Prospective Evaluation of Transsphenoidal Pituitary Surgery in Patients with Cushing’s Disease: Delayed Remission and the Role of Postsurgical Cortisol as a Predictive Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Patients
2.2. Preoperative Diagnosis of Cushing’s Disease
2.3. Postoperative Management
2.4. Statistical Analysis
3. Results
3.1. Laboratoy Analysis
3.2. Preoperative MRI Classification
3.3. Remission Group versus Recurrence Group
3.4. Histopathological Results
3.5. Postoperative MRI Data
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tritos, N.A.; Biller, B.M.; Swearingen, B. Management of Cushing disease. Nat. Rev. Endocrinol. 2011, 7, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.B.; Kleinschmidt-DeMasters, B.K.; Kerr, J.M.; Kishlak-Vassiliades, K.; Wierman, M.E.; Lillehei, K.O. Negative surgical exploration in patients with Cushing’s disease: Benefit of two-thirds gland resection on remission rate and a review of the literature. J. Neurosurg. 2018, 129, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Clayton, R.N.; Raskauskiene, D.; Reulen, R.C.; Jones, P.W. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: Audit and meta-analysis of literature. J. Clin. Endocrinol. Metab. 2011, 96, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.A.; Hanna, F.W.F.; Davies, J.S.; Mills, R.G.; Vafidis, J.; Scanlon, M.F. Long-term follow-up results of transsphenoidal surgery for Cushing’s disease in a single centre using strict criteria for remission. Clin. Endocrinol. 2002, 56, 541–551. [Google Scholar] [CrossRef]
- Roelfsema, F.; Biermasz, N.R.; Pereira, A.M. Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: A structured review and meta-analysis. Pituitary 2012, 15, 71–83. [Google Scholar] [CrossRef]
- Czepielewski, M.A.; Rollin, G.A.F.S.; Casagrande, A.; Ferreira, N.P. Criteria of cure and remission in Cushing’s disease: An update. Arq. Brasil. Endocrinol. Metab. 2007, 51, 1362–1372. [Google Scholar] [CrossRef]
- Hammer, G.D.; Tyrrell, J.B.; Lamborn, K.R.; Applebury, C.B.; Hannegan, E.T.; Bell, S. Transsphenoidal microsurgery for Cushing’s disease: Initial outcome and long-term results. J. Clin. Endocrinol. Metab. 2004, 89, 6348–6357. [Google Scholar] [CrossRef]
- Lonser, R.R.; Wind, J.J.; Nieman, L.K.; Weil, R.J.; DeVroom, H.L.; Oldfield, E.H. Outcome of surgical treatment of 200 children with Cushing’s disease. J. Clin. Endocrinol. Metab. 2013, 98, 892–901. [Google Scholar] [CrossRef]
- Grino, M.; Boudouresque, F.; Conte-Devolx, B.; Gunz, G.; Grisoli, F.; Oliver, C.; Jaquet, P. In vitro corticotropin-releasing hormone (CRH) stimulation of adrenocorticotropin release from corticotroph adenoma cells: Effect of prolonged exposure to CRH and its interaction with cortisol. J. Clin. Endocrinol. Metab. 1988, 66, 770–775. [Google Scholar] [CrossRef]
- Hauger, R.L.; Millan, M.A.; Catt, K.J.; Aguilera, G. Differential regulation of brain and pituitary corticotropin-releasing factor receptors by corticosterone. Endocrinology 1987, 120, 1527–1533. [Google Scholar] [CrossRef]
