Healthy Lifestyle Related to Executive Functions in Chilean University Students: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.1.1. Cognitive Battery
2.1.2. Lifestyle
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cristofori, I.; Cohen-Zimerman, S.; Grafman, J. Chapter 11—Executive functions. In Handbook of Clinical Neurology; D’Esposito, M., Grafman, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 163, pp. 197–219. [Google Scholar]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Salehinejad, M.A.; Ghanavati, E.; Rashid, M.H.A.; Nitsche, M.A. Hot and cold executive functions in the brain: A prefrontal-cingular network. Brain Neurosci. Adv. 2021, 5, 23982128211007769. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Galarza, C.; Acosta-Rodas, P.; Bolaños-Pasquel, M.; Lepe-Martínez, N. The role of executive functions in academic performance and behaviour of university students. J. Appl. Res. High. Educ. 2020, 12, 444–455. [Google Scholar] [CrossRef]
- Ramos-Galarza, C.; Ramos, V.; Del Valle, M.; Lepe-Martínez, N.; Cruz-Cárdenas, J.; Acosta-Rodas, P.; Bolaños-Pasquel, M. Executive functions scale for university students: UEF-1. Front. Psychol. 2023, 14, 1192555. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, H.J.; Brunsdon, V.E.A.; Bradford, E.E.F. The developmental trajectories of executive function from adolescence to old age. Sci. Rep. 2021, 11, 1382. [Google Scholar] [CrossRef] [PubMed]
- Salling, Z.N.; Szymkowicz, S.M.; Dotson, V.M. 58 Hippocampal Subregions Predict Executive Function Across the Adult Lifespan. J. Int. Neuropsychol. Soc. 2023, 29, 466–467. [Google Scholar] [CrossRef]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Salas-Gomez, D.; Fernandez-Gorgojo, M.; Pozueta, A.; Diaz-Ceballos, I.; Lamarain, M.; Perez, C.; Kazimierczak, M.; Sanchez-Juan, P. Physical activity is associated with better executive function in university students. Front. Hum. Neurosci. 2020, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.M.; Ávila, B.M.; Costa, D.M.d.; Cardoso, C.O.; Fonseca, R.P. Is it possible to promote executive functions in university students? Evidence of effectiveness of the πFEx-Academics. Appl. Neuropsychol. Adult 2022, 1–9. [Google Scholar] [CrossRef]
- Kolovelonis, A.; Papastergiou, M.; Samara, E.; Goudas, M. Acute effects of exergaming on students’ executive functions and situational interest in elementary physical education. Int. J. Environ. Res. Public Health 2023, 20, 1902. [Google Scholar] [CrossRef]
- Stark, M.D.; Lindo, E.J. Executive functioning supports for college students with an autism Spectrum disorder. Rev. J. Autism Dev. Disord. 2023, 10, 604–614. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Shan, H.D.; Zhang, R.T.; Lui, S.S.; Yang, H.X.; Cheung, E.F.; Chan, R.C. Network analysis of executive function, emotion, and social anhedonia. PsyCh J. 2022, 11, 232–234. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Cai, K.; Dong, X.; Xiong, X.; Liu, Z.; Chen, A. Relationship between cardiorespiratory fitness and executive function in young adults: Mediating effects of gray matter volume. Brain Sci. 2022, 12, 1441. [Google Scholar] [CrossRef]
- Meng, F.; Xie, C.; Qiu, F.; Geng, J.; Li, F. Effects of physical activity level on attentional networks in young adults. Int. J. Environ. Res. Public Health 2022, 19, 5374. [Google Scholar] [CrossRef]
