Group-Based Trajectory Modeling of N-Terminal Pro-Brain Natriuretic Peptide Levels in Pulmonary Artery Hypertension Associated with Connective Tissue Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Latent Trajectory Modeling
2.4. Statistics
3. Results
3.1. Patient Characteristics
3.2. NT-proBNP Trajectories
3.3. Association between NT-proBNP Trajectories and Prognosis
3.4. Effects of Baseline Clinical Characteristics on NT-proBNP Trajectories
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovacs, G.; Berghold, A.; Scheidl, S.; Olschewski, H. Pulmonary arterial pressure during rest and exercise in healthy subjects: A systematic review. Eur. Respir. J. 2009, 34, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Thoreau, B.; Mouthon, L. Pulmonary arterial hypertension associated with connective tissue diseases (CTD-PAH): Recent and advanced data. Autoimmun. Rev. 2023, 23, 103506. [Google Scholar] [CrossRef]
- Lau, E.M.T.; Giannoulatou, E.; Celermajer, D.S.; Humbert, M. Epidemiology and treatment of pulmonary arterial hypertension. Nat. Rev. Cardiol. 2017, 14, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Channick, R.N.; Frantz, R.P.; Grünig, E.; Jing, Z.C.; Moiseeva, O.; Preston, I.R.; Pulido, T.; Safdar, Z.; Tamura, Y.; et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur. Respir. J. 2019, 53, 1801889. [Google Scholar] [CrossRef]
- Benza, R.L.; Gomberg-Maitland, M.; Elliott, C.G.; Farber, H.W.; Foreman, A.J.; Frost, A.E.; McGoon, M.D.; Pasta, D.J.; Selej, M.; Burger, C.D.; et al. Predicting Survival in Patients with Pulmonary Arterial Hypertension: The REVEAL Risk Score Calculator 2.0 and Comparison With ESC/ERS-Based Risk Assessment Strategies. Chest 2019, 156, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Benza, R.L.; Kanwar, M.K.; Raina, A.; Scott, J.V.; Zhao, C.L.; Selej, M.; Elliott, C.G.; Farber, H.W. Development and Validation of an Abridged Version of the REVEAL 2.0 Risk Score Calculator, REVEAL Lite 2, for Use in Patients with Pulmonary Arterial Hypertension. Chest 2021, 159, 337–346. [Google Scholar] [CrossRef]
- Nagin, D.S.; Jones, B.L.; Elmer, J. Recent Advances in Group-Based Trajectory Modeling for Clinical Research. Annu. Rev. Clin. Psychol. 2024, 20, 285–305. [Google Scholar] [CrossRef]
- Nagin, D.S.; Odgers, C.L. Group-based trajectory modeling in clinical research. Annu. Rev. Clin. Psychol. 2010, 6, 109–138. [Google Scholar] [CrossRef]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 1151–1159. [Google Scholar] [CrossRef]
- Vitali, C.; Bombardieri, S.; Jonsson, R.; Moutsopoulos, H.M.; Alexander, E.L.; Carsons, S.E.; Daniels, T.E.; Fox, P.C.; Fox, R.I.; Kassan, S.S.; et al. Classification criteria for Sjögren’s syndrome: A revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 2002, 61, 554–558. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.C.; Irvin, W.S.; Tan, E.M.; Gould, R.G.; Holman, H.R. Mixed connective tissue disease—An apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am. J. Med. 1972, 52, 148–159. [Google Scholar] [CrossRef]