- Veldhuis, J.D.; Iranmanesh, A.; Johnson, M.L.; Lizarralde, G. Twenty-four-hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts. J. Clin. Endocrinol. Metab. 1990, 71, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, A.; Lizarralde, G.; Short, D.; Veldhuis, J.D. Intensive venous sampling paradigms disclose high frequency adrenocorticotropin release episodes in normal men. J. Clin. Endocrinol. Metab. 1990, 71, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Monteith, S.J.; Starke, R.M.; Jane, J.A.; Oldfield, E.H. Use of the histological pseudocapsule in surgery for Cushing disease: Rapid postoperative cortisol decline predicting complete tumor resection. J. Neurosurg. 2012, 116, 721–727. [Google Scholar] [CrossRef]
- Dickerman, R.D.; Oldfield, E.H. Basis of persistent and recurrent Cushing disease: An analysis of findings at repeated pituitary surgery. J. Neurosurg. 2002, 97, 1343–1349. [Google Scholar] [CrossRef]
- Dimopoulou, C.; Schopohl, J.; Rachinger, W.; Buchfelder, M.; Honegger, J.; Reincke, M. Long-term remission and recurrence rates after first and second transsphenoidal surgery for Cushing’s disease: Care reality in the Munich metropolitan region. Eur. J. Endocrinol. 2014, 170, 283–292. [Google Scholar] [CrossRef]
- Aranda, G.; Enseñat, J.; Mora, M.; Puig-Domingo, M.; Martínez de Osaba, M.J.; Casals, G. Long-term remission and recurrence rate in a cohort of Cushing’s disease: The need for long-term follow-up. Pituitary 2015, 18, 142–149. [Google Scholar] [CrossRef]
- Alexandraki, K.I.; Kaltsas, G.A.; Isidori, A.M.; Storr, H.L.; Afshar, F.; Sabin, I. Long-term remission and recurrence rates in Cushing’s disease: Predictive factors in a single-centre study. Eur. J. Endocrinol. 2013, 168, 639–648. [Google Scholar] [CrossRef]
- Abellán Galiana, P.; Fajardo Montañana, C.; Riesgo Suárez, P.; Pérez-Bermejo, M.; Ríos-Pérez, C.; Gómez-Vela, J. Factores pronósticos de remisión a largo plazo tras cirugía transesfenoidal en la enfermedad de Cushing. Endocrinol. Nutr. 2013, 60, 475–482. [Google Scholar] [CrossRef]
- Petersenn, S.; Beckers, A.; Ferone, D.; Lely, A.V.D.; Bollerslev, J.; Boscaro, M. Therapy of endocrine disease. Outcomes in patients with Cushing’s disease undergoing transsphenoidal surgery: Systematic review assessing criteria used to define remission and recurrence. Eur. J.Endocrinol. 2015, 172, R227–R239. [Google Scholar] [CrossRef]
- Fleseriu, M.; Hamrahian, A.H.; Hoffman, A.R.; Kelly, D.F.; Katznelson, L. Neuroendocrine and Pituitary Scientific Committee. American Association of Clinical Endocrinologists and American College of endocrinology. Disease state clinical review: Diagnosis of recurrence in Cushing disease. Endocr. Pract. 2016, 22, 1436–1448. [Google Scholar] [CrossRef]
- Pivonello, R.; De Leo, M.; Cozzolino, A.; Colao, A. The treatment of Cushing’s disease. Endocr. Rev. 2015, 36, 385–486. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A.; Feelders, R.A.; Stratakis, C.A.; Nieman, L.K. Cushing’s syndrome. Lancet 2015, 386, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Ramm-Pettersen, J.; Halvorsen, H.; Evang, J.A.; Rønning, P.; Hol, P.K.; Bollerslev, J. Low immediate postoperative serum-cortisol nadir predicts the short-term, but not long-term, remission after pituitary surgery for Cushing’s disease. BMC Endocr. Disord. 2015, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Abellán Galiana, P.; Fajardo Montañana, C.; Riesgo Suárez, P.; Pérez-Bermejo, M.; Ríos-Pérez, C.; Gómez-Vela, J. Prognostic usefulness of ACTH in the postoperative period of Cushing’s disease. Endocr. Connect. 2019, 8, 1262–1272. [Google Scholar] [CrossRef]