- Sperduti, M.; Makowski, D.; Arcangeli, M.; Wantzen, P.; Zalla, T.; Lemaire, S.; Dokic, J.; Pelletier, J.; Piolino, P. The distinctive role of executive functions in implicit emotion regulation. Acta Psychol. 2017, 173, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Hilton, D.C.; Canu, W.H.; Jarrett, M.A. The importance of executive functioning for social skills in college students: A relative weights analysis. J. Am. Coll. Health 2022, 1–8. [Google Scholar] [CrossRef]
- Baars, M.A.; Nije Bijvank, M.; Tonnaer, G.H.; Jolles, J. Self-report measures of executive functioning are a determinant of academic performance in first-year students at a university of applied sciences. Front. Psychol. 2015, 6, 1131. [Google Scholar] [CrossRef] [PubMed]
- Bennasar-Veny, M.; Yañez, A.M.; Pericas, J.; Ballester, L.; Fernandez-Dominguez, J.C.; Tauler, P.; Aguilo, A. Cluster analysis of health-related lifestyles in university students. Int. J. Environ. Res. Public Health 2020, 17, 1776. [Google Scholar] [CrossRef]
- Lönnberg, L.; Ekblom-Bak, E.; Damberg, M. Improved unhealthy lifestyle habits in patients with high cardiovascular risk: Results from a structured lifestyle programme in primary care. Upsala J. Med. Sci. 2019, 124, 94–104. [Google Scholar] [CrossRef]
- Carballo-Fazanes, A.; Rico-Díaz, J.; Barcala-Furelos, R.; Rey, E.; Rodríguez-Fernández, J.E.; Varela-Casal, C.; Abelairas-Gómez, C. Physical Activity Habits and Determinants, Sedentary Behaviour and Lifestyle in University Students. Int. J. Environ. Res. Public Health 2020, 17, 3272. [Google Scholar] [CrossRef]
- El Ansari, W.; Stock, C.; John, J.; Deeny, P.; Phillips, C.; Snelgrove, S.; Adetunji, H.; Hu, X.; Parke, S.; Stoate, M. Health promoting behaviours and lifestyle characteristics of students at seven universities in the UK. Cent. Eur. J. Public Health 2011, 19, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Assaf, I.; Brieteh, F.; Tfaily, M.; El-Baida, M.; Kadry, S.; Balusamy, B. Students university healthy lifestyle practice: Quantitative analysis. Health Inf. Sci. Syst. 2019, 7, 7. [Google Scholar] [CrossRef]
- Dodd, L.J.; Al-Nakeeb, Y.; Nevill, A.; Forshaw, M.J. Lifestyle risk factors of students: A cluster analytical approach. Prev. Med. 2010, 51, 73–77. [Google Scholar] [CrossRef]
- Hultgren, B.A.; Turrisi, R.; Cleveland, M.J.; Mallett, K.A.; Reavy, R.; Larimer, M.E.; Geisner, I.M.; Hospital, M.M. Transitions in drinking behaviors across the college years: A latent transition analysis. Addict. Behav. 2019, 92, 108–114. [Google Scholar] [CrossRef]
- Al-Awwad, N.J.; Al-Sayyed, H.F.; Zeinah, Z.A.; Tayyem, R.F. Dietary and lifestyle habits among university students at different academic years. Clin. Nutr. ESPEN 2021, 44, 236–242. [Google Scholar] [CrossRef]
- Chao, D.-P. Health-promoting lifestyle and influencing factors among students from different types of universities in Taiwan. Taiwan Gong Gong Wei Sheng Za Zhi 2022, 41, 312–330. [Google Scholar]
- Davoren, M.P.; Demant, J.; Shiely, F.; Perry, I.J. Alcohol consumption among university students in Ireland and the United Kingdom from 2002 to 2014: A systematic review. BMC Public Health 2016, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- Algahtani, F.D. Healthy Lifestyle among Ha’il University Students, Saudi Arabia. Int. J. Pharm. Res. Allied Sci. 2020, 9, 160–167. [Google Scholar]
