COVID-19 Vaccine Hesitancy and Misinformation Endorsement among a Sample of Native Spanish-Speakers in the US: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dependent Variables
- You cannot contract COVID-19 from the vaccine.
- There are no toxic ingredients in the vaccine that are harmful to your health.
- The vaccine cannot alter your DNA.
- The vaccine cannot cause infertility.
- The vaccine cannot cause other illnesses.
- The rapid production of the vaccine did not compromise its security.
- Governments are not going to use the vaccine as a tool to limit our civil rights (right of assembly, right of movement, right of religion, etc.).
2.3. Independent Variables
2.3.1. Socio-Demographics
2.3.2. Main COVID-19 Information Source
2.3.3. Information from Individual Social Media Platforms and Multiplicity of Platforms
2.3.4. Time Spent Online
2.3.5. Trust in COVD-19 Vaccine Information
2.3.6. COVID-19 Risk Perception Score
2.3.7. Personal Impact of COVID-19
2.3.8. Prior Vaccination Behaviors
2.3.9. Social Media Impact on Vaccine Confidence
2.3.10. Opinion about Government Transparency
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.1.1. Food Insecurity
3.1.2. COVID-19 Experience
3.1.3. COVID-19 Risk Perception
3.1.4. Main COVID-19 Information Source
3.1.5. Prior Vaccine Behavior
3.1.6. Misinformation Endorsement
3.2. Simple and Multivariable Poisson Regression Analyses
3.2.1. Determinants of Vaccine Acceptance
3.2.2. Determinants of Misinformation Endorsement
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ndugga, N.; Hill, L.; Artiga, S.; Haldar, S. Latest Data on COVID-19 Vaccinations by Race/Ethnicity|KFF. Available online: https://www.kff.org/coronavirus-covid-19/issue-brief/latest-data-on-covid-19-vaccinations-by-race-ethnicity/ (accessed on 21 February 2024).
- Centers for Disease Control and Prevention. Risk for COVID-19 Infection, Hospitalization, and Death By Race/Ethnicity. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html (accessed on 22 February 2024).
- Kricorian, K.; Turner, K. COVID-19 Vaccine Acceptance and Beliefs among Black and Hispanic Americans. PLoS ONE 2021, 16, e0256122. [Google Scholar] [CrossRef]
- Silesky, M.D.; Panchal, D.; Fields, M.; Peña, A.S.; Diez, M.; Magdaleno, A.; Frausto-Rodriguez, P.; Bonnevie, E. A Multifaceted Campaign to Combat COVID-19 Misinformation in the Hispanic Community. J. Community Health 2023, 48, 286–294. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker/#vaccination-demographics-trends (accessed on 22 February 2024).
- Link-Gelles, R.; Ciesla, A.A.; Fleming-Dutra, K.E.; Smith, Z.R.; Britton, A.; Wiegand, R.E.; Miller, J.D.; Accorsi, E.K.; Schrag, S.J.; Verani, J.R.; et al. Effectiveness of Bivalent MRNA Vaccines in Preventing Symptomatic SARS-CoV-2 Infection—Increasing Community Access to Testing Program, United States, September–November 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 44. [Google Scholar] [CrossRef]
- Funk, C.; Lopez, M.H. Hispanic Americans’ Trust and Engagement with Science: A Brief Statistical Portrait of U.S. Hispanics. Available online: https://www.pewresearch.org/science/2022/06/14/a-brief-statistical-portrait-of-u-s-hispanics/ (accessed on 22 February 2024).