- Bombardier, C.; Gladman, D.D.; Urowitz, M.B.; Caron, D.; Chang, C.H. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992, 35, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Seror, R.; Bootsma, H.; Saraux, A.; Bowman, S.J.; Theander, E.; Brun, J.G.; Baron, G.; Le Guern, V.; Devauchelle-Pensec, V.; Ramos-Casals, M.; et al. Defining disease activity states and clinically meaningful improvement in primary Sjögren’s syndrome with EULAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient-reported indexes (ESSPRI). Ann. Rheum. Dis. 2016, 75, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Medsger, T.A., Jr.; Silman, A.J.; Steen, V.D.; Black, C.M.; Akesson, A.; Bacon, P.A.; Harris, C.A.; Jablonska, S.; Jayson, M.I.; Jimenez, S.A.; et al. A disease severity scale for systemic sclerosis: Development and testing. J. Rheumatol. 1999, 26, 2159–2167. [Google Scholar] [PubMed]
- Anderson, J.; Caplan, L.; Yazdany, J.; Robbins, M.L.; Neogi, T.; Michaud, K.; Saag, K.G.; O’Dell, J.R.; Kazi, S. Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice. Arthritis Care Res. 2012, 64, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Kylhammar, D.; Kjellström, B.; Hjalmarsson, C.; Jansson, K.; Nisell, M.; Söderberg, S.; Wikström, G.; Rådegran, G. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur. Heart J. 2018, 39, 4175–4181. [Google Scholar] [CrossRef]
- Qian, J.; Li, M.; Zhang, X.; Wang, Q.; Zhao, J.; Tian, Z.; Wei, W.; Zuo, X.; Zhang, M.; Zhu, P.; et al. Long-term prognosis of patients with systemic lupus erythematosus-associated pulmonary arterial hypertension: CSTAR-PAH cohort study. Eur. Respir. J. 2019, 53, 1800081. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Qian, J.; Zhang, S.; Xu, D.; Leng, X.; Zhao, J.; Wang, Q.; Zhang, W.; Tian, X.; Li, M.; et al. Immunosuppressive therapy in patients with connective tissue disease-associated pulmonary arterial hypertension: A systematic review. Int. J. Rheum. Dis. 2022, 25, 982–990. [Google Scholar] [CrossRef] [PubMed]
Baseline Clinical Characteristics | NT-proBNP Trajectories | p | |
---|---|---|---|
Early Remission (n = 20) | Delayed Remission and High Stability (n = 17) | ||
Age, years | 34.00 (25.00, 45.00) | 48.00 (36.50, 57.50) | 0.006 |
Primary CTD | 0.120 | ||
SLE, n (%) | 8 (40.00) | 6 (35.30) | |
pSS, n (%) | 5 (25.00) | 4 (23.53) | |
SSc, n (%) | 0 (0.00) | 5 (29.41) | |
RA, n (%) | 1 (5.00) | 0 (0.00) | |
MCTD, n (%) | 2 (10.00) | 1 (5.88) | |
UCTD, n (%) | 4 (20.00) | 1 (5.88) | |
CTD duration, years | 0.00 (0.00, 0.00) | 2.00 (0.00, 7.50) | 0.024 |
Active CTD, n (%) | 11 (55.00) | 6 (35.29) | 0.231 |
Intensive CTD immunotherapy, n (%) | 19 (95.00) | 9 (52.94) | 0.005 |
PAH duration, years | 0.00 (0.00, 1.00) | 1.00 (0.00, 2.00) | 0.242 |
WSPH groups | 0.033 | ||
Low risk, n (%) | 5 (25.00) | 1 (5.88) | |
Intermediate risk, n (%) | 13 (65.00) | 8 (47.06) | |
High risk, n (%) | 2 (10.00) | 8 (47.06) | |
6MWD, m | 458.50 (392.75, 538.75) | 368.00 (227.00, 443.50) | 0.004 |
WHO-FC | 0.023 | ||
I, n (%) | 1 (5.00) | 0 (0.00) | |
II, n (%) | 10 (50.00) | 3 (17.65) | |
III, n (%) | 9 (45.00) | 11 (64.71) | |
IV, n (%) | 0 (0.00) | 3 (17.65) | |
RAD, mm | 40.00 (38.25, 44.75) | 46.00 (41.50, 51.00) | 0.010 |
RVDd, mm | 41.80 ± 4.07 | 46.12 ± 5.78 | 0.012 |
TRV, cm/s | 401.00 ± 72.25 | 424.29 ± 62.73 | 0.307 |
TAPSE/PASP ratio | 0.27 ± 0.12 | 0.20 ± 0.09 | 0.061 |
Pericardial effusion, n (%) | 7 (35.00) | 13 (76.47) | 0.012 |
mPAP, mmHg | 41.00 (34.25, 57.75) | 49.00 (39.50, 62.00) | 0.131 |
