Polycystic Ovary Syndrome and the Internet of Things: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question
2.2. Eligibility Criteria
2.3. Search Strategy—Information Sources
2.4. Data Extraction and Analysis
3. Results
3.1. Mobile Apps
3.2. Social Media
3.3. Wearables
3.4. Machine Learning
3.5. Websites
3.6. Phone-Based
3.7. Participant Voices
4. Discussion
4.1. Gaps in PCOS Care and Education
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef]
- Azziz, R. Polycystic Ovary Syndrome. Obstet. Gynecol. 2018, 132, 321–336. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Hum. Reprod. 2023, 38, 1655–1679. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Q.; Hao, Y.; Jiao, M.; Wang, X.; Jiang, S.; Han, L. Measuring the global disease burden of polycystic ovary syndrome in 194 countries: Global Burden of Disease Study 2017. Hum. Reprod. 2021, 36, 1108–1119. [Google Scholar] [CrossRef]
- Stener-Victorin, E.; Teede, H.; Norman, R.J.; Legro, R.; Goodarzi, M.O.; Dokras, A.; Laven, J.; Hoeger, K.; Piltonen, T.T. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Hardiman, P.J.; Petersen, I.; Baio, G. Incidence and prevalence of diabetes and cost of illness analysis of polycystic ovary syndrome: A Bayesian modelling study. Hum. Reprod. 2018, 33, 1299–1306. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [CrossRef]
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.E.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016, 2, 16057. [Google Scholar] [CrossRef]
- Lim, S.; Wright, B.; Savaglio, M.; Goodwin, D.; Pirotta, S.; Moran, L. An Analysis on the Implementation of the Evidence-based PCOS Lifestyle Guideline: Recommendations from Women with PCOS. Semin. Reprod. Med. 2021, 39, 153–160. [Google Scholar] [CrossRef]
- Ismayilova, M.; Yaya, S. What can be done to improve polycystic ovary syndrome (PCOS) healthcare? Insights from semi-structured interviews with women in Canada. BMC Women’s Health 2022, 22, 157. [Google Scholar] [CrossRef]
- Dokras, A.; Saini, S.; Gibson-Helm, M.; Schulkin, J.; Cooney, L.; Teede, H. Gaps in knowledge among physicians regarding diagnostic criteria and management of polycystic ovary syndrome. Fertil. Steril. 2017, 107, 1380–1386.e1. [Google Scholar] [CrossRef]
- Gibson-Helm, M.; Dokras, A.; Karro, H.; Piltonen, T.; Teede, H.J. Knowledge and Practices Regarding Polycystic Ovary Syndrome among Physicians in Europe, North America, and Internationally: An Online Questionnaire-Based Study. Semin. Reprod. Med. 2018, 36, 19–27. [Google Scholar] [CrossRef]
- Piltonen, T.T.; Ruokojärvi, M.; Karro, H.; Kujanpää, L.; Morin-Papunen, L.; Tapanainen, J.S.; Stener-Victorin, E.; Sundrström-Poromaa, I.; Hirschberg, A.L.; Ravn, P.; et al. Awareness of polycystic ovary syndrome among obstetrician-gynecologists and endocrinologists in Northern Europe. PLoS ONE 2019, 14, e0226074. [Google Scholar] [CrossRef]
- Chemerinski, A.; Cooney, L.; Shah, D.; Butts, S.; Gibson-Helm, M.; Dokras, A. Knowledge of PCOS in physicians-in-training: Identifying gaps and educational opportunities. Gynecol. Endocrinol. 2020, 36, 854–859. [Google Scholar] [CrossRef]
- Gibson-Helm, M.; Teede, H.; Dunaif, A.; Dokras, A. Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 604–612. [Google Scholar] [CrossRef]
- Garad, R.M.; Teede, H.J. Polycystic ovary syndrome: Improving policies, awareness, and clinical care. Curr. Opin. Endocr. Metab. Res. 2020, 12, 112–118. [Google Scholar] [CrossRef]
- Copp, T.; Muscat, D.M.; Hersch, J.; McCaffery, K.J.; Doust, J.; Dokras, A.; Mol, B.W.; Jansen, J. The challenges with managing polycystic ovary syndrome: A qualitative study of women’s and clinicians’ experiences. Patient Educ. Couns. 2022, 105, 719–725. [Google Scholar] [CrossRef]
- Tay, C.T.; Williams, F.; Mousa, A.; Teede, H.; Burgert, T.S. Bridging the Information Gap in Polycystic Ovary Syndrome: A Narrative Review with Systematic Approach. Semin. Reprod. Med. 2023, 41, 012–019. [Google Scholar] [CrossRef]
- Smuck, M.; Odonkor, C.A.; Wilt, J.K.; Schmidt, N.; Swiernik, M.A. The emerging clinical role of wearables: Factors for successful implementation in healthcare. NPJ Digit. Med. 2021, 4, 45. [Google Scholar] [CrossRef]
