Bypassing Emergency Service: Decoding the Drivers of Self-Referral During Acute Myocardial Infarction on Rural Areas in Sachsen-Anhalt, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Definition of Independent Variables
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Variables Associated with Self-Referral Behavior
3.3. Self-Referral to Hospitals Lacking PCI Capabilities
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; Howard, V.J.; et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef] [PubMed]
- Bohley, S.; Trocchi, P.; Robra, B.-P.; Mau, W.; Stang, A. The regional myocardial infarction registry of Saxony-Anhalt (RHESA) in Germany—Rational and study protocol. BMC Cardiovasc. Disord. 2015, 15, 45. [Google Scholar] [CrossRef]
- Dornquast, C.; Kroll, L.E.; Neuhauser, H.K.; Willich, S.N.; Reinhold, T.; Busch, M.A. Regional Differences in the Prevalence of Cardiovascular Disease. Dtsch. Arztebl. Int. 2016, 113, 704–711. [Google Scholar] [CrossRef]
- Latzitis, N.; Sundmacher, L.; Busse, R. Regionale Unterschiede der Lebenserwartung in Deutschland auf Ebene der Kreise und kreisfreien Städte und deren möglichen Determinanten. Gesundheitswesen 2011, 73, 217–228. [Google Scholar] [CrossRef]
- Stang, A.; Stang, M. An inter-state comparison of cardiovascular risk factors in Germany: Towards an explanation of high ischemic heart disease mortality in Saxony-Anhalt. Dtsch. Arztebl. Int. 2014, 111, 530–536. [Google Scholar] [CrossRef]
- Sasko, B.; Jaehn, P.; Müller, R.; Andresen, H.; Müters, S.; Holmberg, C.; Ritter, O.; Pagonas, N. Understanding the importance of social determinants and rurality for the long-term outcome after acute myocardial infarction: Study protocol for a single-centre cohort study. BMJ Open 2022, 12, e056888. [Google Scholar] [CrossRef] [PubMed]
- Nehme, Z.; Andrew, E.; Bernard, S.; Smith, K. Comparison of out-of-hospital cardiac arrest occurring before and after paramedic arrival: Epidemiology, survival to hospital discharge and 12-month functional recovery. Resuscitation 2015, 89, 50–57. [Google Scholar] [CrossRef]
- Zijlstra, F.; Patel, A.; Jones, M.; Grines, C.L.; Ellis, S.; Garcia, E.; Grinfeld, L.; Gibbons, R.J.; Ribeiro, E.E.; Ribichini, F.; et al. Clinical characteristics and outcome of patients with early (<2 h), intermediate (2-4 h) and late (4 h) presentation treated by primary coronary angioplasty or thrombolytic therapy for acute myocardial infarction. Eur. Heart J. 2002, 23, 550–557. [Google Scholar] [CrossRef]
- Cui, E.R.; Beja-Glasser, A.; Fernandez, A.R.; Grover, J.M.; Mann, N.C.; Patel, M.D. Emergency Medical Services Time Intervals for Acute Chest Pain in the United States, 2015–2016. Prehosp. Emerg. Care 2020, 24, 557–565. [Google Scholar] [CrossRef]
- de Luca, G.; Suryapranata, H.; Ottervanger, J.P.; Antman, E.M. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: Every minute of delay counts. Circulation 2004, 109, 1223–1225. [Google Scholar] [CrossRef] [PubMed]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 127, 529–555. [Google Scholar] [CrossRef] [PubMed]