- Pilato, I.B.; Beezhold, B.; Radnitz, C. Diet and lifestyle factors associated with cognitive performance in college students. J. Am. Coll. Health 2022, 70, 2230–2236. [Google Scholar] [CrossRef]
- Serra, M.C.; Dondero, K.R.; Larkins, D.; Burns, A.; Addison, O. Healthy lifestyle and cognition: Interaction between diet and physical activity. Curr. Nutr. Rep. 2020, 9, 64–74. [Google Scholar] [CrossRef]
- Li, S.; Guo, J.; Zheng, K.; Shi, M.; Huang, T. Is sedentary behavior associated with executive function in children and adolescents? A systematic review. Front. Public Health 2022, 10, 832845. [Google Scholar] [CrossRef]
- Tee, J.Y.H.; Gan, W.Y.; Tan, K.-A.; Chin, Y.S. Obesity and unhealthy lifestyle associated with poor executive function among Malaysian adolescents. PLoS ONE 2018, 13, e0195934. [Google Scholar] [CrossRef]
- Chávez-Hernández, M.E. Correlation of executive functions, academic achievement, eating behavior and eating habits in university students of Mexico City. Front. Educ. 2023, 8, 1268302. [Google Scholar] [CrossRef]
- Lin, J.; Wang, K.; Chen, Z.; Fan, X.; Shen, L.; Wang, Y.; Yang, Y.; Huang, T. Associations between objectively measured physical activity and executive functioning in young adults. Percept. Mot. Ski. 2018, 125, 278–288. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Gabr, S.A.; Iqbal, Z.A.; Al-Eisa, E. Association of physical activity, vitamin E levels, and total antioxidant capacity with academic performance and executive functions of adolescents. BMC Pediatr. 2019, 19, 156. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, K.; Fu, J.; Li, Z.; Liu, D.; Tian, X.; Yang, J.; Zhang, Q. Impact of physical activity on executive functions: A moderated mediation model. Front. Psychol. 2024, 14, 1226667. [Google Scholar] [CrossRef] [PubMed]
- Di Liegro, C.M.; Schiera, G.; Proia, P.; Di Liegro, I. Physical activity and brain health. Genes 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Padilla, C.; Mayas, J.; Ballesteros, S.; Andrés, P. The role of chronic physical exercise and selective attention at encoding on implicit and explicit memory. Memory 2017, 25, 1026–1035. [Google Scholar] [CrossRef]
- Sámano, R.; Hernández-Chávez, C.; Chico-Barba, G.; Córdova-Barrios, A.; Morales-del-Olmo, M.; Sordo-Figuero, H.; Hernández, M.; Merino-Palacios, C.; Cervantes-Zamora, L.; Martínez-Rojano, H. Breakfast nutritional quality and cognitive interference in university students from Mexico city. Int. J. Environ. Res. Public Health 2019, 16, 2671. [Google Scholar] [CrossRef]
- Magnon, V.; Vallet, G.T.; Dutheil, F.; Auxiette, C. Sedentary lifestyle matters as past sedentariness, not current sedentariness, predicts cognitive inhibition performance among college students: An exploratory study. Int. J. Environ. Res. Public Health 2021, 18, 7649. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Nooe, A. Executive function influences sedentary behavior: A longitudinal study. Health Promot. Perspect. 2016, 6, 180. [Google Scholar] [CrossRef] [PubMed]
- Felez-Nobrega, M.; Hillman, C.H.; Dowd, K.P.; Cirera, E.; Puig-Ribera, A. ActivPAL™ determined sedentary behaviour, physical activity and academic achievement in college students. J. Sports Sci. 2018, 36, 2311–2316. [Google Scholar] [CrossRef] [PubMed]
- Mardones, L.; Muñoz, M.; Esparza, J.; Troncoso-Pantoja, C. Hábitos alimentarios en estudiantes universitarios de la Región de Bío-Bío, Chile, 2017. Perspect. En Nutr. Humana 2021, 23, 27–38. [Google Scholar] [CrossRef]