- Kotronis, C.; Routis, I.; Politi, E.; Nikolaidou, M.; Dimitrakopoulos, G.; Anagnostopoulos, D.; Amira, A.; Bensaali, F.; Djelouat, H. Evaluating Internet of Medical Things (IoMT)-Based Systems from a Human-Centric Perspective. Internet Things 2019, 8, 100125. [Google Scholar] [CrossRef]
- Mattison, G.; Canfell, O.; Forrester, D.; Dobbins, C.; Smith, D.; Töyräs, J.; Sullivan, C. The Influence of Wearables on Health Care Outcomes in Chronic Disease: Systematic Review. J. Med. Internet Res. 2022, 24, e36690. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, Y.; Fu, X.; Qi, Y. Building the Internet of Things platform for smart maternal healthcare services with wearable devices and cloud computing. Future Gener. Comput. Syst. 2021, 118, 282–296. [Google Scholar] [CrossRef]
- Ferguson, T.; Olds, T.; Curtis, R.; Blake, H.; Crozier, A.J.; Dankiw, K.; Dumuid, D.; Kasai, D.; O’Connor, E.; Virgara, R.; et al. Effectiveness of wearable activity trackers to increase physical activity and improve health: A systematic review of systematic reviews and meta-analyses. Lancet Digit. Health 2022, 4, e615–e626. [Google Scholar] [CrossRef] [PubMed]
- Broad, A.; Biswakarma, R.; Harper, J.C. A survey of women’s experiences of using period tracker applications: Attitudes, ovulation prediction and how the accuracy of the app in predicting period start dates affects their feelings and behaviours. Women’s Health 2022, 18, 17455057221095246. [Google Scholar] [CrossRef] [PubMed]
- Lynn, T.; Mooney, J.G.; Lee, B.; Endo, P.T. The Internet of Things: Definitions, Key Concepts, and Reference Architectures. In The Cloud-to-Thing Continuum; Springer International Publishing AG: Cham, Switzerland, 2020. [Google Scholar]
- Kadhim, K.T.; Alsahlany, A.M.; Wadi, S.M.; Kadhum, H.T. An Overview of Patient’s Health Status Monitoring System Based on Internet of Things (IoT). Wirel. Pers. Commun. 2020, 114, 2235–2262. [Google Scholar] [CrossRef]
- Ning, Z.; Dong, P.; Wang, X.; Hu, X.; Guo, L.; Hu, B.; Guo, Y.; Qiu, T.; Kwok, R.Y.K. Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach. IEEE J. Sel. Areas Commun. 2021, 39, 463–478. [Google Scholar] [CrossRef]
- Dian, F.J.; Vahidnia, R.; Rahmati, A. Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A Survey. IEEE Access 2020, 8, 69200–69211. [Google Scholar] [CrossRef]
- Singh, B.; Lopez, D.; Ramadan, R. Internet of things in Healthcare: A conventional literature review. Health Technol. 2023, 13, 699–719. [Google Scholar] [CrossRef]
- Teede, H.; Tay, C.T.; Laven, J.; Dokras, A.; Moran, L.; Piltonen, T.; Costello, M.; Boivin, J.; Redman, L.; Boyle, J.; et al. International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome 2023; Monash University: Victoria, Australia, 2023. [Google Scholar] [CrossRef]
- Garad, R.M.; Bahri-Khomami, M.; Busby, M.; Burgert, T.S.; Boivin, J.; Teede, H.J. Breaking Boundaries: Toward Consistent Gender-Sensitive Language in Sexual and Reproductive Health Guidelines. Semin. Reprod. Med. 2023, 41, 005–011. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. IS 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Chapter 11: Scoping Reviews (2020 version). In JBI Reviewer’s Manual; Aromataris, E., Munn, Z., Eds.; JBI: North Adelaide, SA, Australia, 2020; Available online: https://synthesismanual.jbi.global/ (accessed on 11 July 2024). [CrossRef]
- Pollock, D.; Davies, E.L.; Peters, M.D.J.; Tricco, A.C.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H.; Munn, Z. Undertaking a scoping review: A practical guide for nursing and midwifery students, clinicians, researchers, and academics. J. Adv. Nurs. 2021, 77, 2102–2113. [Google Scholar] [CrossRef]
- Alotaibi, M.; Shaman, A.A. Enhancing polycystic ovarian syndrome awareness using private social network. mHealth 2020, 6, 33. [Google Scholar] [CrossRef]
- Alotaibi, M.; Alsinan, A. A mobile Polycystic ovarian syndrome management and awareness system for Gulf countries: System architecture. In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 1164–1167. [Google Scholar]
