The Association Between Mild Cognitive Impairment and Physical Function in Older Japanese Adults Aged 75 Years or Older Living in Independent Senior Housing: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Function Measures
2.3. Cognitive Function Measures
2.4. Other Measurements
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langa, K.M.; Levine, D.A. The diagnosis and management of mild cognitive impairment. A clinical review. JAMA 2014, 312, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Grande, G.; Cucumo, V.; Cova, I.; Ghiretti, R.; Maggiore, L.; Lacorte, E.; Galimberti, D.; Scarpini, E.; Clerici, F.; Pomati, S.; et al. Reversible mild cognitive impairment: The role of comorbidities at baseline evaluation. J. Alzheimers Dis. 2016, 51, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Pike, C.J. Sex and the development of Alzheimer’s disease. J. Neurosci. Res. 2017, 95, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Podcasy, J.L.; Epperson, C.N. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin. Neurosci. 2016, 18, 437–446. [Google Scholar] [CrossRef]
- Lenardt, M.H.; de Sousa, J.A.V.; Grden, C.R.B.; Betiolli, S.E.; Carneiro, N.H.K.; Ribeiro, D.K.d.M.N. Gait speed and cognitive score in elderly users of the primary care service. Rev. Bras. Enferm. 2015, 68, 1163–1168. [Google Scholar] [CrossRef]
- Garcia-Pinillos, F.; Cozar-Barba, M.; Munoz-Jimenez, M.; Soto-Hermoso, V.; Latorre-Roman, P. Gait speed in older people: An easy test for detecting cognitive impairment, functional independence, and health state. Psychogeriatrics 2016, 16, 165–171. [Google Scholar] [CrossRef]
- Auyeung, T.W.; Kwok, T.; Lee, J.; Leung, P.C.; Leung, J.; Woo, J. Functional decline in cognitive impairment–the relationship between physical and cognitive function. Neuroepidemiology 2008, 31, 167–173. [Google Scholar] [CrossRef]
- Fitzpatrick, A.L.; Buchanan, C.K.; Nahin, R.L.; Dekosky, S.T.; Atkinson, H.H.; Carlson, M.C.; Williamson, J.D.; Ginkgo Evaluation of Memory (GEM) Study Investigators. Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J. Gerontol. A 2007, 62, 1244–1251. [Google Scholar] [CrossRef]
- Soumaré, A.; Tavernier, B.; Alpérovitch, A.; Tzourio, C.; Elbaz, A. A cross-sectional and longitudinal study of the relationship between walking speed and cognitive function in community-dwelling elderly people. J. Gerontol. A 2009, 64, 1058–1065. [Google Scholar] [CrossRef]
- Umegaki, H.; Makino, T.; Yanagawa, M.; Nakashima, H.; Kuzuya, M.; Sakurai, T.; Toba, K. Maximum gait speed is associated with a wide range of cognitive functions in Japanese older adults with a Clinical Dementia Rating of 0.5. Geriatr. Gerontol. Int. 2018, 18, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, R.; Abiko, T.; Ohsugi, H.; Adachi, M.; Inoue, R.; Nikaidou, M.; Madoba, K.; Anami, K.; Shiraiwa, K.; Horie, J.; et al. The characteristics of activities of daily living and physical and mental function among elderly with mild cognitive impairment. Jpn. J. Health Promot. Phys. Ther. 2016, 6, 59–64, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.S.M.; Ng, P.C.M.; Lee, C.Y.W.; Ng, E.S.W.; Tong, M.H.W.; Fong, S.S.M.; Tsang, W.W.N. Assessing the walking speed of older adults: The influence of walkway length. Am. J. Phys. Med. Rehabil. 2013, 92, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Sawada, S.; Ozaki, H.; Natsume, T.; Deng, P.; Yoshihara, T.; Nakagata, T.; Osawa, T.; Ishihara, Y.; Kitada, T.; Kimura, K.; et al. The 30-s chair stand test can be a useful tool for screening sarcopenia in elderly Japanese participants. BMC Musculoskelet. Disord. 2021, 22, 639. [Google Scholar] [CrossRef]