- Studnek, J.R.; Garvey, L.; Blackwell, T.; Vandeventer, S.; Ward, S.R. Association between prehospital time intervals and ST-elevation myocardial infarction system performance. Circulation 2010, 122, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam, E.A.; Wenger, N.K.; Brindis, R.G.; Casey, D.E.; Ganiats, T.G.; Holmes, D.R.; Jaffe, A.S.; Jneid, H.; Kelly, R.F.; Kontos, M.C.; et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 130, e344–e426. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Canto, J.G.; Zalenski, R.J.; Ornato, J.P.; Rogers, W.J.; Kiefe, C.I.; Magid, D.; Shlipak, M.G.; Frederick, P.D.; Lambrew, C.G.; Littrell, K.A.; et al. Use of emergency medical services in acute myocardial infarction and subsequent quality of care: Observations from the National Registry of Myocardial Infarction 2. Circulation 2002, 106, 3018–3023. [Google Scholar] [CrossRef]
- Faxon, D.; Lenfant, C. Timing Is Everything. Circulation 2001, 104, 1210–1211. [Google Scholar] [CrossRef] [PubMed]
- Faxon, D.P. Early reperfusion strategies after acute ST-segment elevation myocardial infarction: The importance of timing. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 22–28. [Google Scholar] [CrossRef]
- Cartledge, S.; Finn, J.; Straney, L.; Ngu, P.; Stub, D.; Patsamanis, H.; Shaw, J.; Bray, J. The barriers associated with emergency medical service use for acute coronary syndrome: The awareness and influence of an Australian public mass media campaign. Emerg. Med. J. 2017, 34, 466–471. [Google Scholar] [CrossRef]
- Johnston, S.; Brightwell, R.; Ziman, M. Paramedics and pre-hospital management of acute myocardial infarction: Diagnosis and reperfusion. Emerg. Med. J. 2006, 23, 331–334. [Google Scholar] [CrossRef]
- Patlolla, S.H.; Pajjuru, V.S.; Sundaragiri, P.R.; Cheungpasitporn, W.; Sachdeva, R.; McDaniel, M.C.; Kumar, G.; Rab, S.T.; Vallabhajosyula, S. Hospital-Level Disparities in the Management and Outcomes of Cardiac Arrest Complicating Acute Myocardial Infarction. Am. J. Cardiol. 2022, 169, 24–31. [Google Scholar] [CrossRef] [PubMed]
- van Diepen, S.; Katz, J.N.; Albert, N.M.; Henry, T.D.; Jacobs, A.K.; Kapur, N.K.; Kilic, A.; Menon, V.; Ohman, E.M.; Sweitzer, N.K.; et al. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation 2017, 136, e232–e268. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, C.B.; Mann, N.C.; Daya, M.; Jui, J.; Goldberg, R.; Cooper, L.; Goff, D.C.; Cornell, C. Patients with chest pain calling 9-1-1 or self-transporting to reach definitive care: Which mode is quicker? Am. Heart J. 2004, 147, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Mathews, R.; Peterson, E.D.; Li, S.; Roe, M.T.; Glickman, S.W.; Wiviott, S.D.; Saucedo, J.F.; Antman, E.M.; Jacobs, A.K.; Wang, T.Y. Use of emergency medical service transport among patients with ST-segment-elevation myocardial infarction: Findings from the National Cardiovascular Data Registry Acute Coronary Treatment Intervention Outcomes Network Registry-Get with The Guidelines. Circulation 2011, 124, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Höpner, J.; Junge, U.; Schmidt-Pokrzywniak, A.; Fischer, C.; Mikolajczyk, R. Determinants of persistent smoking after acute myocardial infarction: An observational study. BMC Cardiovasc. Disord. 