- Lee, H.; Lee, S. Effectiveness of an Integrated Mobile Application for Lifestyle Modifications in Overweight Women with Polycystic Ovarian Syndrome: A Randomized Controlled Trial. Life 2023, 13, 1533. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Lee, S.H.; Yang, S.Y. Development of an integrated mobile application for lifestyle modification in women with polycystic ovarian syndrome. J. Clin. Nurs. 2023, 32, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Smith, C.A.; Costello, M.F.; MacMillan, F.; Moran, L.; Teede, H.; Ee, C. Health literacy needs in weight management of women with Polycystic Ovary Syndrome. Health Promot. J. Aust. 2021, 32, 41–48. [Google Scholar] [CrossRef]
- Ee, C.; Smith, C.; Moran, L.; MacMillan, F.; Costello, M.; Baylock, B.; Teede, H. “The whole package deal”: Experiences of overweight/obese women living with polycystic ovary syndrome. BMC Women’s Health 2020, 20, 221. [Google Scholar] [CrossRef]
- Chiu, W.; Kuczynska-Burggraf, M.; Gibson-Helm, M.; Teede, H.J.; Vincent, A.; Boyle, J.A. What Can You Find about Polycystic Ovary Syndrome (PCOS) Online? Assessing Online Information on PCOS: Quality, Content, and User-Friendliness. Semin. Reprod. Med. 2018, 36, 50–58. [Google Scholar] [CrossRef]
- Htet, T.; Cassar, S.; Boyle, J.A.; Kuczynska-Burggraf, M.; Gibson-Helm, M.; Chiu, W.; Stepto, N.K.; Moran, L.J. Informing Translation: The Accuracy of Information on Websites for Lifestyle Management of Polycystic Ovary Syndrome. Semin. Reprod. Med. 2018, 36, 80–85. [Google Scholar] [CrossRef]
- Dietz de Loos, A.; Jiskoot, G.; Beerthuizen, A.; Busschbach, J.; Laven, J. Metabolic health during a randomized controlled lifestyle intervention in women with PCOS. Eur. J. Endocrinol. 2022, 186, 53–64. [Google Scholar] [CrossRef]
- Jiskoot, G.; Dietz de Loos, A.; Beerthuizen, A.; Timman, R.; Busschbach, J.; Laven, J.; Atkin, S.L. Long-term effects of a three-component lifestyle intervention on emotional well-being in women with Polycystic Ovary Syndrome (PCOS): A secondary analysis of a randomized controlled trial. PLoS ONE 2020, 15, e0233876. [Google Scholar] [CrossRef]
- Jiskoot, G.; Timman, R.; Beerthuizen, A.; Dietz de Loos, A.; Busschbach, J.; Laven, J. Weight Reduction Through a Cognitive Behavioral Therapy Lifestyle Intervention in PCOS: The Primary Outcome of a Randomized Controlled Trial. Obesity 2020, 28, 2134–2141. [Google Scholar] [CrossRef]
- Jiskoot, G.; Benneheij, S.H.; Beerthuizen, A.; de Niet, J.E.; de Klerk, C.; Timman, R.; Busschbach, J.J.; Laven, J.S.E. A three-component cognitive behavioural lifestyle program for preconceptional weight-loss in women with polycystic ovary syndrome (PCOS): A protocol for a randomized controlled trial. Reprod. Health 2017, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, T.; Yong, P.; Doyle-Baker, P. Establishing a Gold Standard for Quantitative Menstrual Cycle Monitoring. Medicina 2023, 59, 1513. [Google Scholar] [CrossRef]
- Stujenske, T.M.; Mu, Q.; Pérez Capotosto, M.; Bouchard, T.P. Survey Analysis of Quantitative and Qualitative Menstrual Cycle Tracking Technologies. Medicina 2023, 59, 1509. [Google Scholar] [CrossRef]
- Hohmann-Marriott, B.E.; Williams, T.; Girling, J.E. The role of menstrual apps in healthcare: Provider and patient perspectives. N. Z. Med. J. 2023, 136, 42–53. [Google Scholar] [PubMed]
- Peven, K.; Wickham, A.P.; Wilks, O.; Kaplan, Y.C.; Marhol, A.; Ahmed, S.; Bamford, R.; Cunningham, A.C.; Prentice, C.; Meczner, A.; et al. Assessment of a Digital Symptom Checker Tool’s Accuracy in Suggesting Reproductive Health Conditions: Clinical Vignettes Study. JMIR mHealth uHealth 2023, 11, e46718. [Google Scholar] [CrossRef]
- Jain, T.; Negris, O.; Brown, D.; Galic, I.; Salimgaraev, R.; Zhaunova, L. Characterization of polycystic ovary syndrome among Flo app users around the world. Reprod. Biol. Endocrinol. 2021, 19, 36. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Tan, H.; Huang, S. Transtheoretical model-based mobile health application for PCOS. Reprod. Health 2022, 19, 117. