The Paradox of Digital Health: Why Middle-Aged Adults Outperform Young Adults in Health Management Utilization via Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Data Collection
2.2. Ethical Considerations
2.3. Survey Methods
Q 2-1 | “I am well aware of how to use digital devices/systems”. |
Q 2-2 | “I am proficient in using the menus and features of digital devices/systems”. |
Q 2-3 | “I am confident in gathering information using digital devices/systems”. |
Q 3-1 | “I do not find it difficult to manage my health using digital devices/systems”. |
Q 3-2 | “I am confident in managing my health using digital devices/systems”. |
Q 3-3 | “I create my own plans to manage my health using digital devices/systems”. |
Q 3-4 | “I believe I can develop good health habits by utilizing digital devices/systems”. |
Q 3-5 | “I can consistently and repeatedly use digital devices/systems for health management”. |
Q 3-6 | “I can evaluate my health management results by utilizing digital devices/systems”. |
2.4. Statistical Analysis
3. Results
3.1. Demography
3.2. Usage of Digital Health Management
3.3. Confidence in Utilizing Digital Devices
3.4. Confidence in Utilizing Digital Devices for Healthcare Management
4. Discussion
4.1. Study Limitations
4.2. Study Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Abbas, K.M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abolhassani, H.; Abreu, L.G.; Abrigo, M.R. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1160–1203. [Google Scholar] [CrossRef] [PubMed]
- Esteban Ortiz-Ospina and Max Roser  Global Health. Available online: https://ourworldindata.org/health-meta (accessed on 8 October 2024).
- Steptoe, A.; Deaton, A.; Stone, A.A. Subjective wellbeing, health, and ageing. Lancet 2015, 385, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Easterlin, R.A. Explaining happiness. Proc. Natl. Acad. Sci. USA 2003, 100, 11176–11183. [Google Scholar] [CrossRef]
- Bandura, A. Health promotion by social cognitive means. Health Educ. Behav. 2004, 31, 143–164. [Google Scholar] [CrossRef]
- Nogrady, B. Nature Index Annual Tables 2023: First health-science ranking reveals big US lead. Nature 2023. [Google Scholar] [CrossRef]
- Nicomedes, C.J.C.; Avila, R.M.A. An analysis on the panic during COVID-19 pandemic through an online form. J. Affect. Disord. 2020, 276, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; So, W.; Youn, H. Importance-performance analysis of health perception among Korean adolescents during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 1280. [Google Scholar] [CrossRef]
- Du, H.; Yang, J.; King, R.B.; Yang, L.; Chi, P. COVID-19 increases online searches for emotional and health-related terms. Appl. Psychol. Health Well-Being 2020, 12, 1039–1053. [Google Scholar] [CrossRef]
- Hong, H. Philips Healthy Living in Asia Survey. Available online: https://www.philips.co.kr/a-w/about/news/archive/standard/about/news/press/2022/20220720-philips-announces-results-of-personal-health-management-survey-in-asia.html (accessed on 8 October 2024).
- Keesara, S.; Jonas, A.; Schulman, K. COVID-19 and health care’s digital revolution. N. Engl. J. Med. 2020, 382, e82. [Google Scholar] [CrossRef]
- Petracca, F.; Ciani, O.; Cucciniello, M.; Tarricone, R. Harnessing digital health technologies during and after the COVID-19 pandemic: Context matters. J. Med. Internet Res. 2020, 22, e21815. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith Jr, S.C. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Magkos, F.; Yannakoulia, M.; Chan, J.L.; Mantzoros, C.S. Management of the metabolic syndrome and type 2 diabetes through lifestyle modification. Annu. Rev. Nutr. 2009, 29, 223–256. [Google Scholar] [CrossRef] [PubMed]