2020, 20, 384. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Soft. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Johansson, I.; Strömberg, A.; Swahn, E. Ambulance use in patients with acute myocardial infarction. J. Cardiovasc. Nurs. 2004, 19, 5–12. [Google Scholar] [CrossRef]
- Meischke, H.; Ho, M.T.; Eisenberg, M.S.; Schaeffer, S.M.; Larsen, M.P. Reasons patients with chest pain delay or do not call 911. Ann. Emerg. Med. 1995, 25, 193–197. [Google Scholar] [CrossRef]
- Bray, J.E.; Straney, L.; Barger, B.; Finn, J. Effect of public awareness campaigns on calls to ambulance across Australia. Stroke 2015, 46, 1377–1380. [Google Scholar] [CrossRef]
- Nehme, Z.; Cameron, P.A.; Akram, M.; Patsamanis, H.; Bray, J.E.; Meredith, I.T.; Smith, K. Effect of a mass media campaign on ambulance use for chest pain. Med. J. Aust. 2017, 206, 30–35. [Google Scholar] [CrossRef]
- Ashburn, N.P.; Snavely, A.C.; Angi, R.M.; Scheidler, J.F.; Crowe, R.P.; McGinnis, H.D.; Hiestand, B.C.; Miller, C.D.; Mahler, S.A.; Stopyra, J.P. Prehospital time for patients with acute cardiac complaints: A rural health disparity. Am. J. Emerg. Med. 2022, 52, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Pino-Moya, E.; Ortega-Moreno, M.; Gómez-Salgado, J.; Ruiz-Frutos, C. Determining factors for the increase in self-referrals to the Emergency Department of a rural hospital in Huelva (Spain). PLoS ONE 2018, 13, e0207199. [Google Scholar] [CrossRef] [PubMed]
- Tabibiazar, R.; Edelman, S.V. Silent Ischemia in People With Diabetes: A Condition That Must Be Heard. Clin. Diabetes 2003, 21, 5–9. [Google Scholar] [CrossRef]
- Haghighinejad, H.; Malekpour, F.; Jooya, P. Evaluation of the knowledge and practice of family physicians in the management of diabetes mellitus type 2 in Iran. BMC Prim. Care 2023, 24, 222. [Google Scholar] [CrossRef]
- Torti, J.M.I.; Szafran, O.; Kennett, S.L.; Bell, N.R. Interprofessional care of patients with type 2 diabetes mellitus in primary care: Family physicians’ perspectives. BMC Prim. Care 2022, 23, 74. [Google Scholar] [CrossRef]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef]
- Ozaki, Y.; Hara, H.; Onuma, Y.; Katagiri, Y.; Amano, T.; Kobayashi, Y.; Muramatsu, T.; Ishii, H.; Kozuma, K.; Tanaka, N.; et al. CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) update 2022. Cardiovasc. Interv. Ther. 2022, 37, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Cabrita, A.; Maia Araujo, P.; Proenca, T.; Pinto, R.; Carvalho, M.; Costa, C.; Amador, A.F.; Calvao, J.; Pinho, A.; et al. Patient delay in acute myocardial infarction: A long journey still ahead. Eur. Heart J. 2022, 43, ehac544.1473. [Google Scholar] [CrossRef]
