Predicting Outcomes in Frail Older Community-Dwellers in Western Australia: Results from the Community Assessment of Risk Screening and Treatment Strategies (CARTS) Programme
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Outcome Measures
2.2. Data Collection
2.3. Ethics and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Metzelthin, S.F.; Daniels, R.; van Rossum, E.; de Witte, L.; van den Heuvel, W.J.A.; Kempen, G.I.J.M. The psychometric properties of three self-report screening instruments for identifying frail older people in the community. BMC Public Health 2010, 10, 176. [Google Scholar] [CrossRef]
- O’Caoimh, R.; Sezgin, D.; O’Donovan, M.R.; Molloy, D.W.; Clegg, A.; Rockwood, K.; Liew, A. Prevalence of frailty in 62 countries across the world: A systematic review and meta-analysis of population-level studies. Age Ageing 2021, 50, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Kojima, G.; Iliffe, S.; Walters, K. Frailty index as a predictor of mortality: A systematic review and meta-analysis. Age Ageing 2018, 47, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Kansagara, D.; Englander, H.; Salanitro, A.; Kagen, D.; Theobald, C.; Freeman, M.; Kripalani, S. Risk prediction models for hospital readmission: A systematic review. JAMA 2011, 306, 1688–1698. [Google Scholar] [CrossRef] [PubMed]
- O’Caoimh, R.; Cornally, N.; Weathers, E.; O’Sullivan, R.; Fitzgerald, C.; Orfila, F.; Clarnette, R.; Paúl, C.; Molloy, D.W. Risk prediction in the community: A systematic review of case-finding instruments that predict adverse healthcare outcomes in community-dwelling older adults. Maturitas 2015, 82, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Veerman, J.; Barendregt, J.; Mackenbach, J. Quantitative health impact assessment: Current practice and future directions. J. Epidemiol. Community Health 2005, 59, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Alba, A.C.; Agoritsas, T.; Walsh, M.; Hanna, S.; Iorio, A.; Devereaux, P.J.; McGinn, T.; Guyatt, G. Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature. JAMA 2017, 318, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, J.; Neyens, J.C.; van Rossum, E.; Spreeuwenberg, M.D.; de Witte, L.P. Predicting ADL disability in community-dwelling elderly people using physical frailty indicators: A systematic review. BMC Geriatr. 2011, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.R.; Shelton, E.; Fowler, S.; Suffoletto, B.; Platts-Mills, T.F.; Rothman, R.E.; Hogan, T.M. Risk factors and screening instruments to predict adverse outcomes for undifferentiated older emergency department patients: A systematic review and meta-analysis. Acad. Emerg. Med. 2015, 22, 1–21. [Google Scholar] [CrossRef]
- O’Caoimh, R.; Gao, Y.; Svendrovski, A.; Healy, E.; O’Connell, E.; O’Keeffe, G.; Cronin, U.; Igras, E.; O’Herlihy, E.; Fitzgerald, C.; et al. The Risk Instrument for Screening in the Community (RISC): A new instrument for predicting risk of adverse outcomes in community dwelling older adults. BMC Geriatr. 2015, 15, 92. [Google Scholar] [CrossRef]