- Ozaki, H.; Sawada, S.; Osawa, T.; Natsume, T.; Yoshihara, T.; Deng, P.; Machida, S.; Naito, H. Muscle Size and Strength of the Lower Body in Supervised and in Combined Supervised and Unsupervised Low-Load Resistance Training. J. Sports Sci. Med. 2020, 19, 721–726. [Google Scholar]
- Fujiwara, Y.; Suzuki, H.; Yasunaga, M.; Sugiyama, M.; Ijuin, M.; Sakuma, N.; Inagaki, H.; Iwasa, H.; Ura, C.; Yatomi, N.; et al. Brief screening tool for mild cognitive impairment in older Japanese: Validation of the Japanese version of the Montreal cognitive assessment. Geriatr. Gerontol. Int. 2010, 10, 225–232. [Google Scholar] [CrossRef]
- Öhlin, J.; Gustafson, Y.; Littbrand, H.; Olofsson, B.; Toots, A. Low or declining gait speed is associated with risk of developing dementia over 5 years among people aged 85 years and over. J. Aging Phys. Act. 2021, 29, 678–685. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Callisaya, M.L.; De Cock, A.M.; Helbostad, J.L.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.P.; Blumen, H.M.; Verghese, J.; et al. Poor gait performance and prediction of dementia: Results from a Meta-analysis. J. Am. Med. Dir. Assoc. 2016, 17, 482–490. [Google Scholar] [CrossRef]
- Dumurgier, J.; Artaud, F.; Touraine, C.; Rouaud, O.; Tavernier, B.; Dufouil, C.; Singh-Manoux, A.; Tzourio, C.; Elbaz, A. Gait speed and decline in gait speed as predictors of incident dementia. Med. Sci. 2017, 72, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Chen, Y.; Cai, M.; Guo, C.; Chen, P. Association between walking speed and cognitive domain functions in Chinese suburban-dwelling older adults. Front. Aging Neurosci. 2022, 14, 935291. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Liang, C.K.; Liao, M.C.; Chou, M.Y.; Lin, Y.T. Slow gait speed as a predictor of 1-year cognitive decline in a veterans’ retirement community in southern Taiwan. Geriatr. Gerontol. Int. 2017, 17, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.; Mattek, N.; Dodge, H.; Buracchio, T.; Austin, D.; Hagler, S.; Pavel, M.; Hayes, T. One walk a year to 1000 within a year: Continuous in-home unobtrusive gait assessment of older adults. Gait Posture 2012, 35, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Satake, S.; Arai, H. The revised Japanese version of the cardiovascular health study criteria (revised J-CHS criteria). Geriatr. Gerontol. Int. 2020, 20, 992–993. [Google Scholar] [CrossRef]
- Öhlin, J.; Ahlgren, A.; Folkesson, R.; Gustafson, Y.; Littbrand, H.; Olofsson, B. The association between cognition and gait in a representative sample of very old people—The influence of dementia and walking aid use. BMC Geriatr. 2020, 20, 34. [Google Scholar] [CrossRef]
- Ohsugi, H.; Murata, S.; Kubo, A.; Hachiya, M.; Hirao, A.; Fujiwara, K.; Kamijou, K. Relevance of cognitive and lower extremity function and gender differences in the community-dwelling elderly. Jpn. J. Health Promot. Phys. Ther. 2014, 4, 71–75, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Li, Z.; Peng, X.; Xiang, W.; Han, J.; Li, K. The effect of resistance training on cognitive function in the older adults: A systematic review of randomized clinical trials. Aging Clin. Exp. Res. 2018, 30, 1259–1273. [Google Scholar] [CrossRef]