- Shahbazpour, J.; Abbasi, M.; Eskandari, N.; Aghaali, M.; Norouzadeh, R. Study of outcomes of delay in referral of patients with acute myocardial infarction. J. Educ. Health Promot. 2022, 11, 95. [Google Scholar] [CrossRef]
- Alonso Gelabert, O.; Barcena Veciana, M.; Brumwell Valsells, V.; Crunas Baqe, M.; Nicodemo, C. Gender bias in the diagnosis of cardiovascular disorders in Catalonia. Health Policy 2023, 132, 104823. [Google Scholar] [CrossRef]
- Chang, A.M.; Mumma, B.; Sease, K.L.; Robey, J.L.; Shofer, F.S.; Hollander, J.E. Gender bias in cardiovascular testing persists after adjustment for presenting characteristics and cardiac risk. Acad. Emerg. Med. 2007, 14, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Kent, J.A.; Patel, V.; Varela, N.A. Gender disparities in health care. Mt. Sinai J. Med. 2012, 79, 555–559. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall; [95% CI] 2 | Non-Self-Referral; [95% CI] 2 | Self-Referral; [95% CI] 2 |
---|---|---|---|
Sex | |||
Male | 65.1%; [63.0, 67.2] | 63.9%; [61.5, 66.2] | 69.2%; [64.9, 73.3] |
Female | 34.9%; [32.8, 37.0] | 36.1%; [33.8, 38.5] | 30.8%; [26.7, 35.1] |
Age categories | |||
25–49 | 9.1%; [7.9, 10.4] | 7.9%; [6.7, 9.4] | 12.8%; [10.0, 16.2] |
50–59 | 20.3%; [18.6, 22.1] | 19.2%; [17.3, 21.2] | 24.0%; [20.3, 28.1] |
60–69 | 20.2%; [18.5, 22.0] | 19.7%; [17.8, 21.8] | 21.9%; [18.3, 25.9] |
70–79 | 27.0%; [25.1, 28.9] | 26.9%; [24.8, 29.2] | 27.1%; [23.2, 31.3] |
80+ | 23.5%; [21.7, 25.4] | 26.3%; [24.1, 28.5] | 14.3%; [11.3, 17.8] |
Arterial Hypertension | 89.4%; [88.0, 90.7] | 90.3%; [88.7, 91.7] | 86.4%; [82.9, 89.2] |
Hypercholesterolemia | 75.0%; [73.0, 76.8] | 76.7%; [74.5, 78.7] | 69.2%; [64.9, 73.3] |
Diabetes | 33.2%; [31.2, 35.3] | 34.8%; [32.5, 37.2] | 27.9%; [24.0, 32.2] |
BMI | |||
(1) Normal_weight or less | 23.8%; [22.0, 25.7] | 24.3%; [22.2, 26.5] | 22.3%; [18.7, 26.3] |
(2) Overweight | 41.6%; [39.4, 43.7] | 41.1%; [38.7, 43.6] | 43.0%; [38.5, 47.5] |
(3) Obesity I | 23.9%; [22.1, 25.8] | 23.4%; [21.4, 25.6] | 25.6%; [21.8, 29.8] |
(4) Obesity II | 7.4%; [6.3, 8.6] | 7.7%; [6.5, 9.2] | 6.2%; [4.3, 8.8] |
(5) Obesity III | 3.3%; [2.6, 4.2] | 3.4%; [2.6, 4.4] | 2.9%; [1.7, 4.9] |
1% |
Simple Regression Models | Multivariable Logistic Regression Model | |||
---|---|---|---|---|
Variable | Odds Ratio (OR) 1 | 95% CI 1 | Odds Ratio (OR) 1 | 95% CI 1 |
Sex [Female vs. Male] | 0.79 | 0.66–0.94 | 0.93 | 0.77–1.12 |
Age categories 2 | ||||
50–59 | 0.76 | 0.57–1.0 | 0.76 | 0.56–1.03 |
60–69 | 0.65 | 0.48–0.87 | 0.70 | 0.52–0.95 |
70–79 | 0.51 | 0.39–0.68 | 0.56 | 0.42–0.76 |
[80+] | 0.31 | 0.22–0.42 | 0.34 | 0.24–0.47 |
Region [Rural vs. urban] | 2.24 | 1.89–2.66 | 2.43 | 2.00–2.94 |
Arterial Hypertension [Yes vs. no] | 0.80 | 0.64–0.99 | 0.85 | 0.67–1.09 |
