Physical Activity Component of the Greek Interventional Geriatric Study to Prevent Cognitive Impairment and Disability (GINGER): Protocol Development and Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Development
2.1.1. Development of the Physical Activity Assessment and Intervention Procedure
2.1.2. Outcome Measures
2.1.3. Screening Process
2.1.4. Physical Exercise Intervention
2.1.5. Instructors
2.2. Feasibility Study
3. Results
3.1. Reliability Testing
3.2. Familiarization/Testing of the Intervention
3.3. Protocol Delivery and Applicability
3.4. Timeline Evaluation and Data Loss
3.5. Exercise Adherence and Satisfaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015. The Global Impact of De-mentia. An Analysis of Prevalence, Incidence, Cost and Trends. Ph.D. Thesis, King’s College London, London, UK, 2015. [Google Scholar]
- Li, N.; Zhang, L.; Du, W.; Pang, L.; Guo, C.; Chen, G.; Zheng, X. Prevalence of dementia-associated disability among Chinese older adults: Results from a national sample survey. Am. J. Geriatr. Psychiatry 2015, 23, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Lisko, I.; Törmäkangas, T.; Jylhä, M. Structure of self-rated health among the oldest old: Analyses in the total population and those living with dementia. SSM-Popul. Health 2020, 11, 100567. [Google Scholar] [CrossRef] [PubMed]
- Lisko, I.; Kulmala, J.; Annetorp, M.; Ngandu, T.; Mangialasche, F.; Kivipelto, M. How can dementia and disability be prevented in older adults: Where are we today and where are we going? J. Intern. Med. 2021, 289, 807–830. [Google Scholar] [CrossRef]
- Lanctôt, K.L.; Hahn-Pedersen, J.H.; Eichinger, C.S.; Freeman, C.; Clark, A.; Tarazona, L.R.S.; Cummings, J. Burden of illness in people with alzheimer’s disease: A systematic review of epidemiology, comorbidities and mortality. J. Prev. Alzheimers Dis. 2023, 11, 97–107. [Google Scholar] [CrossRef]
- Jester, H.M.; Gosrani, S.P.; Ding, H.; Zhou, X.; Ko, M.-C.; Ma, T. Characterization of Early Alzheimer’s Disease-Like Pathological Alterations in Non-Human Primates with Aging: A Pilot Study. J. Alzheimers Dis. 2022, 88, 957–970. [Google Scholar] [CrossRef]
- Liew, T.M. Depression, subjective cognitive decline, and the risk of neurocognitive disorders. Alzheimers Res. Ther. 2019, 11, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jonker, C.; Geerlings, M.I.; Schmand, B. Are memory complaints predictive for dementia? A review of clinical and population-based studies. Int. J. Geriatr. Psychiatry 2000, 15, 983–991. [Google Scholar] [CrossRef]
- Turner, J.R.; Hill, N.L.; Brautigam, L.; Bhargava, S.; Mogle, J. How Does Exposure to Dementia Relate to Subjective Cognition? A Systematic Review. Innov. Aging 2023, 7, igad056. [Google Scholar] [CrossRef]
- Margioti, E.; Scarmeas, N.; Yannakoulia, M.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Ntanasi, E.; Aretouli, E.; Kosmidis, M.H. Subjective Cognitive Decline as a predictor of Frailty in older adults: Hellenic Longitudinal Investigation of Aging and Diet study (HELIAD). J. Frailty Aging 2023, 12, 198–207. [Google Scholar] [CrossRef]
- Huang, P.; Fang, R.; Li, B.-Y.; Chen, S.-D. Exercise-Related Changes of Networks in Aging and Mild Cognitive Impairment Brain. Front. Aging Neurosci. 2016, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shan, P.-Y.; Jiang, W.-J.; Sheng, C.; Ma, L. Subjective cognitive decline: Preclinical manifestation of Alzheimer’s disease. Neurol. Sci. 2019, 40, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Shulman, M.B.; Torossian, C.; Leng, L.; Zhu, W. Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimers Dement. 2010, 6, 11–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhong, Q.; Ali, N.; Gao, Y.; Wu, H.; Wu, X.; Sun, C.; Ma, J.; Thabane, L.; Xiao, M.; Zhou, Q.; et al. Gait Kinematic and Kinetic Characteristics of Older Adults With Mild Cognitive Impairment and Subjective Cognitive Decline: A Cross-Sectional Study. Front. Aging Neurosci. 