Long-Term Bone Density Changes and Fracture Risk in Myasthenia Gravis: Implications for FRAX® Tool Application
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Design and Participants
2.2. BMD Measurement and T-Scores and Z-Scores Calculation
2.3. Test for Bone Turnover Markers in Blood
2.4. Calculation of FRAX® Score with BMD
2.5. FRAX® Score Adjustment Based on Glucocorticoid Dose
2.6. Data Collection on Outcomes
2.7. Statistical Analysis
3. Results
3.1. Study Design and Participants
3.2. BMD Measurements and T-Scores/Z-Scores
3.3. Bone Turnover Markers
3.4. FRAX® Score Calculations
3.5. FRAX® Score of Original Version and Adjustments for Glucocorticoid Dose
3.6. Outcome Data Collection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meriggioli, M.N.; Sanders, D.B. Autoimmune myasthenia gravis: Emerging clinical and biological heterogeneity. Lancet Neurol. 2009, 8, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Adachi, Y.; Nakamura, Y.; Kuriyama, N.; Murai, H.; Nomura, Y.; Sakai, Y.; Iwasa, K.; Furukawa, Y.; Ku-wabara, S.; et al. Two-step nationwide epidemiological survey of myasthenia gravis in Japan 2018. PLoS ONE 2022, 17, e0274161. [Google Scholar] [CrossRef]
- Wakata, N.; Nemoto, H.; Sugimoto, H.; Nomoto, N.; Konno, S.; Hayashi, N.; Araki, Y.; Nakazato, A. Bone density in my-asthenia gravis patients receiving long-term prednisolone therapy. Clin. Neurol. Neurosurg. 2004, 106, 139–141. [Google Scholar] [CrossRef]
- Safipour, Z.; van der Zanden, R.; van den Bergh, J.; Janssen, P.; Vestergaard, P.; de Vries, F.; Driessen, J.H.M. The use of oral glucocorticoids and the risk of major osteoporotic fracture in patients with myasthenia gravis. Osteoporos. Int. 2022, 33, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Konno, S.; Suzuki, S.; Masuda, M.; Nagane, Y.; Tsuda, E.; Murai, H.; Imai, T.; Fujioka, T.; Suzuki, N.; Utsugisawa, K. Asso-ciation between glucocorticoid-induced osteoporosis and myasthenia gravis: A cross-sectional study. PLoS ONE 2015, 10, e0126579. [Google Scholar] [CrossRef]
- Suzuki, S. Two-year changes of bone mineral density in steroid-treated myasthenia gravis. J. Bone Miner. Metab. 2021, 39, 723–724. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 2008, 19, 385–397. [Google Scholar] [CrossRef]
- Konno, S.; Uchi, T.; Kihara, H.; Sugimoto, H. Ten-year fracture risk in Japanese patientswith myasthenia gravis: A com-prehensive assessment using the fracture risk assessment tool. J. Neurol. Sci. 2024, 460, 123017. [Google Scholar] [CrossRef]
- Iaccarino, L.; Bartoloni, E.; Carli, L.; Ceccarelli, F.; Conti, F.; De Vita, S.; Garofalo, T.; Goegan, F.; Govoni, M.; Gremese, E.; et al. Efficacy and safety of belimumab in primary Sjögren’s syndrome: Results of the BELISS open-label phase II study. Ann. Rheum. Dis. 2015, 74, 526–531. [Google Scholar] [CrossRef]
- Gilhus, N.E. Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 2570–2581. [Google Scholar] [CrossRef]
- Jaretzki, A., 3rd; Barohn, R.J.; Ernstoff, R.M.; Kaminski, H.J.; Keesey, J.C.; Penn, A.S.; Sanders, D.B. Myasthenia gravis: Recommendations for clinical research standards. Neurology 2000, 55, 16–23. [Google Scholar] [CrossRef]