- Yasmin, F.; Najeeb, H.; Moeed, A.; Naeem, U.; Asghar, M.S.; Chughtai, N.U.; Yousaf, Z.; Seboka, B.T.; Ullah, I.; Lin, C.Y.; et al. COVID-19 Vaccine Hesitancy in the United States: A Systematic Review. Front. Public Health 2021, 9, 770985. [Google Scholar] [CrossRef]
- Callaghan, T.; Moghtaderi, A.; Lueck, J.A.; Hotez, P.; Strych, U.; Dor, A.; Fowler, E.F.; Motta, M. Correlates and Disparities of Intention to Vaccinate against COVID-19. Soc. Sci. Med. 2021, 272, 113638. [Google Scholar] [CrossRef]
- Coman, I.A.; Xu, S.; Yamamoto, M. COVID-19 Vaccine Hesitancy: Disadvantaged Groups’ Experience with Perceived Barriers, Cues to Action, and Attitudes. Am. J. Health Promot. 2022, 37, 488–498. [Google Scholar] [CrossRef]
- Thompson, H.S.; Manning, M.; Mitchell, J.; Kim, S.; Harper, F.W.K.; Cresswell, S.; Johns, K.; Pal, S.; Dowe, B.; Tariq, M.; et al. Factors Associated With Racial/Ethnic Group–Based Medical Mistrust and Perspectives on COVID-19 Vaccine Trial Participation and Vaccine Uptake in the US. JAMA Netw. Open 2021, 4, e2111629. [Google Scholar] [CrossRef]
- Viswanath, K.; Bekalu, M.; Dhawan, D.; Pinnamaneni, R.; Lang, J.; McLoud, R. Individual and Social Determinants of COVID-19 Vaccine Uptake. BMC Public Health 2021, 21, 818. [Google Scholar] [CrossRef]
- Abrajano, M.A.; Garcia, M.; Pope, A.; Vidigal, R.; Tucker, J.; Nagler, J. Latinos Who Use Spanish-Language Social Media Get More Misinformation—The Washington Post. Available online: https://www.washingtonpost.com/politics/2022/11/08/latino-midterms-votes-misinformation/ (accessed on 22 February 2024).
- United States Census Bureau. Language Spoken at Home—Census Bureau Table. Available online: https://data.census.gov/table/ACSST1Y2022.S1601?q=Language%20Spoken%20at%20Home (accessed on 22 February 2024).
- United Nations Population Fund. World Population Dashboard. Available online: https://www.unfpa.org/data/world-population-dashboard (accessed on 22 February 2024).
- Arif, N.; Al-Jefri, M.; Bizzi, I.H.; Perano, G.B.; Goldman, M.; Haq, I.; Chua, K.L.; Mengozzi, M.; Neunez, M.; Smith, H.; et al. Fake News or Weak Science? Visibility and Characterization of Antivaccine Webpages Returned by Google in Different Languages and Countries. Front. Immunol. 2018, 9, 376019. [Google Scholar] [CrossRef]
- Wilson, S.L.; Wiysonge, C. Social Media and Vaccine Hesitancy. BMJ Glob. Health 2020, 5, e004206. [Google Scholar] [CrossRef] [PubMed]
- Muric, G.; Wu, Y.; Ferrara, E. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Data Set of Antivaccine Content, Vaccine Misinformation, and Conspiracies. JMIR Public Health Surveill. 2021, 7, e30642. [Google Scholar] [CrossRef] [PubMed]
- Ekram, S.; Debiec, K.E.; Pumper, M.A.; Moreno, M.A. Content and Commentary: HPV Vaccine and YouTube. J. Pediatr. Adolesc. Gynecol. 2019, 32, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Coomes, E.A.; Haghbayan, H.; Gunaratne, K. Social Media and Vaccine Hesitancy: New Updates for the Era of COVID-19 and Globalized Infectious Diseases. Hum. Vaccines Immunother. 2020, 16, 2586–2593. [Google Scholar] [CrossRef]
- Piltch-Loeb, R.; Savoia, E.; Goldberg, B.; Hughes, B.; Verhey, T.; Kayyem, J.; Miller-Idriss, C.; Testa, M. Examining the Effect of Information Channel on COVID-19 Vaccine Acceptance. PLoS ONE 2021, 16, e0251095. [Google Scholar] [CrossRef] [PubMed]
- Sidoti, O.; Gelles-Watnick, R.; Faverio, M.; Atske, S.; Radde, K.; Park, E. Demographics of Social Media Users and Adoption in the United States|Pew Research Center. Available online: https://www.pewresearch.org/internet/fact-sheet/social-media/?tabId=tab-673f63a2-da02-4836-96c6-c1d4e25c8a89 (accessed on 3 March 2024).