2021, 13, 664558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujita, K.; Umegaki, H.; Makino, T.; Uemura, K.; Hayashi, T.; Inoue, A.; Uno, C.; Kitada, T.; Huang, C.H.; Shimada, H.; et al. Short- and long-term effects of different exercise programs on the gait performance of older adults with subjective cognitive decline: A randomized controlled trial. Exp. Gerontol. 2021, 156, 111590. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Stephen, R.; Altomare, D.; Carrera, E.; Frisoni, G.B.; Kulmala, J.; Molinuevo, J.L.; Nilsson, P.; Ngandu, T.; Ribaldi, F.; et al. Multidomain interventions: State-of-the-art and future directions for protocols to implement precision dementia risk reduction. A user manual for Brain Health Services—Part 4 of 6. Alzheimers Res. Ther. 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alexopoulos, P.; Frounta, M.; Perneczky, R. The multidimensional beneficial effect of physical exercise on symptoms of neurocognitive disorder. Int. Psychogeriatr. 2022, 34, 109–112. [Google Scholar] [CrossRef]
- Ahlskog, J.E.; Geda, Y.E.; Graff-Radford, N.R.; Petersen, R.C. Physical Exercise as a Preventive or Disease-Modifying Treatment of Dementia and Brain Aging. Mayo Clin. Proc. 2011, 86, 876–884. [Google Scholar] [CrossRef]
- Umegaki, H.; Sakurai, T.; Arai, H. Active Life for Brain Health: A Narrative Review of the Mechanism Underlying the Protective Effects of Physical Activity on the Brain. Front. Aging Neurosci. 2021, 13, 761674. [Google Scholar] [CrossRef]
- Lu, Y.; Bu, F.-Q.; Wang, F.; Liu, L.; Zhang, S.; Wang, G.; Hu, X.-Y. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl. Neurodegener. 2023, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- van Uffelen, J.G.; Chinapaw, M.J.; Hopman-Rock, M.; van Mechelen, W. Feasibility and Effectiveness of a Walking Program for Community-Dwelling Older Adults with Mild Cognitive Impairment: A controlled trial. J. Aging Phys. Act. 2009, 17, 398–415. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.D.; Frank, L.L.; Foster-Schubert, K.; Green, P.S.; Wilkinson, C.W.; McTiernan, A.; Plymate, S.R.; Fishel, M.A.; Watson, G.S.; Cholerton, B.A.; et al. Effects of Aerobic Exercise on Mild Cognitive Impairment. Arch. Neurol. 2010, 67, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Ito, K.; Shimokata, H.; Washimi, Y.; Endo, H.; Kato, T. A Randomized Controlled Trial of Multicomponent Exercise in Older Adults with Mild Cognitive Impairment. PLoS ONE 2013, 8, e61483. [Google Scholar] [CrossRef]
- Bherer, L.; Erickson, K.I.; Liu-Ambrose, T. A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults. J. Aging Res. 2013, 2013, 657508. [Google Scholar] [CrossRef]
- Devenney, K.E.; on behalf of the NeuroExercise Study Group; Sanders, M.L.; Lawlor, B.; Rikkert, M.G.M.O.; Schneider, S. The effects of an extensive exercise programme on the progression of Mild Cognitive Impairment (MCI): Study protocol for a randomised controlled trial. BMC Geriatr. 2017, 17, 75. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, B.; Huang, J.; Zhang, M.; Wang, Y.; Fu, J.; Liang, H.; Zhan, H. The Effects of Different Exercise Interventions on Patients with Subjective Cognitive Decline: A Systematic Review and Network Meta-Analysis. J. Prev. Alzheimers Dis. 2024, 11, 620–631. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Donaldson, M.G.; Ahamed, Y.; Graf, P.; Cook, W.L.; Close, J.; Lord, S.R.; Khan, K.M. Otago Home-Based Strength and Balance Retraining Improves Executive Functioning in Older Fallers: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2008, 56, 1821–1830. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Nagamatsu, L.S.; Graf, P.; Beattie, B.L.; Ashe, M.C.; Handy, T.C. Resistance Training and Executive Functions: A 12-month randomized controlled trial. Arch. Intern. Med. 2010, 170, 170–178. [Google Scholar] [CrossRef]