- Zacarías, I.; Olivares, S. Alimentación saludable. In Nutrición en el Ciclo Vital; Editorial Mediterráneo: Santiago, Chile, 2014; pp. 431–440. [Google Scholar]
- Caamano-Navarrete, F.; Latorre-Roman, P.A.; Parraga-Montilla, J.A.; Alvarez, C.; Delgado-Floody, P. Association between creativity and memory with cardiorespiratory fitness and lifestyle among Chilean schoolchildren. Nutrients 2021, 13, 1799. [Google Scholar] [CrossRef] [PubMed]
- Balboa-Castillo, T.; Muñoz, S.; Serón, P.; Andrade-Mayorga, O.; Lavados-Romo, P.; Aguilar-Farias, N. Validity and reliability of the international physical activity questionnaire short form in Chilean adults. PLoS ONE 2023, 18, e0291604. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Ezzatvar, Y.; Ramírez-Vélez, R.; López-Gil, J.F.; Izquierdo, M. Trajectories of 24-h movement guidelines from middle adolescence to adulthood on depression and suicidal ideation: A 22-year follow-up study. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; Roman-Viñas, B.; Aznar, S.; Tremblay, M.S. Meeting 24-h movement guidelines: Prevalence, correlates, and associations with socioemotional behavior in Spanish minors. Scand. J. Med. Sci. Sports 2022, 32, 881–891. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; Firth, J.; García-Hermoso, A. Is meeting with the 24-h movement recommendations linked with suicidality? Results from a nationwide sample of 44,734 U.S. adolescents. J. Affect. Disord. 2024, 349, 617–624. [Google Scholar] [CrossRef]
- Franklin, P.; Tsujimoto, K.C.; Lewis, M.E.; Tekok-Kilic, A.; Frijters, J.C. Sex differences in self-regulatory executive functions are amplified by trait anxiety: The case of students at risk for academic failure. Personal. Individ. Differ. 2018, 129, 131–137. [Google Scholar] [CrossRef]
- Vilca, L.W. The moderating role of sex in the relationship between executive functions and academic procrastination in undergraduate students. Front. Psychol. 2022, 13, 928425. [Google Scholar] [CrossRef]
- Ismail, S.N.; Azhan, M.A.N.; Omar, S.S.S.; Miswan, M.S.; Zainuddin, N.F. Differences of Cognitive Function Between Genders Among University Students. Malays. J. Sport Sci. Recreat. 2024, 20, 1–7. [Google Scholar]
- Ubago-Jiménez, J.L.; Zurita-Ortega, F.; San Román-Mata, S.; Puertas-Molero, P.; González-Valero, G. Impact of Physical Activity Practice and Adherence to the Mediterranean Diet in Relation to Multiple Intelligences among University Students. Nutrients 2020, 12, 2630. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Porri, D.; De Giuseppe, R.; Kalmpourtzidou, A.; Salvatore, F.P.; El Ghoch, M.; Itani, L.; Kreidieh, D.; Brytek-Matera, A.; Pocol, C.B. How healthy are health-related behaviors in university students: The HOLISTic study. Nutrients 2021, 13, 675. [Google Scholar] [CrossRef] [PubMed]
- Benaich, S.; Mehdad, S.; Andaloussi, Z.; Boutayeb, S.; Alamy, M.; Aguenaou, H.; Taghzouti, K. Weight status, dietary habits, physical activity, screen time and sleep duration among university students. Nutr. Health 2021, 27, 69–78. [Google Scholar] [CrossRef]
- Wierenga, L.M.; Bos, M.G.; van Rossenberg, F.; Crone, E.A. Sex effects on development of brain structure and executive functions: Greater variance than mean effects. J. Cogn. Neurosci. 2019, 31, 730–753. [Google Scholar] [CrossRef] [PubMed]