- Borg, H.; Siesjö, P.; Kahlon, B.; Fjalldal, S.; Erfurth, E.M. Perioperative serum cortisol levels in ACTH sufficient and ACTH deficient patients during transsphenoidal surgery of pituitary adenoma. Endocrine 2018, 62, 83–89. [Google Scholar] [CrossRef]
- Uvelius, E.; Höglund, P.; Valdemarsson, S.; Siesjö, P. An early post-operative ACTH suppression test can safely predict short- and long-term remission after surgery of Cushing’s disease. Pituitary 2018, 21, 490–498. [Google Scholar] [CrossRef]
- Micko, A.S.G.; Wöhrer, A.; Wolfsberger, S.; Knosp, E. Invasion of the cavernous sinus space in pituitary adenomas: Endoscopic verification and its correlation with an MRI-based classification. J. Neurosurg. 2015, 122, 803–811. [Google Scholar] [CrossRef]
- Chatzellis, E.; Alexandraki, K.I.; Androulakis, I.I.; Kaltsas, G. Aggressive pituitary tumors. Neuroendocrinology 2015, 101, 87–104. [Google Scholar] [CrossRef]
- Dwyer, A.J.; Frank, J.A.; Doppman, J.L.; Oldfield, E.H.; Hickey, A.M.; Cutler, G.B. Pituitary adenomas in patients with Cushing disease: Initial experience with Gd-DTPA-enhanced MR imaging. Radiology 1987, 163, 421–426. [Google Scholar] [CrossRef]
- Doppman, J.L.; Frank, J.A.; Dwyer, A.J.; Oldfield, E.H.; Miller, D.L.; Nieman, L.K. Gadolinium DTPA enhanced MR imaging of ACTH-secreting microadenomas of the pituitary gland. J. Comput. Assist. Tomogr. 1988, 12, 728–735. [Google Scholar] [CrossRef]
- Trainer, P.J.; Lawrie, H.S.; Verhelst, J.; Howlett, T.A.; Lowe, D.G.; Grossman, A.B. Transsphenoidal resection in Cushing’s disease: Undetectable serum cortisol as the definition of successful treatment. Clin. Endocrinol. 1993, 38, 73–78. [Google Scholar] [CrossRef]
- Barbetta, L.; Dall’Asta, C.; Tomei, G.; Locatelli, M.; Giovanelli, M.; Ambrosi, B. Assessment of cure and recurrence after pituitary surgery for Cushing’s disease. Acta Neurochir. 2001, 143, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Ironside, N.; Chatain, G.; Asuzu, D.; Benzo, S.; Lodish, M.; Sharma, S. Earlier post-operative hypocortisolemia may predict durable remission from Cushing’s disease. Eur. J. Endocrinol. 2018, 178, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Zilio, M.; Barbot, M.; Ceccato, F.; Camozzi, V.; Bilora, F.; Casonato, A. Diagnosis and complications of Cushing’s disease: Gender-related differences. Clin. Endocrinol. 2014, 80, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Estrada, J.; García-Uría, J.; Lamas, C.; Alfaro, J.; Lucas, T.; Diez, S. The complete normalization of the adrenocortical function as the criterion of cure after transsphenoidal surgery for Cushing’s disease. J. Clin. Endocrinol. Metab. 2001, 86, 5695–5699. [Google Scholar] [PubMed]
- Lindsay, J.R.; Oldfield, E.H.; Stratakis, C.A.; Nieman, L.K. The postoperative basal cortisol and CRH tests for prediction of long-term remission from cushing’s disease after transsphenoidal surgery. J. Clin. Endocrinol. Metab. 2011, 96, 2057–2064. [Google Scholar] [CrossRef]
- Shimon, I.; Ram, Z.; Cohen, R.Z.; Hadani, M. Transsphenoidal surgery for Cushing’s disease: Endocrinological follow-up monitoring of 82 patients. Neurosurgery 2002, 51, 57–61. [Google Scholar] [CrossRef]
- Mayberg, M.; Reintjes, S.; Patel, A.; Moloney, K.; Mercado, J.; Carlson, A. Dynamics of postoperative serum cortisol after transsphenoidal surgery for Cushing’s disease: Implications for immediate reoperation and remission. J. Neurosurg. 2018, 129, 1268–1277. [Google Scholar] [CrossRef]