- Shah, S.J.; Fang, M.C.; Wannier, S.R.; Steinman, M.A.; Covinsky, K.E. Association of Social Support with Functional Outcomes in Older Adults Who Live Alone. JAMA Intern. Med. 2022, 182, 26–32. [Google Scholar] [CrossRef] [PubMed]
- de Vriesm, N.M.; Staal, J.B.; van Ravensberg, C.D.; Hobbelen, J.S.M.; Olde Rikkerte, M.G.M.; van der Nijhuis-Sanden, M.W.G. Outcome instruments to measure frailty: A systematic review. Ageing Res. Rev. 2011, 10, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Salvi, F.; Morichi, V.; Grilli, A.; Lancioni, L.; Spazzafumo, L.; Polonara, S.; Abbatecola, A.M.; De Tommaso, G.; Dessi-Fulgheri, P.; Lattanzio, F. Screening for frailty in elderly emergency department patients by using the Identification of Seniors at Risk (ISAR). J. Nutr. Health Aging 2012, 16, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Hemsley, Z.M.; Thomas, G.; Meakins, P.; Powell, J.; Robison, J.; Gove, I.; Turner, G.; Sayer, A.A. Nurse-led implementation of the single assessment process in primary care: A descriptive feasibility study. Age Ageing 2006, 35, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Kosterink, S.; van Velsen, L.; Frazer, S.; Dekker-van Weering, M.; O’Caoimh, R.; Vollenbroek-Hutten, M. Identification of community-dwelling older adults at risk of frailty using the PERSSILAA screening pathway: A methodological guide and results of a large-scale deployment in the Netherlands. BMC Public Health 2019, 19, 504. [Google Scholar] [CrossRef] [PubMed]
- Stoop, A.; Lette, M.; van Gils, P.F.; Nijpels, G.; Baan, C.A.; de Bruin, S.R. Comprehensive geriatric assessments in integrated care programs for older people living at home: A scoping review. Health Soc. Care Community 2019, 27, e549–e566. [Google Scholar] [CrossRef] [PubMed]
- Coburn, K.D.; Marcantonio, S.; Lazansky, R.; Keller, M.; Davis, N. Effect of a community-based nursing intervention on mortality in chronically Ill older adults: A randomized controlled trial. PLoS Med. 2012, 9, e1001265. [Google Scholar] [CrossRef] [PubMed]
- Trapp-Moen, B.; Tyrey, M.; Cook, G.; Heyman, A.; Fillenbaum, G.G. In-home assessment of dementia by nurses: Experience using the CERAD evaluations. Gerontologist 2001, 41, 406–409. [Google Scholar] [CrossRef]
- Ballard, J.; Mooney, M.; Dempsey, O. Prevalence of frailty-related risk factors in older adults seen by community nurses. J. Adv. Nurs. 2013, 69, 675–684. [Google Scholar] [CrossRef]
- McDonald, A.; Frazer, K.; Warters, A. Irish Public Health Nursing Services and Home Support Services: Governance of older persons’ home care. Public Health Nurs. 2022, 39, 96–102. [Google Scholar] [CrossRef]
- Clarnette, R.; Goh, M.; Bharadwaj, S.; Ryan, J.; Ellis, S.; Svendrovski, A.; Molloy, D.W.; O’Caoimh, R. Screening for cognitive impairment in an Australian aged care assessment team as part of comprehensive geriatric assessment. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2019, 26, 336–347. [Google Scholar] [CrossRef]
- Clarnette, R.M.; Ryan, J.P.; O’Herlihy, E.; Svendrovski, A.; Cornally, N.; O’Caoimh, R.; Leahy-Warren, P.; Paul, C.; Molloy, D.W. The Community Assessment of Risk Instrument: Investigation of Inter-Rater Reliability of an Instrument Measuring Risk of Adverse Outcomes. J. Frailty Aging 2015, 4, 80–89. [Google Scholar] [CrossRef] [PubMed]