- Favieri, F.; Forte, G.; Pazzaglia, M.; Chen, E.Y.; Casagrande, M. High-level executive functions: A possible role of sex and weight condition in planning and decision-making performances. Brain Sci. 2022, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Voyer, D.; Saint Aubin, J.; Altman, K.; Gallant, G. Sex differences in verbal working memory: A systematic review and meta-analysis. Psychol. Bull. 2021, 147, 352. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.C.; Laird, A.R.; Robinson, J.L. Gender differences in working memory networks: A BrainMap meta-analysis. Biol. Psychol. 2014, 102, 18–29. [Google Scholar] [CrossRef]
- Stoet, G. Sex differences in the Simon task help to interpret sex differences in selective attention. Psychol. Res. 2017, 81, 571–581. [Google Scholar] [CrossRef]
- Di, S.; Ma, C.; Wu, X.; Lei, L. Gender differences in behavioral inhibitory control under evoked acute stress: An event-related potential study. Front. Psychol. 2023, 14, 1107935. [Google Scholar] [CrossRef]
- He, W.-J.; Wong, W.-C. Gender differences in the distribution of creativity scores: Domain-specific patterns in divergent thinking and creative problem solving. Front. Psychol. 2021, 12, 626911. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.P.; DeVille, N.V.; Elliott, E.G.; Schiff, J.E.; Wilt, G.E.; Hart, J.E.; James, P. Associations between nature exposure and health: A review of the evidence. Int. J. Environ. Res. Public Health 2021, 18, 4790. [Google Scholar] [CrossRef] [PubMed]
- Galle, S.A.; Liu, J.; Bonnechère, B.; Amin, N.; Milders, M.M.; Deijen, J.B.; Scherder, E.J.; Drent, M.L.; Voortman, T.; Ikram, M.A. The long-term relation between physical activity and executive function in the Rotterdam Study. Eur. J. Epidemiol. 2023, 38, 71–81. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Liu, J.; Wang, D.; Fu, Y.; Liu, R.; Ma, X. Cognitive performance in short sleep young adults with different physical activity levels: A cross-sectional fNIRS study. Brain Sci. 2023, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Gürdere, C.; Strobach, T.; Pastore, M.; Pfeffer, I. Do executive functions predict physical activity behavior? A meta-analysis. BMC Psychol. 2023, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Nakagawa, S. Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res. Rev. 2023, 86, 101868. [Google Scholar] [CrossRef]
- Haverkamp, B.F.; Wiersma, R.; Vertessen, K.; van Ewijk, H.; Oosterlaan, J.; Hartman, E. Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. J. Sports Sci. 2020, 38, 2637–2660. [Google Scholar] [CrossRef] [PubMed]
- Escolano-Perez, E.; Bestue, M. Academic achievement in Spanish secondary school students: The inter-related role of executive functions, physical activity and gender. Int. J. Environ. Res. Public Health 2021, 18, 1816. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.S.; Vimalan, V.; Padmanabhan, P.; Gulyás, B. An overview on cognitive function enhancement through physical exercises. Brain Sci. 2021, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Antunes, H.K.; Santos, R.F.; Cassilhas, R.; Santos, R.V.; Bueno, O.F.; Mello, M.T.d. Reviewing on physical exercise and the cognitive function. Rev. Bras. De Med. Do Esporte 2006, 12, 108–114. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, P.; Xin, X.; Li, S.; Wang, J.; Zhao, J.; Wang, X. The relationship between physical activity and trait anxiety in college students: The mediating role of executive function. Front. Hum. Neurosci. 