- .Muppidi, S. The myasthenia gravis-specific activities of daily living profile. Ann. N. Y. Acad. Sci. 2012, 1274, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.M.; Fogelman, I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad. Med. J. 2007, 83, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; McCloskey, E.V.; Johansson, H.; Oden, A.; Melton, L.J., 3rd; Khaltaev, N. A reference standard for the descrip-tion of osteoporosis. Bone 2008, 42, 467–475. [Google Scholar] [CrossRef]
- Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef]
- Kanis, J.A.; Oden, A.; Johansson, H.; Borgström, F.; Ström, O.; McCloskey, E. FRAX and its applications to clinical practice. Bone 2009, 44, 734–743. [Google Scholar] [CrossRef]
- Schousboe, J.T.; Vokes, T.; Broy, S.B.; Ferrar, L.; McKiernan, F.; Roux, C.; Binkley, N. Vertebral Fracture Assessment: The 2007 ISCD Official Positions. J. Clin. Densitom. 2008, 11, 92–108. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johansson, H.; Oden, A.; McCloskey, E.V. Guidance for the adjustment of FRAX according to the dose of glu-cocorticoids. Osteoporos. Int. 2011, 22, 809–816. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Compston, J. Glucocorticoid-induced osteoporosis: An update. Endocrine 2018, 61, 7–16. [Google Scholar] [CrossRef]
- Champakanath, A.; Keshawarz, A.; Pyle, L.; Snell-Bergeon, J.K.; Shah, V.N. Fracture risk assessment (FRAX) without BMD and risk of major osteoporotic fractures in adults with type 1 diabetes. Bone 2021, 143, 115614. [Google Scholar] [CrossRef]
- McCloskey, E.V.; Harvey, N.C.; Johansson, H.; Lorentzon, M.; Liu, E.; Vandenput, L.; Leslie, W.D.; Kanis, J.A. Fracture risk assessment by the FRAX model. Climacteric 2022, 25, 22–28. [Google Scholar] [CrossRef]
- Weinstein, R.S. Glucocorticoid-induced bone disease. N. Engl. J. Med. 2011, 365, 62–70. [Google Scholar] [CrossRef]
- Buckley, L.; Guyatt, G.; Fink, H.A.; Cannon, M.; Grossman, J.; Hansen, K.E.; Humphrey, M.B.; Lane, N.E.; Magrey, M.; Miller, M.; et al. 2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorti-coid-Induced Osteoporosis. Arthritis Care Res. 2017, 69, 1095–1110. [Google Scholar] [CrossRef]
- Grossman, J.M.; Gordon, R.; Ranganath, V.K.; Deal, C.; Caplan, L.; Chen, W.; Curtis, J.R.; Furst, D.E.; McMahon, M.; Patkar, N.M.; et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 2010, 62, 1515–1526. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nawata, H.; Soen, S.; Fujiwara, S.; Nakayama, H.; Tanaka, I.; Ozono, K.; Sagawa, A.; Takayanagi, R.; Tanaka, H.; et al. Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research: 2014 update. J. Bone Miner. Metab. 2014, 32, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Japanese Osteoporosis Society. Guidelines for the Management and Treatment of Glucocorticoid-Induced Osteoporosis; Japanese Osteoporosis Society: Tokyo, Japan, 2023. [Google Scholar]
- Dhillon, S. Eculizumab: A Review in Generalized Myasthenia Gravis. Drugs 2018, 78, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.A. Efgartigimod Alfa in Generalised Myasthenia Gravis: A Profile of Its Use. CNS Drugs 2023, 37, 467–473. [Google Scholar] [CrossRef]
- Suzuki, Y.; Utsugisawa, K.; Suzuki, S.; Nagane, Y.; Masuda, M.; Kabasawa, C.; Shimizu, Y.; Utsumi, H.; Fujihara, K.; Uchiyama, T.; et al. Guidelines for the management of myasthenia gravis. Neurol. Clin. Neurosci. 2015, 3, 3–15. [Google Scholar] [CrossRef]
- Falbová, D.; Kovalčíková, V.; Beňuš, R.; Sulis, S.; Vorobeľová, L. Effect of COVID-19 pandemic on lifestyle and bone mineral density in young adults. Am. J. Hum. Biol. 2024, 36, e24009. [Google Scholar] [CrossRef]