- O’ Caoimh, R.; Weathers, E.; Hally, R.; O’ Sullivan, R.; Fitzgerald, C.; Cornally, N.; Svendrovski, A.; Healy, E.; O’Connell, E.; O’keeffe, G.; et al. The community assessment of risk and treatment strategies (CARTS): An integrated care pathway to manage frailty and functional decline in community dwelling older adults. In Communications in Computer and Information Science; Helfert, M., Holzinger, A., Ziefle, M., Fred, A., O’Donoghue, J., Röcker, C., Eds.; Springer: Cham, Switzerland, 2015; Volume 578, pp. 3–18. [Google Scholar] [CrossRef]
- Weathers, E.; O’Caoimh, R.; O’Sullivan, R.; Paúl, C.; Orfilia, F.; Clarnette, R.; Fitzgerald, C.; Svendrovski, A.; Cornally, N.; Leahy-Warren, P.; et al. The inter-rater reliability of the Risk Instrument for Screening in the Community. Br. J. Community Nurs. 2016, 21, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; O’Caoimh, R.; Teixeira, L.; Alves, S.; Molloy, W.; Paúl, C. Validation of the Portuguese Version of the Risk Instrument for Screening in the Community (RISC) Among Older Patients in Primary Care in Northern Portugal. Front. Public Health 2021, 9, 614935. [Google Scholar] [CrossRef] [PubMed]
- O’Caoimh, R.; Cornally, N.; Svendrovski, A.; Weathers, E.; FitzGerald, C.; Healy, E.; O’Connell, E.; O’Keeffe, G.; O’Herlihy, E.; Gao, Y.; et al. Measuring the Effect of Carers on Patients’ Risk of Adverse Healthcare Outcomes Using the Caregiver Network Score. J. Frailty Aging 2015, 5, 104–110. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Church, S.; Rogers, E.; Rockwood, K.; Theou, O. A scoping review of the Clinical Frailty Scale. BMC Geriatr. 2020, 20, 393. [Google Scholar] [CrossRef] [PubMed]
- Collard, R.M.; Boter, H.; Schoevers, R.A.; Oude Voshaar, R.C. Prevalence of frailty in community-dwelling older persons: A systematic review. J. Am. Geriatr. Soc. 2012, 60, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- To, T.L.; Doan, T.N.; Ho, W.C.; Liao, W.C. Prevalence of Frailty among Community-Dwelling Older Adults in Asian Countries: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 895. [Google Scholar] [CrossRef]
- Siriwardhana, D.D.; Hardoon, S.; Rait, G.; Weerasinghe, M.C.; Walters, K.R. Prevalence of frailty and prefrailty among community-dwelling older adults in low-income and middle-income countries: A systematic review and meta-analysis. BMJ Open 2018, 8, e018195. [Google Scholar] [CrossRef]
- Gao, Y.; Du, L.; Cai, J.; Hu, T. Effects of functional limitations and activities of daily living on the mortality of the older people: A cohort study in China. Front. Public Health 2023, 10, 1098794. [Google Scholar] [CrossRef]