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.A.; Xu, R.; Gilbert, E.; Kuczynska-Burggraf, M.; Tan, B.; Teede, H.; Vincent, A.; Gibson-Helm, M. Ask PCOS: Identifying Need to Inform Evidence-Based App Development for Polycystic Ovary Syndrome. Semin. Reprod. Med. 2018, 36, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Burstein, F.; Garad, R.; Teede, H.J.; Boyle, J.A. Personalized Mobile Tool AskPCOS Delivering Evidence-Based Quality Information about Polycystic Ovary Syndrome. Semin. Reprod. Med. 2018, 36, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, M.; Wang, P.; Yu, M.; Wang, Z.; Zhang, G. Preventive online and offline health management intervention in polycystic ovary syndrome. World J. Clin. Cases 2022, 10, 3060–3068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Li, H.; Zhang, S.; Suharwardy, S.; Chaturvedi, U.; Fischer-Colbrie, T.; Maratta, L.A.; Onnela, J.; Coull, B.A.; Hauser, R.; et al. Abnormal uterine bleeding patterns determined through menstrual tracking among participants in the Apple Women’s Health Study. Am. J. Obstet. Gynecol. 2023, 228, e1–e213. [Google Scholar] [CrossRef]
- Vasavi, R.R.; Priscilla Prathibha, S.; Valiveti, H.; Maringanti, S.; Parsa, A. Polycystic Ovary Syndrome Monitoring using Machine Learning. In Proceedings of the 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), Bengaluru, India, 5–7 January 2023; pp. 1013–1019. [Google Scholar]
- Ajil, A.; Ali, A.; Ramachandra, H.V.; Nadaf, T.A. Enhancing the Healthcare by an Automated Detection Method for PCOS Using Supervised Machine Learning Algorithm. In Proceedings of the 2023 International Conference on Recent Advances in Information Technology for Sustainable Development (ICRAIS), Manipal, India, 6–7 November 2023; pp. 166–170. [Google Scholar] [CrossRef]
- Jeswani, N.; Jain, N.; Sharma, A.; Roychowdhury, S. Comprehensive FemTech Solution for Feminine Health. In Proceedings of the 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), Karaikal, India, 25–26 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Karia, A.; Poojary, A.; Tiwari, A.; Sequeira, L.; Sokhi, M.K. BeRedy (Period Tracker & PCOS Diagnosis). In Proceedings of the 2023 International Conference on Communication System, Computing and IT Applications (CSCITA), Mumbai, India, 31 March–1 April 2023; pp. 142–147. [Google Scholar] [CrossRef]
- Chauhan, P.; Patil, P.; Rane, N.; Raundale, P.; Kanakia, H. Comparative Analysis of Machine Learning Algorithms for Prediction of PCOS. In Proceedings of the 2021 International Conference on Communication information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Rodriguez, E.M.; Thomas, D.; Druet, A.; Vlajic-Wheeler, M.; Lane, K.J.; Mahalingaiah, S. Identifying Women at Risk for Polycystic Ovary Syndrome Using a Mobile Health App: Virtual Tool Functionality Assessment. JMIR Form. Res. 2020, 4, e15094. [Google Scholar] [CrossRef]
- Atigan, A.; Atigan, A. Polycystic Ovary Syndrome and Exercise: Evaluation of YouTube Videos. Curēus 2023, 15, e35093. [Google Scholar] [CrossRef]
- Clarke, S.; Jangid, G.; Nasr, S.; Atchade, A.; Moody, B.L.; Narayan, G. Polycystic Ovary Syndrome (PCOS): A Cross-Sectional Observational Study Analyzing the Quality of Content on YouTube. Curēus 2023, 15, e45354. [Google Scholar] [CrossRef]
- Elhariry, M.; Malhotra, K.; Solomon, M.; Goyal, K.; Kempegowda, P. Top 100 #PCOS influencers: Understanding who, why and how online content for PCOS is influenced. Front. Endocrinol. 2022, 13, 1084047. [Google Scholar] [CrossRef]
- Malhotra, K.; Pan, C.S.C.; Davitadze, M.; Kempegowda, P. Identifying the challenges and opportunities of PCOS awareness month by analysing its global digital impact. Front. Endocrinol. 2023, 14, 1109141. [Google Scholar] [CrossRef]
- Malhotra, K.; Kempegowda, P. Appraising Unmet Needs and Misinformation Spread About Polycystic Ovary Syndrome in 85,872 YouTube Comments Over 12 Years: Big Data Infodemiology Study. J. Med. Internet Res. 2023, 25, e49220. [Google Scholar] [CrossRef]
- Naroji, S.; John, J.; Gomez-Lobo, V. Understanding PCOS-Related Content across Social Media Platforms—A Cross-Sectional Analysis. J. Pediatr. Adolesc. Gynecol. 2024, 37, 142–148. [Google Scholar] [CrossRef]
- Zhang, F.; Qu, F.; Zhou, J. Application of WeChat Public Account for Lifestyle Management of Polycystic Ovary Syndrome. J. Coll. Physicians Surg. Pak. 2023, 33, 715. [Google Scholar] [CrossRef]
- Sang, M.; Wu, Q.; Tao, Y.; Huang, F.; Lu, L.; Zhou, W.; Li, A.; Bai, S. Usage of mobile health interventions among overweight/obese PCOS patients undergoing assisted reproductive technology treatment during the COVID-19 pandemic. Gynecol. Endocrinol. 2022, 38, 776–780. [Google Scholar] [CrossRef]