- Grave, R.D.; Calugi, S.; Centis, E.; Marzocchi, R.; Ghoch, M.E.; Marchesini, G. Lifestyle modification in the management of the metabolic syndrome: Achievements and challenges. Diabetes Metab. Syndr. Obes. Targets Ther. 2010, 3, 373–385. [Google Scholar]
- Yamaoka, K.; Tango, T. Effects of lifestyle modification on metabolic syndrome: A systematic review and meta-analysis. BMC Med. 2012, 10, 138. [Google Scholar] [CrossRef]
- Sequi-Dominguez, I.; Alvarez-Bueno, C.; Martinez-Vizcaino, V.; Fernandez-Rodriguez, R.; del Saz Lara, A.; Cavero-Redondo, I. Effectiveness of mobile health interventions promoting physical activity and lifestyle interventions to reduce cardiovascular risk among individuals with metabolic syndrome: Systematic review and meta-analysis. J. Med. Internet Res. 2020, 22, e17790. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Choi, J.; Lee, H.S.; Jeon, S.; Lee, J.; Hong, K. Effect of walking steps measured by a wearable activity tracker on improving components of metabolic syndrome: A prospective study. Int. J. Environ. Res. Public Health 2022, 19, 5433. [Google Scholar] [CrossRef]
- Bassi, N.; Karagodin, I.; Wang, S.; Vassallo, P.; Priyanath, A.; Massaro, E.; Stone, N.J. Lifestyle modification for metabolic syndrome: A systematic review. Am. J. Med. 2014, 127, 1242.e1–1242.e10. [Google Scholar] [CrossRef]
- Michie, S.; Yardley, L.; West, R.; Patrick, K.; Greaves, F. Developing and evaluating digital interventions to promote behavior change in health and health care: Recommendations resulting from an international workshop. J. Med. Internet Res. 2017, 19, e232. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guideline: Recommendations on Digital Interventions for Health System Strengthening: Web Supplement 2: Summary of Findings and GRADE Tables; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Widmer, R.J.; Collins, N.M.; Collins, C.S.; West, C.P.; Lerman, L.O.; Lerman, A. Digital Health Interventions for the Prevention of Cardiovascular Disease: A Systematic Review and Meta-Analysis; Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2015; Volume 90, pp. 469–480. [Google Scholar]
- Andersson, G. Internet interventions: Past, present and future. Internet Interv. 2018, 12, 181–188. [Google Scholar] [CrossRef]
- Baumeister, H.; Ebert, D.D.; Snoek, F. Special issue on digital health interventions in chronic medical conditions. Internet Interv. 2022, 28, 100457. [Google Scholar] [CrossRef]
- Kim, G.; Lee, J.; Lee, S. A technology-mediated interventional approach to the prevention of metabolic syndrome: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 512. [Google Scholar] [CrossRef] [PubMed]
- Huh, U.; Tak, Y.J.; Song, S.; Chung, S.W.; Sung, S.M.; Lee, C.W.; Bae, M.; Ahn, H.Y. Feedback on physical activity through a wearable device connected to a mobile phone app in patients with metabolic syndrome: Pilot study. JMIR Mhealth Uhealth 2019, 7, e13381. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.; Cho, B.; Han, M.K.; Choi, H.; Lee, M.N.; Kang, H.; Lee, C.H.; Yun, H.; Kim, Y. The effectiveness of mobile phone-based care for weight control in metabolic syndrome patients: Randomized controlled trial. JMIR Mhealth Uhealth 2015, 3, e4222. [Google Scholar] [CrossRef]
- Mao, A.Y.; Chen, C.; Magana, C.; Barajas, K.C.; Olayiwola, J.N. A mobile phone-based health coaching intervention for weight loss and blood pressure reduction in a national payer population: A retrospective study. JMIR Mhealth Uhealth 2017, 5, e7591. [Google Scholar] [CrossRef]
- FDA. What Is Digital Health? Available online: https://www.fda.gov/medical-devices/digital-health-center-excellence/what-digital-health (accessed on 8 October 2024).