- Brown, R.T.; Diaz-Ramirez, L.G.; Boscardin, W.J.; Lee, S.J.; Williams, B.A.; Steinman, M.A. Association of Functional Impairment in Middle Age With Hospitalization, Nursing Home Admission, and Death. JAMA Intern. Med. 2019, 179, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Falk Erhag, H.; Guðnadóttir, G.; Alfredsson, J.; Cederholm, T.; Ekerstad, N.; Religa, D.; Nellgård, B.; Wilhelmson, K. The Association Between the Clinical Frailty Scale and Adverse Health Outcomes in Older Adults in Acute Clinical Settings—A Systematic Review of the Literature. Clin. Interv. Aging 2023, 18, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Donzé, J.; Aujesky, D.; Williams, D.; Schnipper, J.L. Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model. JAMA Intern. Med. 2013, 173, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Klunder, J.H.; Panneman, S.L.; Wallace, E.; de Vries, R.; Joling, K.J.; Maarsingh, O.R.; van Hout, H.P.J. Prediction models for the prediction of unplanned hospital admissions in community-dwelling older adults: A systematic review. PLoS ONE 2022, 17, e0275116. [Google Scholar] [CrossRef] [PubMed]
- Marcusson, J.; Nord, M.; Dong, H.J.; Lyth, J. Clinically useful prediction of hospital admissions in an older population. BMC Geriatr. 2020, 20, 95. [Google Scholar] [CrossRef]
- Morgan, D.J.; Bame, B.; Zimand, P.; Dooley, P.; Thom, K.A.; Harris, A.D.; Bentzen, S.; Ettinger, W.; Garrett-Ray, S.D.; Tracy, J.K.; et al. Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions. JAMA Netw. Open 2019, 2, e190348. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Karlis, G.; Loupelis, E.; Kalles, D.; Chatzikyriakou, R.; Trakas, N.; Karakou, E.; Sakagianni, A.; Tzelves, L.; Petropoulou, S.; et al. Using Machine Learning Techniques to Predict Hospital Admission at the Emergency Department. J. Crit. Care Med. 2022, 8, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Meid, A.D.; Gonzalez-Gonzalez, A.I.; Dinh, T.S.; Blom, J.; van den Akker, M.; Elders, P.; Thiem, U.; Küllenberg de Gaudry, D.; Swart, K.M.A.; Rudolf, H.; et al. Predicting hospital admissions from individual patient data (IPD): An applied example to explore key elements driving external validity. BMJ Open 2021, 11, e045572. [Google Scholar] [CrossRef]
- Smulowitz, P.B.; Burke, R.C.; Ostrovsky, D.; Novack, V.; Isbell, L.; Kan, V.; Landon, B.E. Clinician Risk Tolerance and Rates of Admission from the Emergency Department. JAMA Netw. Open 2024, 7, e2356189. [Google Scholar] [CrossRef]
- Rueegg, M.; Nissen, S.K.; Brabrand, M.; Kaeppeli, T.; Dreher, T.; Carpenter, C.R.; Bingisser, R.; Nickel, C.H. The clinical frailty scale predicts 1-year mortality in emergency department patients aged 65 years and older. Acad. Emerg. Med. 2022, 29, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Soh, C.H.; Lim, W.K.; Reijnierse, E.M.; Maier, A.B. Clinical frailty scale score during geriatric rehabilitation predicts short-term mortality: RESORT cohort study. Ann. Phys. Rehabil. Med. 2023, 66, 101645. [Google Scholar] [CrossRef] [PubMed]
- Bielza, R.; Balaguer, C.; Zambrana, F.; Arias, E.; Thuissard, I.J.; Lung, A.; Oñoro, C.; Pérez, P.; Andreu-Vázquez, C.; Neira, M.; et al. Accuracy, feasibility and predictive ability of different frailty instruments in an acute geriatric setting. Eur. Geriatr. Med. 2022, 13, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Cheong, C.Y.; Yap, P.; Gwee, X.; Chua, D.Q.L.; Wee, S.L.; Yap, K.B.; Ng, T.P. Physical and functional measures predicting long-term mortality in community-dwelling older adults: A comparative evaluation in the Singapore Longitudinal Ageing Study. Aging 2021, 13, 25038–25054. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, E.; Jang, I.Y. Frailty and Comprehensive Geriatric Assessment. J. Korean Med. Sci. 2020, 35, e16. [Google Scholar] [CrossRef] [PubMed]