Hypercholesterolemia [Yes vs. no] | 1.21 | 1.03–1.42 | 0.82 | 0.68–1.00 |
Diabetes [Yes vs. no] | 0.81 | 0.68–0.96 | 0.97 | 0.81–1.17 |
BMI 3 | ||||
Overweight | 1.21 | 0.98–1.49 | 1.13 | 0.92–1.40 |
Obesity | 1.24 | 1.00–1.55 | 1.14 | 0.92–1.43 |
Predictor | Odds Ratio (OR) 1 | 95% CI 1 | p-Value |
---|---|---|---|
Self_referral Yes vs. No 3 | 1.11 | 0.89, 1.38 | 0.4 |
Sex Female vs. Male | 1.22 | 1.00, 1.50 | 0.053 |
Age categories 2 | |||
50–59 | 0.85 | 0.59, 1.22 | 0.4 |
60–69 | 1.23 | 0.84, 1.78 | 0.3 |
70–79 | 1.28 | 0.88, 1.84 | 0.2 |
80+ | 2.11 | 1.43, 3.11 | <0.001 |
Arterial Hypertension Yes vs. No | 0.36 | 0.24, 0.53 | <0.001 |
Hypercholesterolemia Yes vs. No | 0.58 | 0.46, 0.74 | <0.001 |
Diabetes Yes vs. No | 1.37 | 1.12, 1.68 | 0.002 |
BMI4 | |||
Overweight | 1.12 | 0.88, 1.42 | 0.3 |
Obesity | 1.10 | 0.86, 1.41 | 0.4 |
Self-Referral Population | No Self-Referral Population | |||||
---|---|---|---|---|---|---|
Predictor | Odds Ratio (OR) 1 | 95% CI 1 | p-Value | Odds Ratio (OR) 1 | 95% CI 1 | p-Value |
Sex Female vs. Male | 0.91 | 0.59, 1.41 | 0.7 | 1.33 | 1.06, 1.67 | 0.015 |
Age categories 2 | ||||||
50–59 | 0.86 | 0.42, 1.73 | 0.7 | 0.88 | 0.57, 1.36 | 0.6 |
60–69 | 0.891 | 0.44, 1.86 | 0.8 | 1.40 | 0.90, 2.19 | 0.13 |
70–79 | 0.76 | 0.37, 1.54 | 0.5 | 1.57 | 1.02, 2.43 | 0.040 |
80+ | 1.77 | 0.77, 4.12 | 0.2 | 2.35 | 1.50, 3.67 | <0.001 |
Arterial Hypertension Yes vs. No | 0.22 | 0.08, 0.50 | <0.001 | 0.41 | 0.26, 0.63 | <0.001 |
Hypercholesterolemia Yes vs. No | 0.61 | 0.38, 0.99 | 0.057 | 0.58 | 0.44, 0.77 | <0.001 |
Diabetes Yes vs. No | 1.28 | 0.82, 2.01 | 0.3 | 1.41 | 1.12, 1.78 | 0.003 |
BMI 3 | ||||||
Overweight | 1.43 | 0.86, 2.38 | 0.2 | 1.07 | 0.81, 1.40 | 0.6 |
Obesity | 1.54 | 0.91, 2.61 | 0.11 | 1.01 | 0.76, 1.34 | >0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland, K.; Lueckmann, S.L.; Assaf, M.; Mikolajczyk, R. Bypassing Emergency Service: Decoding the Drivers of Self-Referral During Acute Myocardial Infarction on Rural Areas in Sachsen-Anhalt, Germany. Healthcare 2024, 12, 2234. https://doi.org/10.3390/healthcare12222234
Holland K, Lueckmann SL, Assaf M, Mikolajczyk R. Bypassing Emergency Service: Decoding the Drivers of Self-Referral During Acute Myocardial Infarction on Rural Areas in Sachsen-Anhalt, Germany. Healthcare. 2024; 12(22):2234. https://doi.org/10.3390/healthcare12222234
Chicago/Turabian StyleHolland, Karen, Sara L. Lueckmann, Mohamad Assaf, and Rafael Mikolajczyk. 2024. "Bypassing Emergency Service: Decoding the Drivers of Self-Referral During Acute Myocardial Infarction on Rural Areas in Sachsen-Anhalt, Germany" Healthcare 12, no. 22: 2234. https://doi.org/10.3390/healthcare12222234
APA StyleHolland, K., Lueckmann, S. L., Assaf, M., & Mikolajczyk, R. (2024). Bypassing Emergency Service: Decoding the Drivers of Self-Referral During Acute Myocardial Infarction on Rural Areas in Sachsen-Anhalt, Germany. Healthcare, 12(22), 2234. https://doi.org/10.3390/healthcare12222234