- Emanuel, R.H.K.; Docherty, P.D.; Lunt, H.; Campbell, R.E. Comparing Literature- and Subreddit-Derived Laboratory Values in Polycystic Ovary Syndrome (PCOS): Validation of Clinical Data Posted on PCOS Reddit Forums. JMIR Form. Res. 2023, 7, e44810. [Google Scholar] [CrossRef]
- Walter, J.R.; Lee, J.Y.; Snoll, B.; Park, J.B.; Kim, D.H.; Xu, S.; Barnhart, K. Pregnancy outcomes in infertility patients diagnosed with sleep disordered breathing with wireless wearable sensors. Sleep Med. 2022, 100, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Mario, F.M.; Graff, S.K.; Spritzer, P.M. Habitual physical activity is associated with improved anthropometric and androgenic profile in PCOS: A cross-sectional study. J. Endocrinol. Investig. 2017, 40, 377–384. [Google Scholar] [CrossRef]
- Michael, J.C.; El Nokali, N.E.; Black, J.J.; Rofey, D.L. Mood and Ambulatory Monitoring of Physical Activity Patterns in Youth with Polycystic Ovary Syndrome. J. Pediatr. Adolesc. Gynecol. 2015, 28, 369–372. [Google Scholar] [CrossRef]
- Shreeve, N.; Cagampang, F.; Sadek, K.; Tolhurst, M.; Houldey, A.; Hill, C.M.; Brook, N.; Macklon, N.; Cheong, Y. Poor sleep in PCOS; Is melatonin the culprit? Hum. Reprod. 2013, 28, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Teng, Y.; Zhou, J.; Lu, W.; Tao, M.; Jia, W. Increased mean glucose levels in patients with polycystic ovary syndrome and hyperandrogenemia as determined by continuous glucose monitoring. Acta Obstet. Gynecol. Scand. 2013, 92, 165–171. [Google Scholar] [CrossRef]
- Mario, F.M.; do Amarante, F.; Toscani, M.K.; Spritzer, P.M. Lean Muscle Mass in Classic or Ovulatory PCOS: Association with Central Obesity and Insulin Resistance. Exp. Clin. Endocrinol. Diabetes 2012, 120, 511–516. [Google Scholar] [CrossRef]
- Zachurzok-Buczynska, A.; Szydlowski, L.; Gawlik, A.; Wilk, K.; Malecka-Tendera, E. Blood pressure regulation and resting heart rate abnormalities in adolescent girls with polycystic ovary syndrome. Fertil. Steril. 2011, 96, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Dmitrovic, R.; Katcher, H.I.; Kunselman, A.R.; Legro, R.S. Continuous Glucose Monitoring During Pregnancy in Women With Polycystic Ovary Syndrome. Obstet. Gynecol. 2011, 118, 878–885. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, J.; Zhu, J.; Lu, W.; Jia, W. Continuous Glucose Monitoring Reveals Abnormal Features of Postprandial Glycemic Excursions in Women with Polycystic Ovarian Syndrome. Postgrad. Med. 2011, 123, 185–190. [Google Scholar] [CrossRef]
- Tao, M.; Zhu, J.; Zhou, J.; Lu, W.; Qin, W.; Teng, Y.; Jia, W. Insulin release and daily glucose change in polycystic ovary syndrome women with normal glucose tolerance. Zhong Hua Yi Xue Za Zhi 2009, 89, 659–663. [Google Scholar] [CrossRef]
- Barrera, F.J.; Brown, E.D.L.; Rojo, A.; Obeso, J.; Plata, H.; Lincango, E.P.; Terry, N.; Rodríguez-Gutiérrez, R.; Hall, J.E.; Shekhar, S. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: A systematic review. Front. Endocrinol. 2023, 14, 1106625. [Google Scholar] [CrossRef]
- Suriya Praba, T.; Reka, S.; Elakkiya, R. Early Diagnosis of Poly Cystic Ovary Syndrome (PCOS) in young women: A Machine Learning Approach. In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Singapore, 17–21 October 2022; pp. 286–288. [Google Scholar] [CrossRef]
- Zigarelli, A.; Jia, Z.; Lee, H. Machine-Aided Self-diagnostic Prediction Models for Polycystic Ovary Syndrome: Observational Study. JMIR Form. Res. 2022, 6, e29967. [Google Scholar] [CrossRef]
- Authier, M.; Normand, C.; Jego, M.; Gaborit, B.; Boubli, L.; Courbiere, B. Qualitative study of self-reported experiences of infertile women with polycystic ovary syndrome through on-line discussion forums. Ann. d’Endocrinol. 2020, 81, 487–492. [Google Scholar] [CrossRef]
- Vågenes, H.; Pranić, S.M. Analysis of the quality, accuracy, and readability of patient information on polycystic ovarian syndrome (PCOS) on the internet available in English: A cross-sectional study. Reprod. Biol. Endocrinol. 2023, 21, 44. [Google Scholar] [CrossRef]