- Moloney, E.; O’Donovan, M.R.; Sezgin, D.; Flanagan, E.; McGrath, K.; Timmons, S.; O’Caoimh, R. Diagnostic Accuracy of Frailty Screening Instruments Validated for Use among Older Adults Attending Emergency Departments: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 6280. [Google Scholar] [CrossRef] [PubMed]
- Spiers, G.F.; Kunonga, T.P.; Hall, A.; Beyer, F.; Boulton, E.; Parker, S.; Bower, P.; Craig, D.; Todd, C.; Hanratty, B. Measuring frailty in younger populations: A rapid review of evidence. BMJ Open 2021, 11, e047051. [Google Scholar] [CrossRef]
- Gordon, E.H.; Peel, N.M.; Hubbard, R.E.; Reid, N. Frailty in younger adults in hospital. QJM Int. J. Med. 2023, 116, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Wang, Y.; Mak, J.K.L.; Ericsson, M.; Hägg, S.; Jylhävä, J. Is Frailty Different in Younger Adults Compared to Old? Prevalence, Characteristics, and Risk Factors of Early-Life and Late-Life Frailty in Samples from Sweden and UK. Gerontology 2023, 69, 1385–1393. [Google Scholar] [CrossRef]
- Cesari, M.; Gambassi, G.; van Kan, G.A.; Vellas, B. The frailty phenotype and the frailty index: Different instruments for different purposes. Age Ageing 2014, 43, 10–12. [Google Scholar] [CrossRef]
- Gordon, S.; Grimmer, K.; Baker, N. Do two measures of frailty identify the same people? An age-gender comparison. J. Eval. Clin. Pract. 2020, 26, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Ligthart-Melis, G.C.; Luiking, Y.C.; Kakourou, A.; Cederholm, T.; Maier, A.B.; de van der Schueren, M.A.E. Frailty, Sarcopenia, and Malnutrition Frequently (Co-)occur in Hospitalized Older Adults: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1216–1228. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Olender, R.T.; Roy, S.; Nishtala, P.S. Application of machine learning approaches in predicting clinical outcomes in older adults—A systematic review and meta-analysis. BMC Geriatr. 2023, 23, 561. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Diaz, D.; Arco, J.E.; Ortiz, A.; Pérez-Cabezas, V.; Lucena-Anton, D.; Moral-Munoz, J.A.; Galán-Mercant, A. Use of Artificial Intelligence in the Identification and Diagnosis of Frailty Syndrome in Older Adults: Scoping Review. J. Med. Internet Res. 2023, 25, e47346. [Google Scholar] [CrossRef]
- Sajeev, S.; Champion, S.; Maeder, A.; Gordon, S. Machine learning models for identifying pre-frailty in community dwelling older adults. BMC Geriatr. 2022, 22, 794. [Google Scholar] [CrossRef]
Demographic Characteristics | Mean ± SD/Median (IQR) Range n (%) |
---|---|
Age (years) | Mean 81.50 ± 7.37/median 82 (77–87) Range 54–101 |
Biological sex | |
- Males (%) | 160 (38.4%) |
- Females (%) | 257 (61.6%) |
Baseline assessment characteristics | |