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Author Correction: Measuring the Impact of COVID-19 Vaccine Misinformation on Vaccination Intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 407. [Google Scholar] [CrossRef]
- Earnshaw, V.A.; Eaton, L.A.; Kalichman, S.C.; Brousseau, N.M.; Hill, E.C.; Fox, A.B. COVID-19 Conspiracy Beliefs, Health Behaviors, and Policy Support. Transl. Behav. Med. 2020, 10, 850–856. [Google Scholar] [CrossRef]
- Stephens, K.K.; Barrett, A.K.; Mahometa, M.J. Organizational Communication in Emergencies: Using Multiple Channels and Sources to Combat Noise and Capture Attention. Hum. Commun. Res. 2013, 39, 230–251. [Google Scholar] [CrossRef]
- McKinley, C.J.; Olivier, E.; Ward, J.K. The Influence of Social Media and Institutional Trust on Vaccine Hesitancy in France: Examining Direct and Mediating Processes. Vaccines 2023, 11, 1319. [Google Scholar] [CrossRef]
- Jennings, W.; Valgarðsson, V.; McKay, L.; Stoker, G.; Mello, E.; Baniamin, H.M. Trust and Vaccine Hesitancy during the COVID-19 Pandemic: A Cross-National Analysis. Vaccine X 2023, 14, 100299. [Google Scholar] [CrossRef]
- Nwachukwu, G.; Rihan, A.; Nwachukwu, E.; Uduma, N.; Elliott, K.S.; Tiruneh, Y.M. Understanding COVID-19 Vaccine Hesitancy in the United States: A Systematic Review. Vaccines 2024, 12, 747. [Google Scholar] [CrossRef]
- Pollfish. Pollfish Survey Tools. Available online: https://www.pollfish.com/ (accessed on 22 February 2024).
- Newsguard Special Reports. Available online: https://www.newsguardtech.com/reports/ (accessed on 10 July 2024).
- Dziuban, C.D.; Shirkey, E.C. When Is a Correlation Matrix Appropriate for Factor Analysis? Some Decision Rules. Psychol. Bull. 1974, 81, 358–361. [Google Scholar] [CrossRef]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for Logistic Regression in Cross-Sectional Studies: An Empirical Comparison of Models That Directly Estimate the Prevalence Ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 17. Available online: https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/ (accessed on 22 February 2024).
- Abba-Aji, M.; Stuckler, D.; Galea, S.; McKee, M. Ethnic/Racial Minorities’ and Migrants’ Access to COVID-19 Vaccines: A Systematic Review of Barriers and Facilitators. J. Migr. Health 2022, 5, 100086. [Google Scholar] [CrossRef]
- Nerida, T.M.; Sharma, M.; Labus, B.; Marquez, E.; Dai, C.L. COVID-19 Vaccine Acceptance Behavior among Hispanics/Latinxs in Nevada: A Theory-Based Analysis. Healthcare 2023, 11, 688. [Google Scholar] [CrossRef]
- Mehta, S.N.; Burger, Z.C.; Meyers-Pantele, S.A.; Garfein, R.S.; Ortiz, D.O.; Mudhar, P.K.; Kothari, S.B.; Kothari, J.; Meka, M.; Rodwell, T. Knowledge, Attitude, Practices, and Vaccine Hesitancy Among the Latinx Community in Southern California Early in the COVID-19 Pandemic: Cross-Sectional Survey. JMIR Form. Res. 2022, 6, e38351. [Google Scholar] [CrossRef]