- Wright, P.J.; Dawson, R.M.; Corbett, C.F. Social construction of biopsychosocial and medical experiences of women with polycystic ovary syndrome. J. Adv. Nurs. 2020, 76, 1728–1736. [Google Scholar] [CrossRef]
- Sanchez, N.; Jones, H. “Less Than A Wife”: A Study of Polycystic Ovary Syndrome Content in Teen and Women’s Digital Magazines. J. Med. Internet Res. 2016, 18, e89. [Google Scholar] [CrossRef]
- Mousiolis, A.; Michala, L.; Antsaklis, A. Polycystic ovary syndrome: Double click and right check. What do patients learn from the Internet about PCOS? Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 163, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Mallappa Saroja, C.S.; Hanji Chandrashekar, S. Polycystic ovaries: Review of medical information on the internet for patients. Arch. Gynecol. Obstet. 2010, 281, 839–843. [Google Scholar] [CrossRef]
- Malhotra, N.; Arora, T.K.; Suri, V.; Jena, S.K.; Verma, A.; Gowri, M.; Kapoor, N.; Chalga, M.S.; Kulkarni, B.; Kamath, M.S. Individualized lifestyle intervention in PCOS women (IPOS): A study protocol for a multicentric randomized controlled trial for evaluating the effectiveness of an individualized lifestyle intervention in PCOS women who wish to conceive. Trials 2023, 24, 457. [Google Scholar] [CrossRef] [PubMed]
- Cowan, S.; Grassi, A.; Monahan Couch, L.; Jeanes, Y.; Lim, S.; Pirotta, S.; Harris, J.; McGirr, C.; Moran, L. Evidence-Based Lifestyle Guidelines and Self-Management Strategies Utilized by Women with Polycystic Ovary Syndrome. Nutrients 2023, 15, 589. [Google Scholar] [CrossRef]
- Ismayilova, M.; Yaya, S. ‘I’m usually being my own doctor’: Women’s experiences of managing polycystic ovary syndrome in Canada. Int. Health 2023, 15, 56–66. [Google Scholar] [CrossRef]
- Holton, S.; Hammarberg, K.; Johnson, L. Fertility concerns and related information needs and preferences of women with PCOS. Hum. Reprod. Open 2018, 2018, hoy019. [Google Scholar] [CrossRef]
- Williams, S.; Sheffield, D.; Knibb, R.C. A snapshot of the lives of women with polycystic ovary syndrome: A photovoice investigation. J. Health Psychol. 2016, 21, 1170–1182. [Google Scholar] [CrossRef]
- Holbrey, S.; Coulson, N.S. A qualitative investigation of the impact of peer to peer online support for women living with Polycystic Ovary Syndrome. BMC Women’s Health 2013, 13, 51. [Google Scholar] [CrossRef]
- Avery, J.C.; Braunack-Mayer, A.J. The information needs of women diagnosed with Polycystic Ovarian Syndrome–implications for treatment and health outcomes. BMC Women’s Health 2007, 7, 9. [Google Scholar] [CrossRef]
- Elmannai, H.; El-Rashidy, N.; Mashal, I.; Alohali, M.A.; Farag, S.; El-Sappagh, S.; Saleh, H. Polycystic Ovary Syndrome Detection Machine Learning Model Based on Optimized Feature Selection and Explainable Artificial Intelligence. Diagnostics 2023, 13, 1506. [Google Scholar] [CrossRef]
- Zad, Z.; Jiang, V.S.; Wolf, A.T.; Wang, T.; Cheng, J.J.; Paschalidis, I.C.; Mahalingaiah, S. Predicting polycystic ovary syndrome with machine learning algorithms from electronic health records. Front. Endocrinol. 2024, 15, 1298628. [Google Scholar] [CrossRef]
- Lau, G.M.; Elghobashy, M.; Thanki, M.; Ibegbulam, S.; Latthe, P.; Gillett, C.D.T.; O’Reilly, M.W.; Arlt, W.; Lindenmeyer, A.; Kempegowda, P. A systematic review of lived experiences of people with polycystic ovary syndrome highlights the need for holistic care and co-creation of educational resources. Front. Endocrinol. 2022, 13, 1064937. [Google Scholar] [CrossRef]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, Challenges, and Guiding Treatment. J. Clin. Endocrinol. Metab. 2021, 106, e1071–e1083. [Google Scholar] [CrossRef]
- Sydora, B.C.; Wilke, M.S.; McPherson, M.; Chambers, S.; Ghosh, M.; Vine, D.F. Challenges in diagnosis and health care in polycystic ovary syndrome in Canada: A patient view to improve health care. BMC Women’s Health 2023, 23, 569. [Google Scholar] [CrossRef]
- Kaur, I.; Suri, V.; Rana, S.V.; Singh, A. Treatment pathways traversed by polycystic ovary syndrome (PCOS) patients: A mixed-method study. PLoS ONE 2021, 16, e0255830. [Google Scholar] [CrossRef]
- Anonymous. AskPCOS Is Your Personal Guide to PCOS. Available online: https://www.askpcos.org/ (accessed on 22 April 2024).