Clinical Frailty Scale score | Mean 5.74 ± 0.83/median 6 (5–6) Range 2–9 |
RISC Scores | |
Mental State Concerns | |
- No concern | 43 (10.3%) |
- Mild concern | 142 (34.1%) |
- Moderate concern | 178 (42.7%) |
- Severe concern | 54 (12.9%) |
ADLs | |
- No concern | 4 (1.0%) |
- Mild concern | 52 (12.5%) |
- Moderate concern | 240 (57.6%) |
- Severe concern | 121 (29.0%) |
Medical State Concerns | |
- No concern | 99 (23.9%) |
- Mild concern | 220 (53.0%) |
- Moderate concern | 77 (18.6%) |
- Severe concern | 19 (4.6%) |
Domain Sub-scores | |
Mental state (based on 7 components) | Mean 5.39 ± 3.87/median 5 (2–8) Range 0–19 |
ADLs (based on 15 components) | Mean 18.07 ± 7.76/median 18 (13–23) Range 1–44 |
Medical state (based on 9 components) | Mean 5.89 ± 2.26/median 6 (4–7) Range 0–14 |
Global Risk Scores Institutionalisation Global Risk Scores | |
- Low (score 1–2) | 159 (38.1%) |
- Medium (score 3) | 170 (40.8%) |
- High (score 4–5) | 88 (21.1%) |
Hospitalisation Global Risk Scores | |
- Low (score 1–2) | 126 (30.2%) |
- Medium (score 3) | 211 (50.6%) |
- High (score 4–5) | 80 (19.2%) |
Death Global Risk Scores | |
- Low (score 1–2) | 233 (55.9%) |
- Medium (score 3) | 149 (35.7%) |
- High (score 4–5) | 35 (8.4%) |
Actual (1-year) outcomes | |
Institutionalised | 94 (22.5%) |
Hospitalised | 186 (44.6%) |
Dead | 41 (9.8%) |
Characteristic (Median ± IQR) or % | Institutionalised | Not Institutionalised | p-Value | Hospitalised | Not Hospitalised | p-Value | Dead | Alive | p-Value |
---|---|---|---|---|---|---|---|---|---|
Age | 84 ± 8 | 82 ± 10 | 0.002 | 84 ± 11 | 81 ± 9 | 0.06 | 85 ± 12 | 82 ± 10 | 0.12 |
Female (%) | 68.1% | 59.8% | 0.14 | 59.7% | 63.2% | 0.46 | 56.1% | 62.2% | 0.44 |
Clinical Frailty Scale | 6 ± 0 | 6 ± 1 | 0.001 | 6 ± 1 | 6 ± 1 | 0.007 | 6 ± 1 | 6 ± 1 | <0.001 |
RISC Domain | |||||||||
ADLs * | 20 ± 10 | 17 ± 11 | <0.001 | 19 ± 11 | 17 ± 10 | 0.10 | 22 ± 13 | 18 ± 10 | 0.01 |
Mental state ** | 7 ± 7 | 4 ± 6 | <0.001 | 4 ± 6 | 5 ± 6 | 0.27 | 3 ± 6 | 5 ± 6 | 0.11 |
Medical state *** | 6 ± 2 | 6 ± 3 | 0.18 | 6 ± 3 | 5 ± 3 | <0.001 | 6 ± 3 | 6 ± 3 | 0.26 |
Global Risk Score for Institutionalisation | |||||||||
Low, n = 159 (%) | 7.4% | 47.1% | 34.9% | 40.7% | 22.0% | 39.9% | |||
Medium, n = 170 (%) | 45.7% | 39.3% | 45.2% | 37.2% | 41.5% | 40.7% | |||
High, n = 88 (%) | 46.8% | 13.6% | <0.001 | 19.9% | 22.1% | 0.26 | 36.5% | 19.4% | 0.02 |
Global Risk Score for Hospitalisation | |||||||||
Low, n = 126 (%) | 21.3% | 32.8% | 22.6% | 36.4% | 7.4% | 32.7% | |||
Medium, n = 211 (%) | 57.4% | 48.6% | 50.5% | 50.6% | 46.3% | 51.1% | |||
High, n = 80 (%) | 21.3% | 18.6% | 0.10 | 26.9% | 13.0% | <0.001 | 46.3% | 16.2% | <0.001 |
Global Risk Score for Death | |||||||||
Low, n = 233 (%) | 52.1% | 57.0% | 48.9% | 61.5% | 22.0% | 59.6% | |||
Medium, n = 149 (%) | 39.4% | 34.7% | 38.7% | 33.3% | 41.5% | 35.1% | |||
High, n = 35 (%) | 8.5% | 8.4% | 0.69 | 12.4% | 5.2% | 0.01 | 36.6% | 5.3% | <0.001 |
Assessment | Global Risk Score for Institutionalisation | Global Risk Score for Hospitalisation | Global Risk Score for Death |
---|---|---|---|
CFS score (range 1–9) | 0.42 * [0.33 to 0.49] | 0.44 * [0.35 to 0.52] | 0.51 * [0.43 to 0.58] |