- Knapp, T.M.; Hernandez, C.; Simpson, J.; Hernandez, K.; Esguerra, C.; Mach, B.T.; Taliaferro, L.A. Reported Beliefs About COVID-19 Vaccines Among Unvaccinated Hispanic Adults Utilizing a Free Clinic in Orlando, Florida. Cureus 2023, 15, e35255. [Google Scholar] [CrossRef]
- Fisher, C.; Bragard, E.; Madhivanan, P. COVID-19 Vaccine Hesitancy among Economically Marginalized Hispanic Parents of Children under Five Years in the United States. Vaccines 2023, 11, 599. [Google Scholar] [CrossRef]
- Scott, V.P.; Hiller-Venegas, S.; Edra, K.; Prickitt, J.; Esquivel, Y.; Melendrez, B.; Rhee, K.E. Factors Associated with COVID-19 Vaccine Intent among Latino SNAP Participants in Southern California. BMC Public Health 2022, 22, 653. [Google Scholar] [CrossRef]
- Piper, B.J.; Sanchez, B.V.; Madera, J.D.; Sulzinski, M.A. Profiles of US Hispanics Unvaccinated for COVID-19. J. Racial Ethn. Health Disparities 2023, 10, 553. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Vargas, N.; de la Torre, C.; Magana Alvarez, M.; Clark, J.L. Engaging Latino Families About COVID-19 Vaccines: A Qualitative Study Conducted in Oregon, USA. Health Educ. Behav. 2021, 48, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Budak, C.; Nyhan, B.; Rothschild, D.M.; Thorson, E.; Watts, D.J. Misunderstanding the harms of online misinformation. Nature 2024, 630, 45–53. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Strategies for Building Confidence in the COVID-19 Vaccines; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Cooper, S.; Gadanya, M.A.; Kaawa-Mafigiri, D.; Katoto, P.D.M.C.; Sambala, E.Z.; Temfack, E.; Wiysonge, C.S. Using Social Media to Build Confidence in Vaccines: Lessons from Community Engagement and Social Science Research in Africa. BMJ 2024, 384, e075564. [Google Scholar] [CrossRef] [PubMed]
- Burke, P.F.; Masters, D.; Massey, G. Enablers and Barriers to COVID-19 Vaccine Uptake: An International Study of Perceptions and Intentions. Vaccine 2021, 39, 5116. [Google Scholar] [CrossRef] [PubMed]
- Pires, C. Global Predictors of COVID-19 Vaccine Hesitancy: A Systematic Review. Vaccines 2022, 10, 1349. [Google Scholar] [CrossRef] [PubMed]
- Larson, H.J.; Clarke, R.M.; Jarrett, C.; Eckersberger, E.; Levine, Z.; Schulz, W.S.; Paterson, P. Measuring Trust in Vaccination: A Systematic Review. Hum. Vaccines Immunother. 2018, 14, 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Vinck, P.; Pham, P.N.; Bindu, K.K.; Bedford, J.; Nilles, E.J. Institutional Trust and Misinformation in the Response to the 2018–19 Ebola Outbreak in North Kivu, DR Congo: A Population-Based Survey. Lancet Infect. Dis. 2019, 19, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Kang, K.A.; Wang, M.P.; Zhao, S.Z.; Wong, J.Y.H.; O’Connor, S.; Yang, S.C.; Shin, S. Associations Between COVID-19 Misinformation Exposure and Belief With COVID-19 Knowledge and Preventive Behaviors: Cross-Sectional Online Study. J. Med. Internet Res. 2020, 22, e22205. [Google Scholar] [CrossRef] [PubMed]