- Heyn, P.; Abreu, B.C.; Ottenbacher, K.J. The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Arch. Phys. Med. Rehabil. 2004, 85, 1694–1704. [Google Scholar] [CrossRef]
- Law, L.L.; Barnett, F.; Yau, M.K.; Gray, M.A. Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: A systematic review. Ageing Res. Rev. 2014, 15, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tsai, Y.; Liao, J.; Tu, H.; Huang, C. Interventions to reduce the number of falls among older adults with/without cognitive impairment: An exploratory meta-analysis. Int. J. Geriatr. Psychiatry 2014, 29, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Rugbeer, N.; Ramklass, S.; Mckune, A.; van Heerden, J. The effect of group exercise frequency on health related quality of life in institutionalized elderly. Pan Afr. Med. J. 2017, 26, 35. [Google Scholar] [CrossRef]
- Biazus-Sehn, L.F.; Schuch, F.B.; Firth, J.; Stigger, F.d.S. Effects of physical exercise on cognitive function of older adults with mild cognitive impairment: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2020, 89, 104048. [Google Scholar] [CrossRef]
- Lam, F.M.; Huang, M.-Z.; Liao, L.-R.; Chung, R.C.; Kwok, T.C.; Pang, M.Y. Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: A systematic review. J. Physiother. 2018, 64, 4–15. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Hsieh, Y.-W.; Chang, C.-C.; Hsiao, F.-J.; Chen, L.-F.; Wang, P.-N. Effects of 6-Month Combined Physical Exercise and Cognitive Training on Neuropsychological and Neurophysiological Function in Older Adults with Subjective Cognitive Decline: A Randomized Controlled Trial. J. Alzheimers Dis. 2024, 100, 175–192. [Google Scholar] [CrossRef]
- Rami, L.; Mollica, M.A.; García-Sanchez, C.; Saldaña, J.; Sanchez, B.; Sala, I.; Valls-Pedret, C.; Castellví, M.; Olives, J.; Molinuevo, J.L. The Subjective Cognitive Decline Questionnaire (SCD-Q): A Validation Study. J. Alzheimers Dis. 2014, 41, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Poptsi, E.; Moraitou, D.; Eleftheriou, M.; Kounti-Zafeiropoulou, F.; Papasozomenou, C.; Agogiatou, C.; Bakoglidou, E.; Batsila, G.; Liapi, D.; Markou, N.; et al. Normative Data for the Montreal Cognitive Assessment in Greek Older Adults With Subjective Cognitive Decline, Mild Cognitive Impairment and Dementia. J. Geriatr. Psychiatry Neurol. 2019, 32, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Z.; Farheen, H.; Tariq, M.I.; Amjad, I. Effectiveness of resistance interval training versus aerobic interval training on peak oxygen uptake in patients with myocardial infarction. J. Pak. Med. Assoc. 2019, 69, 1194–1198. [Google Scholar]
- Angevaren, M.; Aufdemkampe, G.; Verhaar, H.J.; Aleman, A.; Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008, 16, CD005381. [Google Scholar] [CrossRef]
- Brellenthin, A.G.; Lanningham-Foster, L.M.; Kohut, M.L.; Li, Y.; Church, T.S.; Blair, S.N.; Lee, D.-C. Comparison of the Cardiovascular Benefits of Resistance, Aerobic, and Combined Exercise (CardioRACE): Rationale, design, and methods. Am. Heart J. 2019, 217, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Blankevoort, C.G.; van Heuvelen, M.J.; Boersma, F.; Luning, H.; de Jong, J.; Scherder, E.J. Review of Effects of Physical Activity on Strength, Balance, Mobility and ADL Performance in Elderly Subjects with Dementia. Dement. Geriatr. Cogn. Disord. 2010, 30, 392–402. [Google Scholar] [CrossRef]
- Lacroix, A.; Kressig, R.W.; Muehlbauer, T.; Gschwind, Y.J.; Pfenninger, B.; Bruegger, O.; Granacher, U. Effects of a Supervised versus an Unsupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial. Gerontology 2016, 62, 275–288. [Google Scholar] [CrossRef]