- Smith, T.R.; Hulou, M.M.; Huang, K.T.; Nery, B.; De Moura, S.M.; Cote, D.J.; Laws, E.R. Complications after transsphenoidal surgery for patients with Cushing’s disease and silent corticotroph adenomas. Neurosurg. Focus 2015, 38, E12. [Google Scholar] [CrossRef]
Qualitative Variable | Number of Patients | |
---|---|---|
Patients Estimated | ||
39 patients | Excluded 6 | 4 children (3 female and 1 male) and 2 adults (female) with several comorbidities |
Patients Operated | Total 33 | |
Gender | Female | 26 |
Male | 7 | |
Previous surgery in another center | No | 26 |
Yes | 7 | |
MRI identification of the adenoma | No | 2 |
Microadenoma | 23 | |
Macroadenoma | 10 | |
Diagnosis with IPSS | 2 | |
Age (Median Years) | Range | |
41.67 | Average 15–67 years | |
Qualitative Variable | Mean (SD) | |
Pre-surgery UFC/ULN (nmol/24 h) | 243.10 (257.23) | |
Pre-surgery cortisol (nmol/L) | 433.04 (170.62) | |
Pre-surgery ACTH (ng/mL) | 73.38 (54) |
Gender | |||
---|---|---|---|
Female | Male | ||
N = 33 | (N = 26) | (N = 7) | p Value |
Age at Surgery (Years) | |||
N | 27 | 7 | |
Median (IQR) | 42.0 (35.0–47.0) | 42.0 (30.0–59.0) | 0.71 |
Months of Follow-Up | |||
N | 26 | 7 | |
Median (IQR) | 81.7 (59.5–132.0) | 60.0 (60.0–128.0) | 0.15 |
ACTH Preoperative (ng/mL) | |||
N | 26 | 7 | |
Median (IQR) | 50.5 (39.0–69.0) | 112.0 (72.0–133.0) | 0.023 * |
Morning Cortisol Preoperative (nmol/L) | |||
N | 26 | 7 | |
Median (IQR) | 452.0 (392.0–483.0) | 552.0 (461.0–611.0) | 0.21 |
UFC Preoperative (nmol/24 h) | |||
N | 26 | 7 | |
Median (IQR) | 141.0 (106.0–238.0) | 224.0 (177.0–430.0) | 0.24 |
Cortisol Postoperative (nmol/L) | |||
N | 26 | 7 | |
Median (IQR) | 68.5 (45.0–320.0) | 62.0 (34.0–128.0) | 0.55 |
UFC Postoperative (nmol/24 h) | |||
N | 26 | 7 | |
Median (IQR) | 72.0 (32.0–227.0) | 35.0 (27.0–57.0) | 0.11 |
Outcome of Surgery | |||
---|---|---|---|
Non-Remission | Remission | ||
N = 32 | (Recurrence) | (N = 26) | p Value |
(N = 6) | |||
Age at Surgery (years) | |||
N | 6 | 26 | |
Median (IQR) | 48.5 (42.0–53.0) | 41.0 (31.0–47.0) | 0.21 |
Months of Follow-up | |||
N | 6 | 26 | |
Median (IQR) | 75.5 (59.5–130.0) | 81.7 (59.0–132.0) | 0.64 |
ACTH Preoperative (ng/mL) | |||
N | 6 | 26 | |
Median (IQR) | 50.0 (39.0–100.0) | 56.0 (46.0–101.0) | 0.59 |
Morning Cortisol Preoperative (nmol/L) | |||
N | 6 | 26 | |
Median (IQR) | 486.0 (475.0–541.0) | 441.0 (381.0–475.0) | 0.13 |
UFC Preoperative (nmol/24 h) | |||
N | 6 | 26 | |
Median (IQR) | 176.0 (130.0–430.0) | 152.0 (106.0–242.0) | 0.57 |
Cortisol Postoperative (nmol/L) | |||
N | 6 | 26 | |
Median (IQR) | 453.5 (350.0–521.0) | 58.5 (43.0–100.0) | <0.001 ** |
UFC Postoperative (nmol/24 h) | |||
N | 6 | 26 | |
Median (IQR) | 185.5 (72.0–315.0) | 40.5 (28.5–98.0) | 0.019 * |
N = 33 | Microadenoma (N = 23) | Microadenoma (N = 10) | p Value |
---|---|---|---|
Age at surgery (years) | |||
N | 23 | 10 | |
Median (IQR) | 40.0 (35.0–44.0) | 50.0 (30.0–59.0) | 0.13 |
Months of follow-up | |||
N | 23 | 10 | |
Median (IQR) | 79.0 (59.0–132.0) | 81.5 (61.0–128.0) | 0.28 |
Outcome Measures | Postoperative | ||||
---|---|---|---|---|---|
POD-1 | POD-2 | POD-3 | POD-4 | POD-5 | |
Cortisolemia (nmol/L) | |||||
Remission | 95.81(108.8) | 95.70(108.81) | 95.22(108.21) | 91.55(106.98) | 89.48(105.99) |
Non-Remission | 471.16(134.39) | 470.66(134.32) | 466.83(135.28) | 462.83(132.08) | 459.53(131.41) |