- King, W.C.; Rubinstein, M.; Reinhart, A.; Mejia, R. COVID-19 Vaccine Hesitancy January-May 2021 among 18-64 Year Old US Adults by Employment and Occupation. Prev. Med. Rep. 2021, 24, 101569. [Google Scholar] [CrossRef] [PubMed]
- Trent, M.; Seale, H.; Chughtai, A.A.; Salmon, D.; MacIntyre, C.R. Trust in Government, Intention to Vaccinate and COVID-19 Vaccine Hesitancy: A Comparative Survey of Five Large Cities in the United States, United Kingdom, and Australia. Vaccine 2022, 40, 2498–2505. [Google Scholar] [CrossRef]
- Szilagyi, P.G.; Thomas, K.; Shah, M.D.; Vizueta, N.; Cui, Y.; Vangala, S.; Fox, C.; Kapteyn, A. The Role of Trust in the Likelihood of Receiving a COVID-19 Vaccine: Results from a National Survey. Prev. Med. 2021, 153, 106727. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). Enhancing Public Trust in COVID-19 Vaccination: The Role of Governments; OECD Policy Responses to Coronavirus (COVID-19); OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Suarez-Lledo, V.; Alvarez-Galvez, J. Prevalence of Health Misinformation on Social Media: Systematic Review. J. Med. Internet Res. 2021, 23, e17187. [Google Scholar] [CrossRef] [PubMed]
- Marzo, R.R.; Su, T.T.; Ismail, R.; Htay, M.N.N.; Essar, M.Y.; Chauhan, S.; Patalinghug, M.E.; Kucuk Bicer, B.; Respati, T.; Fitriyana, S.; et al. Digital Health Literacy for COVID-19 Vaccination and Intention to Be Immunized: A Cross Sectional Multi-Country Study among the General Adult Population. Front. Public Health 2022, 10, 998234. [Google Scholar] [CrossRef] [PubMed]
- Milo, R.B.; Aguayo, C.; Chico, A.R.; Rozo, J.A.; Vásquez, I.; Calero, P.; Burkard, J. Understanding the Barriers to COVID-19 Vaccine Among Hispanic/Latinx Communities. J. Prim. Care Community Health 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.; Rojo, M.O.; Purvis, R.S.; Marin, L.P.; Yáñez, J.; Reece, S.; Wells, C.; Vaughn, B.; McElfish, P.A. Overcoming Barriers and Enhancing Facilitators to COVID-19 Vaccination in the Hispanic Community. BMC Public Health 2022, 22, 2393. [Google Scholar] [CrossRef] [PubMed]
- Rothschil, D.; Konitzer, T. Random Device Engagement (RDE) with Organic Sample; Pollfish: New York, NY, USA, 2020. [Google Scholar]
Total (n = 483) | Hesitant (n = 297) | Acceptant (n = 186) | p-Value | ||||
---|---|---|---|---|---|---|---|
Gender | 0.62 | ||||||
Male | 188 | (38.9%) | 113 | (38.0%) | 75 | (40.3%) | |
Female | 295 | (61.1%) | 184 | (62.0%) | 111 | (59.7%) | |
Age category | 0.84 | ||||||
18–24 | 94 | (19.5%) | 57 | (19.2%) | 37 | (19.9%) | |
25–34 | 97 | (20.1%) | 63 | (21.2%) | 34 | (18.3%) | |