- Billis, E.V.; McCarthy, C.J.; Stathopoulos, I.; Kapreli, E.; Pantzou, P.; Oldham, J.A. The clinical and cultural factors in classifying low back pain patients within Greece: A qualitative exploration of Greek health professionals. J. Evaluation Clin. Pract. 2007, 13, 337–345. [Google Scholar] [CrossRef]
- Tsokani, A.; Dimopoulos, T.; Vourazanis, E.; Strimpakos, N.; Billis, E.; Pepera, G.; Kapreli, E. Barriers and Facilitators for Therapeutic Green Exercise in Patients with Chronic Conditions: A Qualitative Focus Group Study. Appl. Sci. 2023, 13, 10077. [Google Scholar] [CrossRef]
- Leddy, A.L.B.; Crowner, B.E.P.; Earhart, G.M. Utility of the Mini-BESTest, BESTest, and BESTest Sections for Balance Assessments in Individuals with Parkinson Disease. J. Neurol. Phys. Ther. 2011, 35, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Godi, M.; Franchignoni, F.; Caligari, M.; Giordano, A.; Turcato, A.M.; Nardone, A. Comparison of Reliability, Validity, and Responsiveness of the Mini-BESTest and Berg Balance Scale in Patients with Balance Disorders. Phys. Ther. 2013, 93, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Lampropoulou, S.; Gedikoglou, A.I.; Michailidou, C.; Billis, E. Cross cultural validation of the Mini-BESTest into Greek. WJRR 2016, 3, 61–67. [Google Scholar]
- Bohannon, R.W.; Peolsson, A.; Massy-Westropp, N.; Desrosiers, J.; Bear-Lehman, J. Reference values for adult grip strength measured with a Jamar dynamometer: A descriptive meta-analysis. Physiotherapy 2006, 92, 11–15. [Google Scholar] [CrossRef]
- Hamilton, A.; Balnave, R.; Adams, R. Grip Strength Testing Reliability. J. Hand Ther. 1994, 7, 163–170. [Google Scholar] [CrossRef]
- Innes, E. Handgrip strength testing: A review of the literature. Aust. Occup. Ther. J. 1999, 46, 120–140. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Functional Fitness Normative Scores for Community-Residing Older Adults, Ages 60–94. J. Aging Phys. Act. 1999, 7, 162–181. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Wang, Y.-C.; Gershon, R.C. Two-Minute Walk Test Performance by Adults 18 to 85 Years: Normative Values, Reliability, and Responsiveness. Arch. Phys. Med. Rehabil. 2015, 96, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Billis, E.; Strimpakos, N.; Kapreli, E.; Sakellari, V.; Skelton, D.A.; Dontas, I.; Ioannou, F.; Filon, G.; Gioftsos, G. Cross-cultural validation of the Falls Efficacy Scale International (FES-I) in Greek community-dwelling older adults. Disabil. Rehabil. 2011, 33, 1776–1784. [Google Scholar] [CrossRef]
- Papathanasiou, G.; Georgoudis, G.; Papandreou, M.; Spyropoulos, P.; Georgakopoulos, D.; Kalfakakou, V.; Evangelou, A. Reliability measures of the short International Physical Activity Questionnaire (IPAQ) in Greek young adults. Hell. J. Cardiol. 2009, 50, 283–294. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Price, K.J.; Gordon, B.A.; Bird, S.R.; Benson, A.C. A review of guidelines for cardiac rehabilitation exercise programmes: Is there an international consensus? Eur. J. Prev. Cardiol. 2016, 23, 1715–1733. [Google Scholar] [CrossRef]
- Day, M.L.; McGuigan, M.R.; Brice, G.; Foster, C. Monitoring Exercise Intensity During Resistance Training Using the Session RPE Scale. J. Strength Cond. Res. 2004, 18, 353–358. [Google Scholar] [CrossRef]
- Newman-Beinart, N.A.; Norton, S.; Dowling, D.; Gavriloff, D.; Vari, C.; Weinman, J.A.; Godfrey, E.L. The development and initial psychometric evaluation of a measure assessing adherence to prescribed exercise: The Exercise Adherence Rating Scale (EARS). Physiotherapy 2017, 103, 180–185. [Google Scholar] [CrossRef]
- Tsekoura, M.; Billis, E.; Kastrinis, A.; Katsoulaki, M.; Fousekis, K.; Tsepis, E.; Konstantoudaki, X.; Gliatis, J. The Effects of Exercise in Patients with Sarcopenia. Adv. Exp. Med. Biol. 2021, 1337, 281–290. [Google Scholar] [CrossRef]