2022, 16, 1009540. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, K.; Takeda, Y. Regular physical activity improves executive function during task switching in young adults. Int. J. Psychophysiol. 2010, 75, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Doucette, M.M.; Sánchez Escudero, J.P.; Rhodes, R.E.; Garcia-Barrera, M.A. Associations of physical activity and history of sports participation with subjective and objective measures of executive functioning in university students. J. Am. Coll. Health 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Q.; Zhao, W.; Herold, F.; Cheval, B.; Kong, Z.; Li, J.; Mueller, N.; Kramer, A.F.; Cui, J. Physical activity and inhibitory control: The mediating role of sleep quality and sleep efficiency. Brain Sci. 2021, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Qi, S.; Huang, G.; Xu, Z. Effect of acute aerobic exercise on inhibitory control of college students with smartphone addiction. Evid. -Based Complement. Altern. Med. 2021, 2021, 5530126. [Google Scholar] [CrossRef] [PubMed]
- Lambourne, K. The relationship between working memory capacity and physical activity rates in young adults. J. Sports Sci. Med. 2006, 5, 149. [Google Scholar] [PubMed]
- Zhao, Q.; Wang, X.; Li, S.-F.; Wang, P.; Wang, X.; Xin, X.; Yin, S.-W.; Yin, Z.-S.; Mao, L.-J. Relationship between physical activity and specific working memory indicators of depressive symptoms in university students. World J. Psychiatry 2024, 14, 148. [Google Scholar] [CrossRef] [PubMed]
- Mou, H.; Tian, S.; Yuan, Y.; Sun, D.; Qiu, F. Effect of acute exercise on cognitive flexibility: Role of baseline cognitive performance. Ment. Health Phys. Act. 2023, 25, 100522. [Google Scholar] [CrossRef]
- Barenberg, J.; Berse, T.; Dutke, S. Executive functions in learning processes: Do they benefit from physical activity? Educ. Res. Rev. 2011, 6, 208–222. [Google Scholar] [CrossRef]
- Caamaño-Navarrete, F.; Latorre-Román, P.Á.; Párraga-Montilla, J.; Jerez-Mayorga, D.; Delgado-Floody, P. Selective attention and concentration are related to lifestyle in chilean schoolchildren. Children 2021, 8, 856. [Google Scholar] [CrossRef]
- Festa, F.; Medori, S.; Macrì, M. Move your body, boost your brain: The positive impact of physical activity on cognition across all age groups. Biomedicines 2023, 11, 1765. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bakulski, K.M.; Paulson, H.L.; Albin, R.L.; Park, S.K. Associations of healthy lifestyle and socioeconomic status with cognitive function in US older adults. Sci. Rep. 2023, 13, 7513. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.H.; Kramer, A.F. Physical activity, brain, and cognition. Curr. Opin. Behav. Sci. 2015, 4, 27–32. [Google Scholar] [CrossRef]
- Li, C.-P.; Liu, X.-H.; Wang, X.-J.; He, L.-P. Trait creativity, personality, and physical activity: A structural equation model. Ann. Palliat. Med. 2023, 12, 14149. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Vicedo, J.C.; León, M.P.; González-Fernández, F.T.; Prieto-Ayuso, A. Effects of physical activity breaks on cognitive function in undergraduate students: A pilot study. Cogent Soc. Sci. 2024, 10, 2326692. [Google Scholar] [CrossRef]