35–44 | 97 | (20.1%) | 57 | (19.2%) | 40 | (21.5%) | |
45–54 | 126 | (26.1%) | 80 | (26.9%) | 46 | (24.7%) | |
54 and older | 69 | (14.3%) | 40 | (13.5%) | 29 | (15.6%) | |
Geographic region | 0.59 | ||||||
Midwest | 47 | (9.8%) | 31 | (10.5%) | 16 | (8.7%) | |
Northeast | 80 | (16.7%) | 53 | (18.0%) | 27 | (14.8%) | |
South | 228 | (47.7%) | 140 | (47.5%) | 88 | (48.1%) | |
West | 123 | (25.7%) | 71 | (24.1%) | 52 | (28.4%) | |
Educational attainment | 0.99 | ||||||
High school or below | 206 | (43.4%) | 127 | (43.6%) | 79 | (42.9%) | |
Some college | 121 | (25.5%) | 74 | (25.4%) | 47 | (25.5%) | |
Bachelors or above | 148 | (31.2%) | 90 | (30.9%) | 58 | (31.5%) | |
Food insecure past 3 months | 0.046 | ||||||
Never | 126 | (26.1%) | 89 | (30.0%) | 37 | (19.9%) | |
Sometimes | 248 | (51.3%) | 146 | (49.1%) | 102 | (54.8%) | |
Often | 109 | (22.6%) | 62 | (20.9%) | 47 | (25.3%) | |
Comorbidities | 177 | (36.7%) | 110 | (37.0%) | 67 | (36.0%) | 0.82 |
Vaccinated for COVID-19 | <0.001 | ||||||
Had 1 dose and plan to get 2nd | 116 | (24.0%) | 51 | (17.2%) | 65 | (34.9%) | |
Had 1 dose, unsure if I’ll get 2nd | 23 | (4.8%) | 9 | (3.0%) | 14 | (7.5%) | |
Had 1 dose, won’t get 2nd | 2 | (0.4%) | 0 | (0.0%) | 2 | (1.1%) | |
Not yet, but I have an appt. | 111 | (23.0%) | 62 | (20.9%) | 49 | (26.3%) | |
No, and I don’t have an appt. | 231 | (47.8%) | 175 | (58.9%) | 56 | (30.1%) |
Vaccine Acceptance vs. Hesitance | Misinformation Endorsement **** | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Simple Model | Multiple Model ** | Simple Model | Multiple Model ** | ||||||||
n | % | PR | 95% CI/ p-Value *** | PR | 95% CI/ p-Value *** | PR | 95% CI/ p-Value *** | PR | 95% CI/ p-Value *** | ||
COVID-19 risk perception score | p = 0.0001 | p = 0.0005 | p = 0.4284 | ||||||||
Low risk | 96 | 19.87% | ref | --- | --- | --- | ref | --- | --- | --- | |
Middle risk | 204 | 42.24% | 1.37 | 0.94, 2.00 | 1.14 | 0.79, 1.65 | 0.79 | 0.55, 1.13 | |||
High risk | 183 | 37.89% | 2.01 * | 1.39, 2.89 | 1.67 † | 1.17, 2.40 | 0.85 | 0.57, 1.25 | |||
Ever declined a recommended vaccine | p = 0.3519 | p = 0.0254 # | |||||||||
No | 245 | 50.72% | ref | --- | ref | --- | |||||
Yes | 152 | 31.47% | 1.14 | 0.89, 1.45 | 1.50 * | 1.09, 2.05 | |||||
No recollection | 86 | 17.81% | 0.90 | 0.64, 1.26 | 1 | 0.64, 1.56 | |||||
Opinion about government transparency | p < 0.0001 | p = 0.0022 | p < 0.0001 | p < 0.0001 | |||||||
Not transparent | 103 | 21.32% | ref | --- | --- | --- | ref | --- | --- | --- | |
Moderately transparent | 196 | 40.58% | 2.15 † | 1.42, 3.25 | 1.81 † | 1.19, 2.76 | 0.50 † | 0.36, 0.70 | 0.50 † | 0.37, 0.69 | |
Very transparent | 96 | 19.88% | 2.66 ‡ | 1.74, 4.06 | 2.21 † | 1.44, 3.41 | 0.61 * | 0.41, 0.90 | 0.73 | 0.50, 1.06 | |
I don’t know | 88 | 18.22% | 1.50 | 0.92, 2.47 | 1.49 | 0.91, 2.45 | 0.36 † | 0.21, 0.60 | 0.42 † | 0.25, 0.68 | |