RISC Severity of Concern | |||
Mental state | 0.19 * [0.09 to 0.28] | −0.04 [−0.14 to 0.06] | −0.03 [−0.13 to 0.07] |
ADLs | 0.37 * [0.28 to 0.45] | 0.16 * [0.06 to 0.25] | 0.17 * [0.08 to 0.27] |
Medical state | 0.27 * [0.16 to 0.37] | 0.18 * [0.07 to 0.29] | 0.27 * [0.16 to 0.37] |
RISC Domain Subscores | |||
ADLs (15 components) | 0.51 * [0.43 to 0.58] | 0.34 * [0.25 to 0.42] | 0.42 * [0.34 to 0.50] |
Mental state (7 components) | 0.29 * [0.19 to 0.38] | −0.09 [−0.18 to 0.01] | −0.05 [−0.15 to 0.04] |
Medical state (9 components) | 0.31 * [0.22 to 0.39] | 0.44 * [0.35 to 0.51] | 0.41 * [0.32 to 0.49] |
Measure | Predicting Actual Outcome | ||
---|---|---|---|
Institutionalisation (AUC and 95% CI) | Hospitalisation (AUC and 95% CI) | Death (AUC and 95% CI) | |
Clinical Frailty Scale score | 0.60 (0.54–0.66) | 0.58 (0.52–0.63) | 0.69 (0.61–0.77) |
RISC Severity sub-score | |||
Mental state | 0.62 (0.55–0.68) | 0.48 (0.42–0.53) | 0.42 (0.33–0.52) |
ADLs | 0.58 (0.52–0.65) | 0.53 (0.47–0.58) | 0.51 (0.41–0.60) |
Medical state | 0.60 (0.53–0.67) | 0.51 (0.45–0.57) | 0.52 (0.43–0.62) |
RISC Domain sub-score | |||
ADLs (based on 15 components) | 0.64 (0.58–0.70) | 0.55 (0.49–0.61) | 0.61 (0.52–0.71) |
Mental state (based on 7 components) | 0.65 (0.58–0.71) | 0.47 (0.41–0.53) | 0.43 (0.33–0.52) |
Medical state (based on 9 components) | 0.54 (0.47–0.60) | 0.62 (0.56–0.67) | 0.59 (0.50–0.68) |
Global Risk Score | |||
Institutionalisation | 0.76 (0.71–0.81) | 0.53 (0.47–0.59) | 0.62 (0.54–0.71) |
Hospitalisation | 0.56 (0.49–0.62) | 0.61 (0.56–0.67) | 0.71 (0.62–0.79) |
Death | 0.52 (0.46–0.59) | 0.58 (0.52–0.64) | 0.74 (0.66–0.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clarnette, R.M.; Kostov, I.; Ryan, J.P.; Svendrovski, A.; Molloy, D.W.; O’Caoimh, R. Predicting Outcomes in Frail Older Community-Dwellers in Western Australia: Results from the Community Assessment of Risk Screening and Treatment Strategies (CARTS) Programme. Healthcare 2024, 12, 1339. https://doi.org/10.3390/healthcare12131339
Clarnette RM, Kostov I, Ryan JP, Svendrovski A, Molloy DW, O’Caoimh R. Predicting Outcomes in Frail Older Community-Dwellers in Western Australia: Results from the Community Assessment of Risk Screening and Treatment Strategies (CARTS) Programme. Healthcare. 2024; 12(13):1339. https://doi.org/10.3390/healthcare12131339
Chicago/Turabian StyleClarnette, Roger M., Ivan Kostov, Jill P. Ryan, Anton Svendrovski, D. William Molloy, and Rónán O’Caoimh. 2024. "Predicting Outcomes in Frail Older Community-Dwellers in Western Australia: Results from the Community Assessment of Risk Screening and Treatment Strategies (CARTS) Programme" Healthcare 12, no. 13: 1339. https://doi.org/10.3390/healthcare12131339
APA StyleClarnette, R. M., Kostov, I., Ryan, J. P., Svendrovski, A., Molloy, D. W., & O’Caoimh, R. (2024). Predicting Outcomes in Frail Older Community-Dwellers in Western Australia: Results from the Community Assessment of Risk Screening and Treatment Strategies (CARTS) Programme. Healthcare, 12(13), 1339. https://doi.org/10.3390/healthcare12131339