UFC (nmol/24 h) | |||||
Remission | 70.5(71.66) | 70.05(70.76) | 70.45(70.86) | 69.75(71.22) | 69.93(70.67) |
Non-Remission | 186.66(121.68) | 184.83(120.63) | 185.33(121.25) | 185.33(122.32) | 186.83(121.61) |
Cortisolemia | Remission | Non-Remission |
Whole population | ||
POD (1–2): rs = 1, n = 33, p = 0.000 | POD (1–2): rs = 1, n = 27, p = 0.000 | POD (1–2): rs = 1, n = 6, p = 0.000 |
POD (3–4): rs = 0.995, n = 33, p = 0.000 | POD (3–4): rs = 0.993, n = 27, p = 0.000 | POD (3–4): rs = 1, n = 6, p = 0.000 |
POD (1–5): rs = 0.996, n = 33, p = 0.000 | POD (1–5): rs = 0.997, n = 27, p = 0.000 | POD (1–5): rs = 1, n = 6, p = 0.000 |
Cortisoluria | Remission | Non-remission |
Whole population | ||
POD (1–2): rs = 0.999, n = 33. p = 0.000 | POD (1–2): rs = 0.998, n = 27, p = 0.000 | POD (1–2): rs = 1, n = 6, p = 0.000 |
POD (3–4): rs = 1, n = 33, p = 0.000 | POD (3–4): rs = 0.999, n = 27, p = 0.000 | POD (3–4): rs = 1, n = 6, p = 0.000 |
POD (1–5): rs = 0.999, n = 33, p = 0.000 | POD (1–5): rs = 0.997, n = 27, p = 0.000 | POD (1–5): rs = 1, n = 6, p = 0.000 |
ID | Age | Gender | ACTH Pre-Surgery (ng/mL) | UFC Pre-Surgery (nmol/24 h) | Cortisolemia Pre-Surgery (nmol/L) | Previous Surgery | MRI Size | UFC Pod1-Pod2 (nmol/24 h) | Cortisolemia Pod1-Pod2 (nmol/L) | 3 Months Cortisolemia (nmol/L) | 3 Months UFC (nmol/24 h) | Recurrence at Last Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 35 | F | 65.30 | 138 | 390 | No | Micro | 94.3 | 134.39 | 98.32 | 35.9 | No |
2 | 42 | F | 56.29 | 141 | 368 | No | Micro | 110.9 | 160.45 | 110.23 | 87.74 | Yes |
3 | 45 | M | 68.20 | 120 | 340 | No | Micro | 90.2 | 128.29 | 95.2 | 85.64 | No |
4 | 56 | F | 61.29 | 136 | 385 | No | Micro | 120.2 | 135.40 | 85.67 | 62.56 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saratziotis, A.; Baldovin, M.; Zanotti, C.; Munari, S.; Cazzador, D.; Alexandre, E.; Denaro, L.; Hajiioannou, J.; Emanuelli, E. Prospective Evaluation of Transsphenoidal Pituitary Surgery in Patients with Cushing’s Disease: Delayed Remission and the Role of Postsurgical Cortisol as a Predictive Factor. Healthcare 2024, 12, 1900. https://doi.org/10.3390/healthcare12181900
Saratziotis A, Baldovin M, Zanotti C, Munari S, Cazzador D, Alexandre E, Denaro L, Hajiioannou J, Emanuelli E. Prospective Evaluation of Transsphenoidal Pituitary Surgery in Patients with Cushing’s Disease: Delayed Remission and the Role of Postsurgical Cortisol as a Predictive Factor. Healthcare. 2024; 12(18):1900. https://doi.org/10.3390/healthcare12181900
Chicago/Turabian StyleSaratziotis, Athanasios, Maria Baldovin, Claudia Zanotti, Sara Munari, Diego Cazzador, Enrico Alexandre, Luca Denaro, Jiannis Hajiioannou, and Enzo Emanuelli. 2024. "Prospective Evaluation of Transsphenoidal Pituitary Surgery in Patients with Cushing’s Disease: Delayed Remission and the Role of Postsurgical Cortisol as a Predictive Factor" Healthcare 12, no. 18: 1900. https://doi.org/10.3390/healthcare12181900
APA StyleSaratziotis, A., Baldovin, M., Zanotti, C., Munari, S., Cazzador, D., Alexandre, E., Denaro, L., Hajiioannou, J., & Emanuelli, E. (2024). Prospective Evaluation of Transsphenoidal Pituitary Surgery in Patients with Cushing’s Disease: Delayed Remission and the Role of Postsurgical Cortisol as a Predictive Factor. Healthcare, 12(18), 1900. https://doi.org/10.3390/healthcare12181900