- Prensky, M. Digital natives, digital immigrants part 2: Do they really think differently? Horizon 2001, 9, 1–6. [Google Scholar] [CrossRef]
- Hoffmann, C.P.; Lutz, C.; Meckel, M. Digital natives or digital immigrants? The impact of user characteristics on online trust. J. Manage. Inf. Syst. 2014, 31, 138–171. [Google Scholar] [CrossRef]
- Škare, M.; Soriano, D.R. A dynamic panel study on digitalization and firm’s agility: What drives agility in advanced economies 2009–2018. Technol. Forecast. Soc. Change 2021, 163, 120418. [Google Scholar] [CrossRef]
- Selwyn, N. Reconsidering political and popular understandings of the digital divide. New Media Soc. 2004, 6, 341–362. [Google Scholar] [CrossRef]
- Park, S.; Shin, J.; Cho, Y. A Study on the Management and Utilization of Health and Welfare Survey Data—Focusing on Survey Data Management Cases in KIHASA; Korea Institute for Health and Social Affairs (KIHASA): Sejong, Republic of Korea, 2023. [Google Scholar]
- Kim, J.D.; Kim, S.W.; Park, J.M. Digital Information Gap Factual Survey; Ministry of Science and ICT: Sejong-si, Republic of Korea, 2021; p. 24. [Google Scholar]
- Erikson, E.H. Identity and the Life Cycle; WW Norton & company: New York, NY, USA, 1994. [Google Scholar]
- Ministry of Employment and Labor. Government Launches First-Ever Plan for Supporting Triple-Cropping Lifecycle for the New Middle-Aged; Interdepartmental Press Release; Ministry of Employment and Labor: Sejong, Republic of Korea, 2017; p. 2. [Google Scholar]
- Choi, S.G.; Kim, H.Y.; Hwang, J.N.; Chae, S.M.; Han, G.R.; Yoo, J.S.; Cheon, H.R. Research of Health Information Literacy (Health Literacy) Improve Measure; Korea Institute for Health and Social Affairs (KIHASA): Sejong, Republic of Korea, 2020. [Google Scholar]
- Gadermann, A.M.; Guhn, M.; Zumbo, B.D. Estimating ordinal reliability for Likert-type and ordinal item response data: A conceptual, empirical, and practical guide. Pract. Assess. Res. Eval. 2012, 17, n3. [Google Scholar]
- Boateng, G.O.; Neilands, T.B.; Frongillo, E.A.; Melgar-Quiñonez, H.R.; Young, S.L. Best practices for developing and validating scales for health, social, and behavioral research: A primer. Front. Public Health 2018, 6, 149. [Google Scholar] [CrossRef]
- Van Der Vaart, R.; Drossaert, C. Development of the digital health literacy instrument: Measuring a broad spectrum of health 1.0 and health 2.0 skills. J. Med. Internet Res. 2017, 19, e27. [Google Scholar] [CrossRef]
- Park, E.; Kwon, M. Testing the digital health literacy instrument for adolescents: Cognitive interviews. J. Med. Internet Res. 2021, 23, e17856. [Google Scholar] [CrossRef]
- Kim, H.; Yang, E.; Ryu, H.; Kim, H.J.; Jang, S.J.; Chang, S.J. Psychometric comparisons of measures of eHealth literacy using a sample of Korean older adults. Int. J. Older People Nurs. 2021, 16, e12369. [Google Scholar] [CrossRef]
- Barbosa, M.C.F.; Baldiotti, A.L.P.; Braga, N.S.; Lopes, C.T.; Paiva, S.M.; Granville-Garcia, A.F.; Ferreira, F.d.M. Cross-cultural adaptation of the Digital Health Literacy Instrument (DHLI) for use on Brazilian adolescents. Braz. Dent. J. 2023, 34, 104–114. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 22.0; IBM Corp.: Armonk, NY, USA, 2013.
- McHugh, M.L. The chi-square test of independence. Biochem. Medica 2013, 23, 143–149. [Google Scholar] [CrossRef]
- De Winter, J.C.; Dodou, D. Five-point Likert items: T test versus Mann-Whitney-Wilcoxon. Pract. Assess. Res. Eval. 2010, 15, 11. [Google Scholar]
- Jones, C.; Ramanau, R.; Cross, S.; Healing, G. Net generation or Digital Natives: Is there a distinct new generation entering university? Comput. Educ. 2010, 54, 722–732. [Google Scholar] [CrossRef]
- Boyd, D. It’s Complicated: The Social Lives of Networked Teens; Yale University Press: New Haven, CT, USA, 2014. [Google Scholar]