- Larsen, D.L.; Attkisson, C.; Hargreaves, W.A.; Nguyen, T.D. Assessment of client/patient satisfaction: Development of a general scale. Eval. Program Plan. 1979, 2, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Gavelin, H.M.; Dong, C.; Minkov, R.; Bahar-Fuchs, A.; Ellis, K.A.; Lautenschlager, N.T.; Mellow, M.L.; Wade, A.T.; Smith, A.E.; Finke, C.; et al. Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled trials. Ageing Res. Rev. 2020, 66, 101232. [Google Scholar] [CrossRef] [PubMed]
- Barbera, M.; Perera, D.; Matton, A.; Mangialasche, F.; Rosenberg, A.; Middleton, L.; Ngandu, T.; Solomon, A.; Kivipelto, M. Multimodal Precision Prevention—A New Direction in Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2023, 10, 718–728. [Google Scholar] [CrossRef]
- Lustig, C.; Shah, P.; Seidler, R.; Reuter-Lorenz, P.A. Aging, Training, and the Brain: A Review and Future Directions. Neuropsychol. Rev. 2009, 19, 504–522. [Google Scholar] [CrossRef]
- Kim, C.-K.; Sachdev, P.S.; Braidy, N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis. 2022, 13, 175–214. [Google Scholar] [CrossRef]
- Sousa, N.; Mendes, R.; Silva, A.; Oliveira, J. Combined exercise is more effective than aerobic exercise in the improvement of fall risk factors: A randomized controlled trial in community-dwelling older men. Clin. Rehabil. 2017, 31, 478–486. [Google Scholar] [CrossRef]
- Souza, D.; Barbalho, M.; Vieira, C.A.; Martins, W.R.; Cadore, E.L.; Gentil, P. Minimal dose resistance training with elastic tubes promotes functional and cardiovascular benefits to older women. Exp. Gerontol. 2019, 115, 132–138. [Google Scholar] [CrossRef]
- Telenius, E.W.; Engedal, K.; Bergland, A. Long-term effects of a 12 weeks high-intensity functional exercise program on physical function and mental health in nursing home residents with dementia: A single blinded randomized controlled trial. BMC Geriatr. 2015, 15, 158. [Google Scholar] [CrossRef]
- Cyarto, E.V.; Lautenschlager, N.T.; Desmond, P.M.; Ames, D.; Szoeke, C.; Salvado, O.; Sharman, M.J.; Ellis, K.A.; Phal, P.M.; Masters, C.L.; et al. Protocol for a randomized controlled trial evaluating the effect of physical activity on delaying the progression of white matter changes on MRI in older adults with memory complaints and mild cognitive impairment: The AIBL Active trial. BMC Psychiatry 2012, 12, 167. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of Resistance Training: Progression and Exercise Prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Kivipelto, M.; Solomon, A.; Ahtiluoto, S.; Ngandu, T.; Lehtisalo, J.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER): Study design and progress. Alzheimers Dement. 2013, 9, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Squires, R.W.; Kaminsky, L.A.; Porcari, J.P.; Ruff, J.E.; Savage, P.D.; Williams, M.A. Progression of Exercise Training in Early Outpatient Cardiac Rehabilitation: An official statement from the american association of cardiovascular and pulmonary rehabilitation. J. Cardiopulm. Rehabil. Prev. 2018, 38, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Kyrdalen, I.L.; Moen, K.; Røysland, A.S.; Helbostad, J.L. The Otago Exercise Program Performed as Group Training Versus Home Training in Fall-prone Older People: A Randomized Controlled Trial. Physiother. Res. Int. 2014, 19, 108–116. [Google Scholar] [CrossRef]
- Chiu, H.-L.; Yeh, T.-T.; Lo, Y.-T.; Liang, P.-J.; Lee, S.-C. The effects of the Otago Exercise Programme on actual and perceived balance in older adults: A meta-analysis. PLoS ONE 2021, 16, e0255780. [Google Scholar] [CrossRef]
- Thomas, S.; Mackintosh, S.; Halbert, J. Does the ‘Otago exercise programme’ reduce mortality and falls in older adults?: A systematic review and meta-analysis. Age Ageing 2010, 39, 681–687. [Google Scholar] [CrossRef]
- Ali, N.; Tian, H.; Thabane, L.; Ma, J.; Wu, H.; Zhong, Q.; Gao, Y.; Sun, C.; Zhu, Y.; Wang, T. The Effects of Dual-Task Training on Cognitive and Physical Functions in Older Adults with Cognitive Impairment; A Systematic Review and Meta-Analysis. J. Prev. Alzheimers Dis. 2022, 9, 359–370. [Google Scholar] [CrossRef]