- Coelho-Junior, H.; Marzetti, E.; Calvani, R.; Picca, A.; Arai, H.; Uchida, M. Resistance training improves cognitive function in older adults with different cognitive status: A systematic review and meta-analysis. Aging Ment. Health 2022, 26, 213–224. [Google Scholar] [CrossRef]
All | Women | Men | |||||
---|---|---|---|---|---|---|---|
(n = 271) | (n = 174) | (n = 97) | |||||
Age (years) | 85.4 ± 4.7 | (75–100) | 85.0 ± 4.8 | (75–97) | 86.1 ± 4.4 | (76–100) | b |
Height (cm) | 154.6 ± 8.5 | (134.6–178.3) | 149.7 ± 5.6 | (134.6–164.5) | 163.2 ± 5.4 | (150.5–178.3) | b* |
Weight (kg) | 52.4 ± 9.4 | (31.1–77.6) | 48.1 ± 7.6 | (31.1–69.2) | 59.9 ± 7.2 | (38.4–77.6) | a* |
BMI (kg/m2) | 21.9 ± 3.1 | (13.6–29.6) | 21.5 ± 3.3 | (13.6–29.6) | 22.5 ± 2.4 | (14.8–29.4) | b* |
SMI (kg/m2) | 6.08 ± 0.96 | (3.86–9.17) | 5.58 ± 0.63 | (3.86–7.06) | 7.02 ± 0.74 | (5.23–9.17) | b* |
MoCA-J score (points) | 24.0 ± 3.6 | (12–30) | 24.1 ± 3.7 | (13–30) | 23.7 ± 3.4 | (12–30) | b |
MCI, n (%) | 170 (62.7%) | 101 (58.0%) | 69 (67.6%) | c* | |||
Hand grip strength (kg) | 22.4 ± 6.4 | (6.3–46.1) | 19.0 ± 4.0 | (6.3–28.7) | 28.5 ± 5.1 | (16.8–46.1) | b* |
Normal gait speed (m/s) | 1.20 ± 0.24 | (0.54–1.79) | 1.20 ± 0.24 | (0.60–1.68) | 1.19 ± 0.24 | (0.54–1.79) | a |
Maximum gait speed (m/s) | 1.62 ± 0.32 | (0.78–2.54) | 1.57 ± 0.30 | (0.87–2.31) | 1.70 ± 0.33 | (0.78–2.54) | a* |
CS-30 (counts) | 15.8 ± 5.5 | (5–34) | 15.6 ± 5.4 | (5–34) | 16.1 ± 5.6 | (5–32) | b |
Women | Men | |||||||
---|---|---|---|---|---|---|---|---|
non-MCI | MCI | p-Value | non-MCI | MCI | p-Value | |||
(n = 73) | (n = 101) | (n = 28) | (n = 69) | |||||
Age (years) | 83.9 ± 4.9 | 85.6 ± 4.5 | 0.013 | b* | 85.9 ± 5.0 | 86.2 ± 4.1 | 0.528 | b |
Height (cm) | 150.2 ± 4.9 | 149.5 ± 6.0 | 0.408 | a | 162.1 ± 5.1 | 163.7 ± 5.5 | 0.169 | a |
Weight (kg) | 47.7 ± 7.0 | 48.4 ± 8.0 | 0.513 | a | 60.1 ± 7.1 | 59.9 ± 7.3 | 0.771 | b |
BMI (kg/m2) | 21.2 ± 3.0 | 21.7 ± 3.6 | 0.352 | a | 23.0 ± 2.2 | 22.4 ± 2.5 | 0.239 | a |
SMI (kg/m2) | 5.64 ± 0.57 | 5.53 ± 0.67 | 0.454 | b | 7.21 ± 0.78 | 6.95 ± 0.72 | 0.123 | a |
MoCA-J score (points) | 27.4 ± 1.2 | 21.7 ± 3.0 | <0.001 | b* | 27.2 ± 1.3 | 22.3 ± 2.9 | <0.001 | b* |
n (%) | p-Value a | Univariate | Age-Adjusted | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
non-MCI (n = 73) | MCI (n = 101) | OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||||||
Age | 0.053 | ||||||||||||
≤84 years (Ref.) | 39 (53.4%) | 39 (38.6%) | 1.00 | - | - | ||||||||
≥85 years | 34 (46.6%) | 62 (61.4%) | 1.82 | (0.99–3.36) | 0.054 | ||||||||
Hand grip strength | 0.117 | 0.120 | 0.362 | ||||||||||
High (Ref.) | 30 (41.1%) | 28 (27.7%) | 1.00 | - | - | 1.00 | - | - | |||||
Middle | 24 (32.9%) | 34 (33.7%) | 1.52 | (0.73–3.16) | 0.265 | 1.32 | (0.61–2.85) | 0.480 | |||||
Low | 19 (26.0%) | 39 (38.6%) | 2.20 | (1.04–4.67) | 0.040 | * | 1.81 | (0.80–4.09) | 0.154 | ||||
Normal gait speed | 0.206 | 0.209 | 0.395 | ||||||||||
High (Ref.) | 28 (38.4%) | 30 (29.7%) | 1.00 | - | - | 1.00 | - | - | |||||
Middle | 26 (35.6%) | 32 (31.7%) | 1.15 | (0.55–2.38) | 0.710 | 1.05 | (0.50–2.20) | 0.907 | |||||
Low | 19 (26.0%) | 39 (38.6%) | 1.92 | (0.90–4.07) | 0.090 | 1.64 | (0.75–3.57) | 0.217 | |||||
Maximum gait speed | 0.030 | * | 0.033 | * | 0.098 | ||||||||
High (Ref.) | 31 (42.5%) | 27 (26.7%) | 1.00 | - | - | 1.00 | - | - | |||||
Middle | 25 (34.2%) | 33 (32.7%) | 1.52 | (0.73–3.15) | 0.266 | 1.41 | (0.67–2.97) | 0.364 | |||||
Low | 17 (23.3%) | 41 (40.6%) | 2.77 | (1.29–5.95) | 0.009 | * | 2.40 | (1.08–5.45) | 0.032 | * | |||