- Muñoz Ospina, B.; Cadavid-Ruiz, N. The effect of aerobic exercise on serum brain-derived neurotrophic factor (BDNF) and executive function in college students. Ment. Health Phys. Act. 2024, 26, 100578. [Google Scholar] [CrossRef]
- Yu, M.; Han, X.; Wang, X.; Guan, R. Effects of Physical Exercise on Executive Functions among College Students in China: Exploring the Influence of Exercise Intensity and Duration. Behav. Sci. 2023, 13, 987. [Google Scholar] [CrossRef] [PubMed]
- Zavecz, Z.; Nagy, T.; Galkó, A.; Nemeth, D.; Janacsek, K. The relationship between subjective sleep quality and cognitive performance in healthy young adults: Evidence from three empirical studies. Sci. Rep. 2020, 10, 4855. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Scarmeas, N. Dietary patterns in Alzheimer’s disease and cognitive aging. Curr. Alzheimer Res. 2011, 8, 510–519. [Google Scholar] [CrossRef]
- Reuter, P.R.; Forster, B.L.; Brister, S.R. The influence of eating habits on the academic performance of university students. J. Am. Coll. Health 2021, 69, 921–927. [Google Scholar] [CrossRef]
- Shakersain, B.; Rizzuto, D.; Wang, H.-X.; Faxén-Irving, G.; Prinelli, F.; Fratiglioni, L.; Xu, W. An active lifestyle reinforces the effect of a healthy diet on cognitive function: A population-based longitudinal study. Nutrients 2018, 10, 1297. [Google Scholar] [CrossRef] [PubMed]
Total (n = 150) | Female (n = 94) | Male (n = 56) | p-Value | F-Value | |
---|---|---|---|---|---|
Age (y) | 21.61 ± 3.08 | 21.28 ± 3.15 | 22.18 ± 2.90 | 0.083 | 3.05 |
Cognitive outcomes | |||||
Attention (score) | 471.1 ± 124.40 | 450.45 ± 123.84 | 506.62 ± 118.31 | 0.011 | 6.72 |
Coordination (score) | 362.61 ± 145.54 | 346.64 ± 153.04 | 390.08 ± 128.49 | 0.093 | 2.86 |
Reasoning (score) | 397.13 ± 162.12 | 384.91 ± 169.76 | 418.16 ± 147.34 | 0.250 | 1.33 |
Memory (score) | 294.19 ± 158.79 | 270.34 ± 146.20 | 335.22 ± 172.26 | 0.021 | 5.45 |
Perception (score) | 343.91 ± 98.28 | 335.94 ± 97.26 | 357.62 ± 99.49 | 0.216 | 1.54 |
Inhibition (score) | 406.90 ± 233.12 | 410.92 ± 241.62 | 400.00 ± 219.91 | 0.793 | 0.07 |
Working memory (score) | 239.68 ± 191.84 | 213.56 ± 171.72 | 284.62 ± 216.75 | 0.037 | 4.45 |
Cognitive flexibility (score) | 426.13 ± 235.00 | 410.01 ± 241.97 | 453.86 ± 222.14 | 0.296 | 1.10 |
Lifestyle parameters | |||||
Diet quality (score) | 7.37 ± 3.17 | 6.96 ± 3.00 | 8.07 ± 3.36 | 0.037 | 4.41 |
Physical activity (h/week) | 2.01 ± 1.76 | 1.66 ± 1.38 | 2.61 ± 2.14 | 0.001 | 10.83 |
Screen time (h/day) | 2.63 ± 0.78 | 2.51 ± 0.71 | 2.84 ± 0.84 | 0.012 | 6.44 |
Sleep (h/day) | 6.89 ± 1.52 | 6.93 ± 1.61 | 6.81 ± 1.36 | 0.036 | 0.23 |
Outcomes | Attention | Coordination | ||||
---|---|---|---|---|---|---|
Beta (95% CI) | p-Value | Standardized Beta (SE) | Beta (95% CI) | p-Value | Standardized Beta (SE) | |
Lifestyle parameters | ||||||
Diet score | −5.74 (−12.35; 0.86) | p = 0.088 | −0.14 (3.34) | −6.40 (−14.44; 1.62) | p = 0.117 | −0.13 (4.06) |
Physical activity (h/day) | 24.34 (12.46; 36.22) | p = 0.001 | 0.35 (6.00) | 15.06 (0.62; 29.50) | p = 0.041 | 0.18 (7.29) |
Screen time (h/day) | 0.48 (−25.34; 26.31) | p = 0.971 | −0.03 (13.23) | 12.53 (−18.85; 43.93) | p = 0.431 | 0.06 (15.86) |
Sleep duration (h/day) | −3.41 (−16.67; 9.83) | p = 0.611 | −0.04 (6.70) | −3.21 (−19.32; 12.89) | p = 0.694 | −0.03 (8.14) |
Outcomes | Reasoning | Perception | ||||
---|---|---|---|---|---|---|
Beta (95% CI) | p-Value | Standardized Beta (SE) | Beta (95% CI) | p-Value | Standardized Beta (SE) | |