Time spent on social media | p = 0.8847 | p = 0.4286 ▲ | p < 0.6973 | p = 0.4433 ▲ | |||||||
Never | 31 | 6.42% | ref | --- | ref | --- | ref | --- | ref | --- | |
Not often | 35 | 7.25% | 0.89 | 0.47, 1.68 | ref | --- | 0.89 | 0.38, 2.08 | ref | --- | |
Every other day | 63 | 13.04% | 0.90 | 0.52, 1.57 | ref | --- | 0.80 | 0.37, 1.73 | ref | --- | |
Between 1–3 h per day | 157 | 32.50% | 1.07 | 0.66, 1.73 | 1.11 | 0.81, 1.52 | 1.16 | 0.61, 2.21 | 1.17 | 0.77, 1.78 | |
≥3 h per day | 197 | 40.79% | 0.98 | 0.61, 1.59 | 0.79 | 0.56, 1.10 | 1.06 | 0.56, 2.01 | 1.56 | 1.02, 2.37 | |
No. of social media channels | p = 0.6266 | p < 0.0034 # | |||||||||
0 channels | 129 | 26.71% | 0.93 | 0.70, 1.29 | 1.24 | 0.83, 1.87 | |||||
1 channel | 131 | 27.12% | ref | --- | Ref | --- | |||||
2 channels | 90 | 18.63% | 1.18 | 0.85, 1.64 | 1.13 | 0.71, 1.79 | |||||
3 channels | 63 | 13.04% | 1.21 | 0.85, 1.73 | 0.54 | 0.26, 1.10 | |||||
4 channels | 28 | 5.80% | 1.17 | 0.72, 1.90 | 1.36 | 0.73, 2.52 | |||||
5 channels | 42 | 8.70% | 0.97 | 0.61, 1.55 | 2.01 † | 1.29, 3.13 | |||||
Trust vaccine information | p < 0.0001 | p = 0.0008 | p < 0.0001 | p < 0.0001 | |||||||
Low trust | 228 | 47.20% | ref | --- | --- | --- | ref | --- | --- | --- | |
Some trust | 173 | 35.82% | 1.53 † | 1.16, 2.02 | 1.35 * | 1.02, 1.79 | 0.39 ‡ | 0.27, 0.57 | 0.45 ‡ | 0.31, 0.65 | |
High trust | 82 | 16.98% | 2.33 ‡ | 1.78, 3.05 | 1.76 † | 1.31, 2.37 | 0.37 † | 0.21, 0.63 | 0.50 * | 0.29, 0.85 | |
Social media impact on vaccine confidence | p = 0.0002 # | p = 0.0017 | p = 0.0148 | ||||||||
Increased | 101 | 21.17% | ref | --- | ref | --- | --- | --- | |||
Reduced | 73 | 15.30% | 0.61 † | 0.43, 0.87 | 2.11 † | 1.33, 3.34 | 2.05 † | 1.28, 3.30 | |||
No change | 160 | 33.54% | 0.68 † | 0.52, 0.88 | 1.29 | 0.82, 2.05 | 1.50 | 0.95, 2.37 | |||
Unsure | 49 | 10.27% | 0.51 † | 0.31, 0.81 | 0.69 | 0.31, 1.51 | 0.96 | 0.42, 2.20 | |||
No information from social media | 94 | 19.71% | 0.51 † | 0.35, 0.73 | 1.28 | 0.77, 2.13 | 1.33 | 0.77, 2.31 | |||
Misinformation endorsement score | p < 0.0001 | p = 0.0031 | NA | NA | |||||||
First quartile (low endorsement) | 110 | 22.77% | ref | --- | ref | --- | |||||
Second quartile | 127 | 26.29% | 0.46 ‡ | 0.34, 0.63 | 0.59 † | 0.44, 0.80 | |||||
Third quartile | 116 | 24.02% | 0.55 ‡ | 0.41, 0.73 | 0.77 | 0.57, 1.04 | |||||
Fourth quartile (high endorsement) | 130 | 26.92% | 0.43 ‡ | 0.31, 0.59 | 0.66 * | 0.47, 0.92 | |||||
The following are binary predictors with the PR representing the prevalence of vaccine acceptance/misinformation endorsement in the people responding “yes” compared to those responding “no”. | |||||||||||
COVID-19 personal experience | |||||||||||
Ever diagnosed with COVID-19 | 169 | 34.99% | 1.07 | 0.85, 1.35 | 1.41 * | 1.05, 1.88 | |||||