- Harris, A.; Jalali, A.; Frenette, P.S.; Schaffler, M.B.; Greenblatt, M.B. SARS-CoV-2 and its Multifaceted Impact on Bone Health: Mechanisms and Clinical Evidence. Curr. Osteoporos. Rep. 2024, 22, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Creecy, A.; Chandra, A.; Yue, S.; Zhong, N.; Grcevic, D.; Nyman, J.S.; Cabahug-Zuckerman, P.; Khosla, S.; Pacifici, R.; Li, J.; et al. COVID-19 and Bone Loss: A Review of Risk Factors, Mechanisms, and Future Directions. Curr. Osteoporos. Rep. 2024, 22, 122–134. [Google Scholar] [CrossRef] [PubMed]
Factor | Overall | Fracture Group | No-Fracture Group | p |
---|---|---|---|---|
28 | 5 | 23 | ||
Follow-up period (days) | 4018 [4003, 4027] | 4024 [4014, 4024] | 4018 [3999, 4027] | 0.617 |
Onset age of MG (years) | 41.0 [29.2, 50.5] | 53.0 [39.0, 71.0] | 39.0 [27.0, 48.5] | 0.077 |
Disease duration (years) | 11.5 [4.0, 25.5] | 13.0 [5.0, 27.0] | 10.0 [4.0, 24.0] | 0.857 |
Subtype (n, %) | ||||
oMG | 9 (32.0) | 2 (40.0) | 7(22.7) | 0.428 |
gEOMG | 13 (46.4) | 1 (20.0) | 12 (54.5) | |
gLOMG | 1 (3.5) | 0 (0.0) | 1 (4.5) | |
gTAMG | 4 (14.0) | 2 (40.0) | 2 (9.1) | |
Ab-negative MG | 2 (7.0) | 0 (0.0) | 2 (9.1) | |
MGFA classification (n, %) | ||||
Class I | 9 (32.1) | 2 (40.0) | 7 (30.4) | 0.149 |
Class II | 9 (32.1) | 0 (0.0) | 9 (39.1) | |
Class III | 3 (10.7) | 0 (0.0) | 3 (13.0) | |
Class VI | 5 (17.9) | 2 (40.0) | 3 (13.0) | |
Class VI | 2 (7.1) | 1 (20.0) | 1 (4.3) | |
MGFA-PIS (n, %) | ||||
Complete stable remission | 3 (10.7) | 1 (20.0) | 2 (8.7) | 1.000 |
Pharmacological remission | 2 (7.1) | 0 (0.0) | 2 (8.7) | |
Improved | 13 (46.4) | 3 (60.0) | 10 (43.5) | |
Minimal manifestations | 7 (25.0) | 1 (20.0) | 6 (26.1) | |
Unchanged | 3 (10.7) | 0 (0.0) | 3 (13.0) | |
MG ADL (point) | 1.0 [1.0, 3.2] | 3.0 [1.0, 5.0] | 1.0 [1.0, 3.0] | 0.370 |
QMG score (point) | 3.5 [2.0, 6.2] | 4.0 [2.0, 6.0] | 3.0 [2.0, 6.5] | 0.928 |
MG composite (point) | 2.5 [0.0, 5.0] | 2.0 [0.0, 4.0] | 3.0 [0.0, 5.0] | 0.926 |
MG quality of life 15 (point) | 9.5 [2.0, 24.0] | 13.0 [3.0, 33.0] | 8.0 [2.0, 21.5] | 0.696 |
Treatment for MG | ||||
Prednisolone use (n, %) | 21 (75.0) | 3 (60.0) | 18 (78.3) | 0.574 |
Max dose of PSL (mg/day) | 50.0 [35.0, 50.0] | 50.0 [50.0, 55.0] | 42.5 [35.0, 50.0] | 0.060 |
Duration of PSL treatment (years) | 9.0 [2.8, 13.0] | 10.0 [7.4, 11.5] | 7.3 [2.7, 18.2] | 0.687 |
Total PSL dose within a 1-year period (mg) | 916 [0.00, 2592] | 954 [687, 1121] | 905 [0.0, 3044] | 0.937 |
PSL dose at baseline (mg/day) | 2.0 [0.0, 4.0] | 2.0 [0.0, 2.5] | 2.0 [0.0, 5.2] | 0.768 |
PSL dose 10 years later (mg/day) | 0.0 [0.0, 2.5] | 0.0 [0.0, 0.0] | 0.0 [0.0, 2.5] | 0.500 |
Calcineurin inhibitors use (n, %) | 10 (35.7) | 3 (60.0) | 7 (30.4) | 0.315 |
Dose of tacrolimus (mg/day) | 3.0 [0.7, 3.0] | 1.5 [0.7, 2.2] | 3.0 [2.2, 3.2] | 0.453 |
Dose of cyclosporine (mg/kg/day) | 2.5 [2.4, 4.5] | 4.5 [4.5, 4.5] | 2.4 [2.3, 3.0] | 0.277 |
Factor | Overall | Fracture Group | No-Fracture Group | p |
---|---|---|---|---|
28 | 5 | 23 | ||
Follow-up period (days) | 4018 [4002, 4026] | 4024 [4014, 4024] | 4018 [4001, 4027] | 0.528 |
Until fracture development (days) | 2437 [2158, 2929] | — | ||
Medication of bone turnover (n, %) | ||||
Bisphosphates | 16(57.1) | 3 (60,0) | 13 (54.5) | 0.331 |