SVO2, % | 63.50 (59.25, 67.75) | 57.00 (46.00, 70.50) | 0.293 |
mRAP, mmHg | 5.50 (3.00, 9.00) | 7.00 (4.50, 9.00) | 0.340 |
PAWP, mmHg | 8.20 ± 3.02 | 9.12 ± 3.08 | 0.368 |
mRVP, mmHg | 22.50 (19.50, 34.75) | 28.00 (24.50, 37.00) | 0.184 |
PVR, Wood | 8.20 (5.55, 13.13) | 10.63 (6.63, 21.88) | 0.170 |
Cardiac index, L/min/m2 | 2.72 ± 0.75 | 2.51 ± 0.89 | 0.424 |
PAH-targeted drug therapy | 0.439 | ||
ERA, n (%) | 0 (0.00) | 0 (0.00) | |
PDE5i, n (%) | 0 (0.00) | 1 (5.88) | |
ERA + PDE5i, n (%) | 12 (60.00) | 10 (58.82) | |
ERA + PRA, n (%) | 0 (0.00) | 1 (5.88) | |
PDE5i + PRA, n (%) | 0 (0.00) | 0 (0.00) | |
ERA + PDE5i + PRA, n (%) | 8 (40.00) | 5 (29.41) |
Baseline Clinical Characteristics | LASSO Regression Coefficient | Univariate Logistic Regression | Multivariate Logistic Regression | ||
---|---|---|---|---|---|
p | OR (95% CI) | p | OR (95% CI) | ||
Age | 0.014 | 0.015 | 1.080 (1.015–1.149) | 0.061 | 1.106 (0.995–1.229) |
Primary CTD | >0.05 | ||||
CTD duration | 0.259 | 1.062 (0.957–1.179) | |||
Active CTD | 0.234 | 0.446 (0.118–1.685) | |||
Intensive CTD immunotherapy | −0.718 | 0.013 | 0.059 (0.006–0.548) | 0.048 | 0.027 (0.001–0.963) |
PAH duration | 0.893 | 0.985 (0.787–1.232) | |||
6MWD rank | 0.024 | 2.679 (1.136–6.319) | |||
WHO-FC | 0.307 | 0.013 | 5.689 (1.448–22.348) | 0.077 | 7.710 (0.799–74.377) |
RAD | 0.023 | 1.176 (1.022–1.353) | |||
RVDd | 0.029 | 0.020 | 1.203 (1.029–1.406) | 0.205 | 1.171 (0.918–1.494) |
TRV | 0.299 | 1.005 (0.995–1.015) | |||
TAPSE/PASP ratio rank | 0.056 | 2.402 (0.976–5.908) | |||
Pericardial effusion | 0.319 | 0.015 | 6.036 (1.417–25.710) | 0.054 | 15.887 (0.955–264.229) |
mPAP | 0.139 | 1.035 (0.989–1.084) | |||
SVO2 | 0.110 | 0.946 (0.885–1.013) | |||
mRAP | 0.489 | 1.069 (0.884–1.294) | |||
PAWP | 0.358 | 1.109 (0.889–1.383) | |||
mRVP | 0.573 | 1.019 (0.954–1.088) | |||
PVR | 0.119 | 1.074 (0.982–1.176) | |||
Cardiac index | 0.413 | 0.709 (0.311–1.616) | |||
PAH-targeted drug therapy | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Lu, F.; Huang, Y.; Wang, Q.; Sun, X.; Zhang, M.; Zhou, L. Group-Based Trajectory Modeling of N-Terminal Pro-Brain Natriuretic Peptide Levels in Pulmonary Artery Hypertension Associated with Connective Tissue Disease. Healthcare 2024, 12, 1633. https://doi.org/10.3390/healthcare12161633
Tang H, Lu F, Huang Y, Wang Q, Sun X, Zhang M, Zhou L. Group-Based Trajectory Modeling of N-Terminal Pro-Brain Natriuretic Peptide Levels in Pulmonary Artery Hypertension Associated with Connective Tissue Disease. Healthcare. 2024; 12(16):1633. https://doi.org/10.3390/healthcare12161633
Chicago/Turabian StyleTang, Heng, Fengyun Lu, Yingheng Huang, Qiang Wang, Xiaoxuan Sun, Miaojia Zhang, and Lei Zhou. 2024. "Group-Based Trajectory Modeling of N-Terminal Pro-Brain Natriuretic Peptide Levels in Pulmonary Artery Hypertension Associated with Connective Tissue Disease" Healthcare 12, no. 16: 1633. https://doi.org/10.3390/healthcare12161633
APA StyleTang, H., Lu, F., Huang, Y., Wang, Q., Sun, X., Zhang, M., & Zhou, L. (2024). Group-Based Trajectory Modeling of N-Terminal Pro-Brain Natriuretic Peptide Levels in Pulmonary Artery Hypertension Associated with Connective Tissue Disease. Healthcare, 12(16), 1633. https://doi.org/10.3390/healthcare12161633