- Anonymous. PCOS Guideline. Available online: https://mchri.org.au/pcos-guideline/ (accessed on 22 April 2024).
- MCHRI Resources for Women with PCOS. Available online: https://www.mchri.org.au/guidelines-resources/community/pcos-resources/ (accessed on 22 April 2024).
- Sbaffi, L.; King, K. Living with Endometriosis: The Role of the Internet in Supporting the Diagnosis and Treatment Process. J. Consum. Health Internet 2020, 24, 370–390. [Google Scholar] [CrossRef]
- Wang, N.; Deng, Z.; Wen, L.M.; Ding, Y.; He, G. Understanding the Use of Smartphone Apps for Health Information Among Pregnant Chinese Women: Mixed Methods Study. JMIR mHealth uHealth 2019, 7, e12631. [Google Scholar] [CrossRef]
- Farnood, A.; Johnston, B.; Mair, F.S. A mixed methods systematic review of the effects of patient online self-diagnosing in the ‘smart-phone society’ on the healthcare professional-patient relationship and medical authority. BMC Med. Inform. Decis. Mak. 2020, 20, 253. [Google Scholar] [CrossRef]
- Vickery, M.; van Teijlingen, E.; Hundley, V.; Smith, G.B.; Way, S.; Westwood, G. Midwives’ views towards women using mHealth and eHealth to self-monitor their pregnancy: A systematic review of the literature. Eur. J. Midwifery 2020, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.S.; Goonawardene, N. Internet Health Information Seeking and the Patient-Physician Relationship: A Systematic Review. J. Med. Internet Res. 2017, 19, e9. [Google Scholar] [CrossRef] [PubMed]
- Bussey, L.G.; Sillence, E. The role of internet resources in health decision-making: A qualitative study. Digit. Health 2019, 5, 2055207619888073. [Google Scholar] [CrossRef]
- CoMICs Concise Medical Information Cines (CoMICs). Available online: https://sites.google.com/view/simbasimulation/comics (accessed on 8 April 2024).
- Shabbir, D.; Baig, S.A.; Rahman, F.; Batool, S.S.; Kowsik, M.; Banerjee, J.; Kumar, K.; Saiyed, M.F.; Venkatesh, V.; Iyer, P.V.; et al. CoMICs (Concise Medical Information Cines) videos on diabetes mellitus and polycystic ovary syndrome have better quality, content, and reliability compared to videos from other sources. Endocr. Abstr. 2023, 90, EP422. [Google Scholar] [CrossRef]
- Baig, S.A.; Banerjee, A.J.; Rahman, F.; Batul, S.S.; Kowsik, M.; Kumar, K.; Saiyad, M.F.; Venkatesh, V.; Iyer, P.V.; Kempegowda, P. Assessment of the quality, content, and reliability of the information in CoMICs videos in comparison to YouTube videos on diabetes mellitus and PCOS. Future Healthc. J. 2023, 10, S63. [Google Scholar]
- SIMBA Simulation via Instant Messaging—Birmingham Advance (SIMBA). Available online: https://www.youtube.com/@simbasimulation8047 (accessed on 8 April 2024).
- OpenAI ChatGPT. Available online: https://openai.com/chatgpt (accessed on 8 April 2024).
- Microsoft Copilot. Available online: https://copilot.microsoft.com (accessed on 8 April 2024).
- Kłak, A.; Gawińska, E.; Samoliński, B.; Raciborski, F. Dr Google as the source of health information—The results of pilot qualitative study. Pol. Ann. Med. 2017, 24, 188–193. [Google Scholar] [CrossRef]
- Van Riel, N.; Auwerx, K.; Debbaut, P.; Van Hees, S.; Schoenmakers, B. The effect of Dr Google on doctor–patient encounters in primary care: A quantitative, observational, cross-sectional study. BJGP Open 2017, 1, bjgpopen17X100833. [Google Scholar] [CrossRef]
- Cocco, A.M.; Zordan, R.; Taylor, D.M.; Weiland, T.J.; Dilley, S.J.; Kant, J.; Dombagolla, M.; Hendarto, A.; Lai, F.; Hutton, J. Dr Google in the ED: Searching for online health information by adult emergency department patients. Med. J. Aust. 2018, 209, 342–347. [Google Scholar] [CrossRef]
- Rodler, S.; Kopliku, R.; Ulrich, D.; Kaltenhauser, A.; Casuscelli, J.; Eismann, L.; Waidelich, R.; Buchner, A.; Butz, A.; Cacciamani, G.E.; et al. Patients’ Trust in Artificial Intelligence–based Decision-making for Localized Prostate Cancer: Results from a Prospective Trial. Eur. Urol. Focus 2023, in press. [CrossRef]
- Lin, J.; Joseph, T.; Parga-Belinkie, J.J.; Mandel, A.; Schumacher, R.; Neumann, K.; Scalise, L.; Gaulton, J.; Christ, L.; Leitner, K.; et al. Development of a practical training method for a healthcare artificial intelligence (AI) chatbot. BMJ Innov. 2021, 7, 441–444. [Google Scholar] [CrossRef]
- Siwicki, B. Conversational AI Improves ‘Fourth Trimester’ Maternal Care at Penn Medicine. Available online: https://www.healthcareitnews.com/news/conversational-ai-improves-fourth-trimester-maternal-care-penn-medicine (accessed on 15 May 2024).