Vitamin D therapy | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
Teriparatide (induced after fracture) | 2 (7.0) | 2(40.0) | ||
Serum BAP at baseline (μg/L) | 10.0 [7.1, 12.2] | 12.0 [8.9, 12.6] | 10.0 [7.0, 12.1] | 0.515 |
Serum BAP 10 years later (μg/L) | 10.0 [8.7, 13.0] | 12.0 [12.0, 15.0] | 10.0 [8.0, 12.5] | 0.103 |
Serum NTx at baseline (nmol BCE/L) | 13.3 [10.4, 16.6] | 13.4 [12.0, 14.0] | 12.5 [10.1, 15.5] | 0.569 |
Serum NTx 10 years later (nmol BCE/L) | Not measured | |||
BMD of hip at baseline | 0.7 [0.7, 0.9] | 0.6 [0.5, 0.7] | 0.8 [0.7, 0.9] | 0.070 |
BMD of hip 10 years later | 0.6 [0.6, 0.7] | 0.5 [0.5, 0.5] | 0.6 [0.6, 0.7] | 0.005 |
T-score at baseline | −1.0 [−1.5, −0.2] | −2.1 [−2.9, −0.9] | −1.0 [−1.4, 0.1] | 0.097 |
T-score 10 years later | −1.1 [−1.7, −0.6] | −2.5 [−2.6, −2.5] | −1.0 [−1.4, −0.2] | 0.006 |
Z-score at baseline | 0.8 [0.3, 1.4] | 0.3 [−0.3, 1.5] | 0.8 [0.6, 1.4] | 0.313 |
Z-score 10 years later | 0.1 [−0.7, 1.0] | −0.5 [−1.0, −0.4] | 0.1 [−0.7, 1.3] | 0.171 |
Factors of FRAX® calculation | ||||
Age | 62.0 [48.7, 65.2] | 66.0 [66.0, 75.0] | 58.0 [47.0, 63.5] | 0.005 |
Sex, female (%) | 24 (85.7) | 5 (100.0) | 19 (82.6) | 1.000 |
Body mass index (kg/m2) | 21.6 [20.5, 23.7] | 21.5 [20.8, 22.2] | 21.7 [20.3, 24.0] | 0.904 |
Previous fracture (n, %) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
Parent’s hip fracture (n, %) | 2 (7.1) | 2 (40.0) | 0 (0.0) | 0.026 |
Current smoker (n, %) | 2 (7.1) | 0 (0.0) | 2 (8.7) | 1000 |
Alcohol intake (>3 units/day) (n, %) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
Glucocorticoid use (>5 mg/day of PSL or equivalent for >3 months) (n, %) | 20 (71.4) | 3 (60.0) | 17 (73.9) | 0.606 |
Rheumatoid arthritis (n, %) | 1 (3.6) | 0 (0.0) | 1 (4.3) | 1.000 |
Diseases associated with secondary osteoporosis (n, %) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA |
Major osteoporotic fracture risk with BMD (%) | 7.3 [3.6, 12.0] | 19.0 [19.0, 31.0] | 5.7 [3.2, 8.8] | 0.001 |
Adjusted major osteoporotic fracture risk with BMD (%) | 6.1 [3.6, 9.6] | 15.2 [15.2, 31.0] | 4.8 [2.8, 7.9] | 0.002 |
Osteoporotic fractures within 10 years | ||||
Hip fracture (n, %) | 1 (20.0) | |||
Lumbar vertebra fracture (n, %) | 2(40.0) | |||
Thoracic vertebra fracture (n, %) | 1 (20.0) | |||
Proximal humerus fracture (n, %) | 1 (20.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konno, S.; Uchi, T.; Kihara, H.; Sugimoto, H. Long-Term Bone Density Changes and Fracture Risk in Myasthenia Gravis: Implications for FRAX® Tool Application. Healthcare 2024, 12, 1793. https://doi.org/10.3390/healthcare12171793
Konno S, Uchi T, Kihara H, Sugimoto H. Long-Term Bone Density Changes and Fracture Risk in Myasthenia Gravis: Implications for FRAX® Tool Application. Healthcare. 2024; 12(17):1793. https://doi.org/10.3390/healthcare12171793
Chicago/Turabian StyleKonno, Shingo, Takafumi Uchi, Hideo Kihara, and Hideki Sugimoto. 2024. "Long-Term Bone Density Changes and Fracture Risk in Myasthenia Gravis: Implications for FRAX® Tool Application" Healthcare 12, no. 17: 1793. https://doi.org/10.3390/healthcare12171793
APA StyleKonno, S., Uchi, T., Kihara, H., & Sugimoto, H. (2024). Long-Term Bone Density Changes and Fracture Risk in Myasthenia Gravis: Implications for FRAX® Tool Application. Healthcare, 12(17), 1793. https://doi.org/10.3390/healthcare12171793