%) | 103 (5.6) | 94 (6.5) | 122 (5.3) | 136 (6.4) | 103 (4.4) | 41 (4.6) | 0.0138 | 213 (4.2) | 136 (7.4) | 163 (6.8) | 21 (6.3) | 66 (5.3) | <0.0001 |
Smoke (n,%) | 642 (35.3) | 561 (38.9) | 945 (41.0) | 882 (41.7) | 958 (40.6) | 346 (39.0) | 0.0006 | 1817 (35.5) | 673 (36.9) | 1068 (44.5) | 178 (53.6) | 598 (47.9) | <0.0001 |
Drinking alcoholic beverages (n,%) | 510 (28.0) | 472 (32.8) | 804 (34.9) | 729 (34.4) | 799 (33.9) | 269 (30.3) | <0.0001 | 1463 (28.6) | 599 (32.8) | 894 (37.3) | 143 (43.1) | 484 (38.8) | <0.0001 |
BMI (n,%) | - | 0.5812 | - | - | - | - | - | 0.5154 | |||||
<18.5 | 177 (9.7) | 94 (6.5) | 141 (6.1) | 104 (4.9) | 121 (5.1) | 58 (6.5) | - | 371 (7.2) | 108 (5.9) | 137 (5.7) | 18 (5.4) | 61 (4.9) | - |
18.5–24 | 989 (54.3) | 776 (53.9) | 1172 (50.8) | 1060 (50.1) | 1238 (52.5) | 494 (55.6) | 2823 (55.1) | 913 (50.0) | 1211 (50.5) | 150 (45.2) | 632 (50.6) | - | |
24–28 | 438 (24.1) | 404 (28.0) | 683 (29.6) | 661 (31.2) | 695 (29.5) | 228 (25.7) | 1333 (26.0) | 546 (29.9) | 734 (30.6) | 124 (37.3) | 372 (29.8) | - | |
>28 | 164 (9.0) | 144 (10.0) | 282 (12.2) | 270 (12.8) | 272 (11.5) | 91 (10.2) | 512 (10.0) | 222 (12.2) | 289 (12.0) | 37 (11.1) | 163 (13.1) | - |
Variable | Cases/Total | Not Adjusted OR (95% CI) | Adjusted OR (95% CI) a |
---|---|---|---|
Sleep duration, hours/night | |||
<5.0 | 55/1821 | 1.62 (1.07–2.44) | 1.52 (1.00–2.32) |
5.0–6.0 | 21/1441 | 0.80 (0.47–1.36) | 0.79 (0.46–1.34) |
6.0–7.0 | 43/2305 | 1.00 (ref) | 1.00 (ref) |
7.0–8.0 | 34/2117 | 0.88 (0.56–1.39) | 0.92 (0.58–1.45) |
8.0–9.0 | 53/2357 | 1.21 (0.80–1.82) | 1.26 (0.84–1.91) |
>9.0 | 18/888 | 0.99 (0.55–1.77) | 0.99 (0.55–1.78) |
Midday napping, minutes | |||
0 | 105/5123 | 1.22 (0.84–1.78) | 1.27 (0.87–1.85) |
1–30 | 45/1826 | 1.50 (0.97–2.32) | 1.46 (0.94–2.27) |
31–60 | 40/2399 | 1.00 (ref) | 1.00 (ref) |
61–90 | 3/332 | 0.55 (0.17–1.78) | 0.56 (0.17–1.82) |
>90 | 31/1249 | 1.49 (0.92–2.42) | 1.49 (0.92–2.41) |
Variable | Cases/Total | Not Adjusted OR (95% CI) | Adjusted OR (95% CI) a |
---|---|---|---|
My sleep was restless, days/week | |||
<1 | 91/5328 | 1.00 (ref) | 1.00 (ref) |
1–2 | 33/1777 | 1.10 (0.73–1.65) | 1.09 (0.72–1.64) |
3–4 | 42/1634 | 1.49 (1.02–2.17) | 1.44 (0.98–2.11) |
5–7 | 58/2130 | 1.62 (1.16–2.28) | 1.55 (1.10–2.19) |
Difficulty falling asleep or waking up | |||
None | 26/1471 | 1.00 (ref) | 1.00 (ref) |
Mild | 10/413 | 1.50 (0.71–3.16) | 1.59 (0.75–3.38) |
Moderate | 7/338 | 1.27 (0.54–2.97) | 1.34 (0.57–3.16) |
Severe | 6/207 | 1.80 (0.72–4.45) | 1.83 (0.73–4.60) |
Extreme | 0/47 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-F.; Luo, Y.-F.; Mhalgi, A.; Ren, W.-Y.; Wu, L.-F. Association of Self-Reported Sleep Characteristics and Hip Fracture: Observational and Mendelian Randomization Studies. Healthcare 2023, 11, 926. https://doi.org/10.3390/healthcare11070926
Wang Y-F, Luo Y-F, Mhalgi A, Ren W-Y, Wu L-F. Association of Self-Reported Sleep Characteristics and Hip Fracture: Observational and Mendelian Randomization Studies. Healthcare. 2023; 11(7):926. https://doi.org/10.3390/healthcare11070926
Chicago/Turabian StyleWang, Yan-Fei, Yu-Feng Luo, Asmi Mhalgi, Wen-Yan Ren, and Long-Fei Wu. 2023. "Association of Self-Reported Sleep Characteristics and Hip Fracture: Observational and Mendelian Randomization Studies" Healthcare 11, no. 7: 926. https://doi.org/10.3390/healthcare11070926
APA StyleWang, Y.-F., Luo, Y.-F., Mhalgi, A., Ren, W.-Y., & Wu, L.-F. (2023). Association of Self-Reported Sleep Characteristics and Hip Fracture: Observational and Mendelian Randomization Studies. Healthcare, 11(7), 926. https://doi.org/10.3390/healthcare11070926