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. Arch. Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef]
- Habicht, J.; Viswanathan, S.; Carrington, B.; Hauser, T.U.; Harper, R.; Rollwage, M. Closing the accessibility gap to mental health treatment with a personalized self-referral chatbot. Nat. Med. 2024, 30, 595–602. [Google Scholar] [CrossRef]
Study ID | Source of Information | View on Source of Information | Value | Concern |
---|---|---|---|---|
Cowan et al., 2023 [97] | Internet and social media | Sources often provide inaccurate and ineffective lifestyle advice | Internet and social media are primary sources for diet and activity information | Emphasizes need to increase engagement with qualified health professionals |
Ismaylova and Yaya, 2022 [98] | Online support groups | Provides emotional support and a sense of community | Connecting with others facing similar challenges as a source of support | Absence of support before joining online groups led to feelings of isolation and depression |
Copp et al., 2021 [17] | PCOS Australia Facebook group (social media) | Peer group may not be helpful as people have unique experiences | Positive experiences were reported from connecting with others | Concerns about potential stigmatization and the anxiety caused by reading others’ negative experiences |
Lim et al., 2021 [44]; Ee et al., 2020 [45] | Internet and online support groups | Gap in supportive and specific information for PCOS management | Sense of relatability in online posts | Stories and comments can create anxiety, and it can sometimes be a source of negativity |
Holton et al., 2018 [99] | Internet and Facebook (social media) | The internet and online support groups can provide valuable information | Preference for evidence-based information in an accessible format, such as trusted websites and podcasts with health professionals | Government factsheets can lack valuable information and academic sources can be dense |
Williams et al., 2016 [100] | PCOS conference and Tumblr (social media) | Useful for healthy meal information and learning about alternative treatment options | Shared experience is valuable with alternative treatment options shared | Fear of side effects from conventional treatments led to the search for alternatives |
Holbrey and Coulson, 2013 [101] | Online support group | Helpful to connect with others facing similar challenges | Support group helpful for discussing issues and concerns with people who understand | Reading about others’ severe problems sometimes led to increased anxiety |
Avery and Braunack-Mayer, 2007 [102] | Internet | Easily accessible, private, and valuable source of information that allows for multiple information queries | Ability to access a wealth of information at any time, in privacy | Exploring information on the internet might not be suitable for everyone |
IoT | Pros | Cons |
---|---|---|
Mobile apps | Facilitates symptom tracking, menstrual cycle monitoring, and education | Concerns about data privacy, security, and the quality and reliability of the information provided |
Social media | Useful for disseminating PCOS-related information and increasing awareness | Content quality can be variable and unreliable, with the potential for spreading misinformation |
Wearables | Enables detailed symptom monitoring and real-time health data collection | Cost and accessibility issues, along with concerns about data security and patient privacy |
Machine learning | Shows promising results in PCOS diagnosis accuracy, risk prediction, and mobile app development | Requires large and diverse datasets, and implementation can be complex and resource-intensive |
Websites | Among the abundant PCOS-related content, internet forums provide emotional support and first-hand knowledge sharing between patients | User access limited by digital literacy and accessibility, whilst the content may lack quality and cultural considerations |
Phone-based | Provides direct feedback and support, aiding in behavior change and self-management | Limited to user access to technology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graca, S.; Alloh, F.; Lagojda, L.; Dallaway, A.; Kyrou, I.; Randeva, H.S.; Kite, C. Polycystic Ovary Syndrome and the Internet of Things: A Scoping Review. Healthcare 2024, 12, 1671. https://doi.org/10.3390/healthcare12161671
Graca S, Alloh F, Lagojda L, Dallaway A, Kyrou I, Randeva HS, Kite C. Polycystic Ovary Syndrome and the Internet of Things: A Scoping Review. Healthcare. 2024; 12(16):1671. https://doi.org/10.3390/healthcare12161671
Chicago/Turabian StyleGraca, Sandro, Folashade Alloh, Lukasz Lagojda, Alexander Dallaway, Ioannis Kyrou, Harpal S. Randeva, and Chris Kite. 2024. "Polycystic Ovary Syndrome and the Internet of Things: A Scoping Review" Healthcare 12, no. 16: 1671. https://doi.org/10.3390/healthcare12161671
APA StyleGraca, S., Alloh, F., Lagojda, L., Dallaway, A., Kyrou, I., Randeva, H. S., & Kite, C. (2024). Polycystic Ovary Syndrome and the Internet of Things: A Scoping Review. Healthcare, 12(16), 1671. https://doi.org/10.3390/healthcare12161671