- Ito, M. Hanging Out, Messing Around, and Geeking Out: Kids Living and Learning with New Media; The MIT press: Cambridge, MA, USA, 2013. [Google Scholar]
- Third, A.; Bellerose, D.; Dawkins, U.; Keltie, E.; Pihl, K. Children’s Rights in the Digital Age: A Download from Children Around the World; Young and Well Cooperative Research Centre: Abbotsford, VIC, Australia, 2014. [Google Scholar]
- Third, A.; Bellerose, D.; De Oliveira, J.D.; Lala, G.; Theakstone, G. Young and Online: Children’s Perspectives on Life in the Digital Age (The State of the World’s Children 2017 Companion Report); Western Sydney University: Penrith, NSW, Australia, 2017. [Google Scholar]
- Anandpara, G.; Kharadi, A.; Vidja, P.; Chauhan, Y.; Mahajan, S.; Patel, J. A comprehensive review on digital detox: A newer health and wellness trend in the current era. Cureus 2024, 16, e58719. [Google Scholar] [CrossRef]
- İNal, E.E.; Demirci, K.; Çetİntürk, A.; Akgönül, M.; Savaş, S. Effects of smartphone overuse on hand function, pinch strength, and the median nerve. Muscle Nerve 2015, 52, 183–188. [Google Scholar] [CrossRef]
- Kang, K.W.; Jung, S.I.; Do, Y.L.; Kim, K.; Lee, N.K. Effect of sitting posture on respiratory function while using a smartphone. J. Phys. Ther. Sci. 2016, 28, 1496–1498. [Google Scholar] [CrossRef]
- Karapinar, D.Ç.; Daş, A.; Daş, N. Digital Detox Experiences of Generation Z. Turk. J. Addict. 2024, 11, 208–216. [Google Scholar] [CrossRef]
- Coyne, P.; Woodruff, S.J. Taking a break: The effects of partaking in a two-week social media digital detox on problematic smartphone and social media use, and other health-related outcomes among young adults. Behav. Sci. 2023, 13, 1004. [Google Scholar] [CrossRef]
- Bachmann, J.M.; DeFina, L.F.; Franzini, L.; Gao, A.; Leonard, D.S.; Cooper, K.H.; Berry, J.D.; Willis, B.L. Cardiorespiratory fitness in middle age and health care costs in later life. J. Am. Coll. Cardiol. 2015, 66, 1876–1885. [Google Scholar] [CrossRef]
- Quiñones, A.R.; Valenzuela, S.H.; Huguet, N.; Ukhanova, M.; Marino, M.; Lucas, J.A.; O’Malley, J.; Schmidt, T.D.; Voss, R.; Peak, K. Prevalent multimorbidity combinations among middle-aged and older adults seen in community health centers. J. Gen. Intern. Med. 2022, 37, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Salive, M.E. Multimorbidity in older adults. Epidemiol. Rev. 2013, 35, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Dankel, S.J.; Loenneke, J.P.; Loprinzi, P.D. Participation in muscle-strengthening activities as an alternative method for the prevention of multimorbidity. Prev. Med. 2015, 81, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Penedo, F.J.; Dahn, J.R. Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Curr. Opin. Psychiatry 2005, 18, 189–193. [Google Scholar] [CrossRef]
- Ransdell, S.; Kent, B.; Gaillard-Kenney, S.; Long, J. Digital immigrants fare better than digital natives due to social reliance. Br. J. Educ. Technol. 2011, 42, 931–938. [Google Scholar] [CrossRef]
- Manovel, I.; Sather, T.; McCauley, S. Australian Seniors Ride Digital Care Wave; Accenture: Adelaide, SA, Australia, 2019. [Google Scholar]
- Interdepartmental cooperation. Basic Plan for the Prevention and Resolution of Over-Dependence on Smartphones and the Internet for the Healthy Use of Intelligent Information Services 2022–2024; Ministry of Science and ICT of South Korea: Sejong, Republic of Korea, 2022. [Google Scholar]
- Van Deursen, A.J.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A. Modeling habitual and addictive smartphone behavior: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender. Comput. Hum. Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef]