Lifestyle parameters | ||||||
Diet score | −8.91 (−17.72; −0.11) | p = 0.047 | −0.17 (4.45) | 1.32 (−4.06; 6.70) | p = 0.628 | 0.04 (2.72) |
Physical activity (h/day) | 20.34 (4.52; 36.17) | p = 0.012 | 0.22 (8.00) | 13.81 (4.14; 23.49) | p = 0.005 | 0.25 (4.89) |
Screen time (h/day) | 12.86 (−21.54; 47.27) | p = 0.461 | 0.06 (17.39) | 1.87 (−19.15; 22.91) | p = 0.860 | 0.01 (10.63) |
Sleep duration (h/day) | −10.12 (−27.78; 7.53) | p = 0.259 | −0.09 (8.92) | −5.80 (−16.60; 4.98) | p = 0.289 | −0.09 (5.45) |
Outcomes | Memory | Inhibition | ||||
---|---|---|---|---|---|---|
Beta (95% CI) | p-Value | Standardized Beta (SE) | Beta (95% CI) | p-Value | Standardized Beta (SE) | |
Lifestyle parameters | ||||||
Diet score | −2.24 (−10.80; 6.32) | p = 0.605 | −0.04 (4.33) | −8.57 (−21.45; 4.30) | p = 0.190 | −0.11 (6.50) |
Physical activity (h/day) | 23.01 (7.62; 38.40) | p = 0.004 | 0.26 (7.78) | 21.54 (−1.60; 44.68) | p = 0.068 | 0.16 (11.69) |
Screen time (h/day) | 20.55 (−12.91; 54.02) | p = 0.226 | 0.10 (16.91) | 16.71 (−33.60; 67.02) | p = 0.512 | 0.05 (25.43) |
Sleep duration (h/day) | −13.80 (−30.98; 3.36) | p = 0.114 | −0.13 (8.68) | −15.98 (−41.80; 9.83) | p = 0.223 | −0.10 (13.04) |
Outcomes | Working Memory | Cognitive Flexibility | ||||
---|---|---|---|---|---|---|
Beta (95% CI) | p-Value | Standardized Beta (SE) | Beta (95% CI) | p-Value | Standardized Beta (SE) | |
Lifestyle parameters | ||||||
Diet score | 3.61 (−7.15; 14.37) | p = 0.508 | 0.05 (5.44) | −4.14 (−16.59; 8.31) | p = 0.512 | −0.05 (6.29) |
Physical activity (h/day) | 13.56 (−5.78; 32.90) | p = 0.168 | 0.12 (9.77) | 45.60 (23.22; 67.99) | p = 0.001 | 0.34 (11.31) |
Screen time (h/day) | 5.78 (36.27; 47.84) | p = 0.786 | 0.02 (21.25) | 1.13 (47.54; 49.80) | p = 0.963 | 0.00 (24.60) |
Sleep duration (h/day) | −8.71 (−30.29; 12.87) | p = 0.426 | −0.07 (10.90) | −17.27 (−42.24; 7.70) | p = 0.174 | −0.11 (12.62) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caamaño-Navarrete, F.; Arriagada-Hernández, C.; Fuentes-Vilugrón, G.; Jara-Tomckowiack, L.; Levin-Catrilao, A.; del Val Martín, P.; Muñoz-Troncoso, F.; Delgado-Floody, P. Healthy Lifestyle Related to Executive Functions in Chilean University Students: A Pilot Study. Healthcare 2024, 12, 1022. https://doi.org/10.3390/healthcare12101022
Caamaño-Navarrete F, Arriagada-Hernández C, Fuentes-Vilugrón G, Jara-Tomckowiack L, Levin-Catrilao A, del Val Martín P, Muñoz-Troncoso F, Delgado-Floody P. Healthy Lifestyle Related to Executive Functions in Chilean University Students: A Pilot Study. Healthcare. 2024; 12(10):1022. https://doi.org/10.3390/healthcare12101022
Chicago/Turabian StyleCaamaño-Navarrete, Felipe, Carlos Arriagada-Hernández, Gerardo Fuentes-Vilugrón, Lorena Jara-Tomckowiack, Alvaro Levin-Catrilao, Pablo del Val Martín, Flavio Muñoz-Troncoso, and Pedro Delgado-Floody. 2024. "Healthy Lifestyle Related to Executive Functions in Chilean University Students: A Pilot Study" Healthcare 12, no. 10: 1022. https://doi.org/10.3390/healthcare12101022
APA StyleCaamaño-Navarrete, F., Arriagada-Hernández, C., Fuentes-Vilugrón, G., Jara-Tomckowiack, L., Levin-Catrilao, A., del Val Martín, P., Muñoz-Troncoso, F., & Delgado-Floody, P. (2024). Healthy Lifestyle Related to Executive Functions in Chilean University Students: A Pilot Study. Healthcare, 12(10), 1022. https://doi.org/10.3390/healthcare12101022