Family or friend had COVID-19 | 256 | 53.00% | 1.03 | 0.82, 1.29 | 0.97 | 0.72, 1.31 | |||||
Family or friend died from COVID-19 | 98 | 20.29% | 0.88 | 0.65, 1.18 | 0.94 | 0.64, 1.36 | |||||
Prior bad experience with vaccines | 26 | 5.38% | 0.49 | 0.22, 1.08 | 1.62 * | 1.01, 2.61 | |||||
Distrust vaccines | 59 | 12.21% | 0.72 | 0.48, 1.10 | 2.06 ‡ | 1.51, 2.82 | 1.88 † | 1.33, 2.64 | |||
Main COVID-19 information source | |||||||||||
Social media | 147 | 30.43% | 1.06 | 0.83, 1.35 | 0.57 ▲ | 0.25, 1.29 | 0.63 * | 0.43, 0.91 | 1.39 ▲ | 0.58, 3.33 | |
Traditional media | 425 | 87.99% | 1.27 | 0.85, 1.90 | 1.05 | 0.66, 1.66 | |||||
TV | 351 | 72.67% | 1.21 | 0.92, 1.59 | 1.11 | 0.79, 1.55 | |||||
Radio | 64 | 13.25% | 0.97 | 0.69, 1.36 | 1.12 | 0.74, 1.69 | |||||
Newspapers | 106 | 21.95% | 1.24 | 0.97, 1.59 | 0.93 | 0.65, 1.34 | |||||
Traditional media (English) | 408 | 84.47% | 1.24 | 0.87, 1.76 | 1.01 | 0.67, 1.52 | |||||
Traditional media (Spanish) | 114 | 23.60% | 1.16 | 0.90, 1.49 | 1.33 | 0.98, 1.83 | |||||
Vaccine info. from social media | |||||||||||
No information from social media | 94 | 19.46% | 0.70 * | 0.50, 0.99 | 0.99 | 0.68, 1.43 | |||||
241 | 49.90% | 1.09 | 0.87, 1.37 | 1.37 * | 1.02, 1.85 | 1.39 * | 1.01, 1.92 | ||||
YouTube | 182 | 37.68% | 1.07 | 0.85, 1.34 | 1.21 | 0.90, 1.63 | |||||
101 | 20.91% | 1.14 | 0.88, 1.48 | 1.13 | 0.80, 1.60 | ||||||
170 | 35.20% | 1.16 | 0.93, 1.46 | 1.01 | 0.74, 1.37 | ||||||
TikTok | 128 | 26.50% | 0.96 | 0.74, 1.25 | 0.94 | 0.67, 1.33 | |||||
Trust information from social media | 113 | 23.40% | 1.30 * | 1.03, 1.66 | 0.98 | 0.69, 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carosella, E.A.; Su, M.; Testa, M.A.; Arzilli, G.; Conni, A.; Savoia, E. COVID-19 Vaccine Hesitancy and Misinformation Endorsement among a Sample of Native Spanish-Speakers in the US: A Cross-Sectional Study. Healthcare 2024, 12, 1545. https://doi.org/10.3390/healthcare12151545
Carosella EA, Su M, Testa MA, Arzilli G, Conni A, Savoia E. COVID-19 Vaccine Hesitancy and Misinformation Endorsement among a Sample of Native Spanish-Speakers in the US: A Cross-Sectional Study. Healthcare. 2024; 12(15):1545. https://doi.org/10.3390/healthcare12151545
Chicago/Turabian StyleCarosella, Elizabeth A., Maxwell Su, Marcia A. Testa, Guglielmo Arzilli, Alice Conni, and Elena Savoia. 2024. "COVID-19 Vaccine Hesitancy and Misinformation Endorsement among a Sample of Native Spanish-Speakers in the US: A Cross-Sectional Study" Healthcare 12, no. 15: 1545. https://doi.org/10.3390/healthcare12151545
APA StyleCarosella, E. A., Su, M., Testa, M. A., Arzilli, G., Conni, A., & Savoia, E. (2024). COVID-19 Vaccine Hesitancy and Misinformation Endorsement among a Sample of Native Spanish-Speakers in the US: A Cross-Sectional Study. Healthcare, 12(15), 1545. https://doi.org/10.3390/healthcare12151545