- Choi, E.J.; Ryu, S.W.; Cheon, H.R.; Gwak, W.S.; Choi, S.G. Research on a Individual Capability Reinforcement Model to Improve Access to Digital Health; Korea Institute for Health and Social Affairs (KIHASA): Sejong, Republic of Korea, 2022. [Google Scholar]
Effective Value | Missing Value | Total Value | |||
---|---|---|---|---|---|
N | % | N | % | N | % |
783 | 78.3% | 217 | 21.7% | 1000 | 100.0% |
Utilization of Digital Methods for Health Management and the Tools Employed | Total | χ2 | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wearable Devices | Mobile Apps | Video Conferencing System | Online Video | Telephone Consultation | Video Consultation | etc. | Body Composition Analysis | ||||||
Group | 1 | N | 186 | 216 | 8 | 44 | 14 | 5 | 5 | 1 | 290 | 21.157 | 0.007 |
% | 23.8% | 27.6% | 1.0% | 5.6% | 1.8% | 0.6% | 0.6% | 0.1% | 37.0% | ||||
2 | N | 274 | 342 | 26 | 105 | 43 | 16 | 6 | 2 | 493 | |||
% | 35.0% | 43.7% | 3.3% | 13.4% | 5.5% | 2.0% | 0.8% | 0.3% | 63.0% | ||||
Total | N | 460 | 558 | 34 | 149 | 57 | 21 | 11 | 3 | 783 | |||
% | 58.7% | 71.3% | 4.3% | 19.0% | 7.3% | 2.7% | 1.4% | 0.4% | 100.0% |
Group | N | Mean | Std. Deviation | Levene’s Test | t-Test for Equality of Means | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | t | df | Sig (2-Tailed) | Mean Difference | Std. Error Difference | 95% CI | ||||||
Lower | Upper | ||||||||||||
Q 2-1 | 1 | 359 | 3.91 | 0.860 | 4.888 | 0.27 | 6.417 | 719.419 | 0.000 | 0.359 | 0.056 | 0.249 | 0.469 |
2 | 641 | 3.55 | 0.830 | ||||||||||
Q 2-2 | 1 | 359 | 3.86 | 0.891 | 1.652 | 0.199 | 6.748 | 998 | 0.000 | 0.389 | 0.058 | 0.276 | 0.502 |
2 | 641 | 3.47 | 0.864 | ||||||||||
Q 2-3 | 1 | 359 | 3.79 | 0.903 | 0.029 | 0.865 | 6.107 | 998 | 0.000 | 0.356 | 0.058 | 0.242 | 0.471 |
2 | 641 | 3.43 | 0.874 |
Group | N | Mean | Std. Deviation | Levene’s Test | t-Test for Equality of Means | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | t | df | Sig (2-Tailed) | Mean Difference | Std. Error Difference | 95% CI | ||||||
Lower | Upper | ||||||||||||
Q3-1 | 1 | 359 | 3.91 | 0.872 | 7.623 | 0.006 | 7.350 | 730.870 | 0.000 | 0.420 | 0.057 | 0.308 | 0.532 |
2 | 641 | 3.49 | 0.857 | ||||||||||
Q3-2 | 1 | 359 | 3.68 | 0.918 | 3.490 | 0.062 | 6.258 | 998 | 0.000 | 0.366 | 0.058 | 0.251 | 0.480 |
2 | 641 | 3.32 | 0.868 | ||||||||||
Q3-3 | 1 | 359 | 3.39 | 1.079 | 9.986 | 0.002 | 2.570 | 678.615 | 0.010 | 0.177 | 0.069 | 0.042 | 0.311 |
2 | 641 | 3.21 | 0.972 | ||||||||||
Q3-4 | 1 | 359 | 3.69 | 0.904 | 5.758 | 0.017 | 2.192 | 655.005 | 0.029 | 0.125 | 0.057 | 0.013 | 0.236 |
2 | 641 | 3.57 | 0.780 | ||||||||||
Q3-5 | 1 | 359 | 3.79 | 0.887 | 0.044 | 0.835 | 3.017 | 998 | 0.003 | 0.167 | 0.055 | 0.059 | 0.276 |
2 | 641 | 3.62 | 0.815 | ||||||||||
Q3-6 | 1 | 359 | 3.68 | 0.906 | 2.505 | 0.114 | 4.215 | 998 | 0.000 | 0.235 | 0.056 | 0.125 | 0.344 |
2 | 641 | 3.45 | 0.809 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-H.; Nam, Y.G. The Paradox of Digital Health: Why Middle-Aged Adults Outperform Young Adults in Health Management Utilization via Technology. Healthcare 2024, 12, 2261. https://doi.org/10.3390/healthcare12222261
Jeong S-H, Nam YG. The Paradox of Digital Health: Why Middle-Aged Adults Outperform Young Adults in Health Management Utilization via Technology. Healthcare. 2024; 12(22):2261. https://doi.org/10.3390/healthcare12222261
Chicago/Turabian StyleJeong, Seo-Ha, and Yeon Gyo Nam. 2024. "The Paradox of Digital Health: Why Middle-Aged Adults Outperform Young Adults in Health Management Utilization via Technology" Healthcare 12, no. 22: 2261. https://doi.org/10.3390/healthcare12222261
APA StyleJeong, S. -H., & Nam, Y. G. (2024). The Paradox of Digital Health: Why Middle-Aged Adults Outperform Young Adults in Health Management Utilization via Technology. Healthcare, 12(22), 2261. https://doi.org/10.3390/healthcare12222261