CS-30 | 0.003 | * | 0.003 | * | 0.011 | * | |||||||
High (Ref.) | 32 (43.8%) | 23 (22.8%) | 1.00 | - | - | 1.00 | - | - | |||||
Middle | 24 (32.9%) | 32 (31.7%) | 1.86 | (0.87–3.93) | 0.108 | 1.79 | (0.84–3.81) | 0.134 | |||||
Low | 17 (23.3%) | 46 (45.5%) | 3.77 | (1.74–8.15) | 0.001 | * | 3.39 | (1.53–7.49) | 0.003 | * |
n (%) | p-Value a | Univariate | Age-Adjusted | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Non-MCI (n = 28) | MCI (n = 69) | OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||||
Age | 0.210 | ||||||||||
≤84 years (Ref.) | 14 (50.0%) | 25 (36.2%) | 1.00 | - | |||||||
≥85 years | 14 (50.0%) | 44 (63.8%) | 1.76 | (0.72–4.28) | 0.212 | ||||||
Hand grip strength | 0.189 | 0.200 | 0.243 | ||||||||
High (Ref.) | 12 (42.9%) | 19 (27.5%) | 1.00 | - | - | 1.00 | - | - | |||
Middle | 10 (35.7%) | 23 (33.3%) | 1.45 | (0.52–4.09) | 0.480 | 1.22 | (0.41–3.63) | 0.722 | |||
Low | 6 (21.4%) | 27 (39.1%) | 2.84 | (0.91–8.91) | 0.073 | 2.61 | (0.82–8.30) | 0.104 | |||
Normal gait speed | 0.189 | 0.200 | 0.308 | ||||||||
High (Ref.) | 12 (42.9%) | 19 (27.5%) | 1.00 | - | - | 1.00 | - | - | |||
Middle | 10 (35.7%) | 23 (33.3%) | 1.45 | (0.52–4.09) | 0.480 | 1.46 | (0.52–4.12) | 0.479 | |||
Low | 6 (21.4%) | 27 (39.1%) | 2.84 | (0.91–8.91) | 0.073 | 2.53 | (0.77–8.25) | 0.125 | |||
Maximum gait speed | 0.097 | 0.111 | 0.158 | ||||||||
High (Ref.) | 12 (42.9%) | 20 (29.0%) | 1.00 | - | - | 1.00 | - | - | |||
Middle | 11 (39.1%) | 21 (30.4%) | 1.15 | (0.41–3.18) | 0.795 | 1.06 | (0.38–3.01) | 0.907 | |||
Low | 5 (17.9%) | 28 (40.6%) | 3.36 | (1.02–11.05) | 0.046 | * | 3.01 | (0.89–10.19) | 0.076 | ||
CS-30 | 0.346 | 0.352 | 0.453 | ||||||||
High (Ref.) | 11 (39.3%) | 17 (24.6%) | 1.00 | - | - | 1.00 | - | - | |||
Middle | 7 (25.0%) | 23 (33.3%) | 2.13 | (0.68–6.62) | 0.193 | 1.98 | (0.63–6.24) | 0.245 | |||
Low | 10 (35.7%) | 29 (42.0%) | 1.88 | (0.66–5.34) | 0.238 | 1.71 | (0.59–4.96) | 0.321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohno, K.; Sawada, S.; Fujimaki, N.; Sakai, K.; Wakui, S.; Shibata, N.; Sato, N.; Naito, H.; Machida, S. The Association Between Mild Cognitive Impairment and Physical Function in Older Japanese Adults Aged 75 Years or Older Living in Independent Senior Housing: A Cross-Sectional Study. Healthcare 2024, 12, 2106. https://doi.org/10.3390/healthcare12212106
Ohno K, Sawada S, Fujimaki N, Sakai K, Wakui S, Shibata N, Sato N, Naito H, Machida S. The Association Between Mild Cognitive Impairment and Physical Function in Older Japanese Adults Aged 75 Years or Older Living in Independent Senior Housing: A Cross-Sectional Study. Healthcare. 2024; 12(21):2106. https://doi.org/10.3390/healthcare12212106
Chicago/Turabian StyleOhno, Kanako, Shuji Sawada, Naho Fujimaki, Kyoko Sakai, Sawako Wakui, Nobuto Shibata, Nobuhiro Sato, Hisashi Naito, and Shuichi Machida. 2024. "The Association Between Mild Cognitive Impairment and Physical Function in Older Japanese Adults Aged 75 Years or Older Living in Independent Senior Housing: A Cross-Sectional Study" Healthcare 12, no. 21: 2106. https://doi.org/10.3390/healthcare12212106
APA StyleOhno, K., Sawada, S., Fujimaki, N., Sakai, K., Wakui, S., Shibata, N., Sato, N., Naito, H., & Machida, S. (2024). The Association Between Mild Cognitive Impairment and Physical Function in Older Japanese Adults Aged 75 Years or Older Living in Independent Senior Housing: A Cross-Sectional Study. Healthcare, 12(21), 2106. https://doi.org/10.3390/healthcare12212106