- Pollock, M.L.; Gaesser, G.A.; Butcher, J.D.; Després, J.-P.; Dishman, R.K.; Franklin, B.A.; Garber, C.E. ACSM Position Stand: The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults. Med. Sci. Sports Exerc. 1998, 30, 975–991. [Google Scholar] [CrossRef]
- Tsekoura, M.; Billis, E.; Tsepis, E.; Dimitriadis, Z.; Matzaroglou, C.; Tyllianakis, M.; Panagiotopoulos, E.; Gliatis, J. The Effects of Group and Home-Based Exercise Programs in Elderly with Sarcopenia: A Randomized Controlled Trial. J. Clin. Med. 2018, 7, 480. [Google Scholar] [CrossRef]
- Aguiñaga, S.; Ehlers, D.K.; Salerno, E.A.; Fanning, J.; Motl, R.W.; McAuley, E. Home-Based Physical Activity Program Improves Depression and Anxiety in Older Adults. J. Phys. Act. Health 2018, 15, 692–696. [Google Scholar] [CrossRef]
- Burkow, T.M.; Vognild, L.K.; Johnsen, E.; Bratvold, A.; Risberg, M.J. Promoting exercise training and physical activity in daily life: A feasibility study of a virtual group intervention for behaviour change in COPD. BMC Med. Inform. Decis. Mak. 2018, 18, 136. [Google Scholar] [CrossRef]
Timeline | 0–1 Month | 2–3 Month | 3–4 Months | 4–5 Months | 5–6 Months |
---|---|---|---|---|---|
Aerobic exercise | |||||
Exercise mode | |||||
Frequency/week | 3 | 3 | 3 | 3 | 3 |
Duration (min) | 20–30 | 20–30 | 20–30 | 20–30 | 20–30 |
Intensity (RPE) | 6 | 7 | 8 | 7 | 8 |
Types of exercises | |||||
Upper limb exercises | Arm movements (all directions) | Fast-paced arm movements (all directions) | Fast-paced arm movements (all directions) combined with stepping | Fast-paced arm movements (all directions) combined with sideline stepping and knee flexion | |
Lower limb exercises | Side stepping | Side stepping with boxing | Side stepping and trunk rotations combined with boxing | 60 s side stepping and trunk rotations combined with boxing | |
Dual Task exercises | Side stepping (wide to narrow support base) combined with backward counting | Fast-paced side stepping (wide to narrow support base) combined with backward counting | Fast-paced side stepping (wide to narrow support base) combined with arm movement and backward counting | ||
Core stability/Trunk exercises | High knees | High knees with arm movements | High knees with arm movements and trunk rotations | High knees with arm movements and trunk rotations (i.e., right elbow touches left knee) | |
Resistance and balance training exercises | |||||
Exercise mode | |||||
Frequency/week | 2 | 2 | 2 | 2 | 2 |
Duration (min) | 30–45 | 30–60 | 30–60 | 30–60 | 30–60 |
Load (RPE) | 6 | 7 | 8 | 7 | 8 |
Muscle group (number) | 8–10 | 8–10 | 8–10 | 8–10 | 8–10 |
Rest between sets (min) | 1 | 1 | 1 | 1 | 1 |
Repetitions/set | 8–12 | 10–12 | 10–12 | 10–12 | 10–12 |
Number of sets | 2 | 2 | 2 | 2 | 2 |
Types of exercises | |||||
Open Kinetic Chain | Rowing exercise/Hip abduction holding a chair | Rowing exercise holding weight/Hip abduction without holding | Hip abduction without holding | Rowing exercise using elastic band/hip flexion and abduction touching a chair | Rowing exercise using elastic band in pairs/Hip flexion and abduction without holding |
Closed Kinetic Chain | Mini squat | Squat | Sumo squat | Squat and calf raise | Sumo squat and calf raise |
Dual-Task exercise | Squat combined with shoulder flexion | Squat combined with shoulder flexion and then calf raises | Squat combined with shoulder horizontal abduction using elastic band and then calf raises |
Tester 1 | Tester 2 | |||
---|---|---|---|---|
Min–Max | Mean (SD) | Min–Max | Mean (SD) | |
IPAQ-7 score | 280–3972 | 1187.11 (962.40) | - | - |
FES-I | 16–32 | 22.85 (4.910) | - | - |
HGS—Right (mean of 3 trials) | 19.20–48.33 | 31.49 (9.10) | - | - |
HGS—Left (mean) | 5.10–43.27 | 26.61 (11.00) | - | - |
Sit-to-Stand Test (reps) | 10–20 | 14 (2.90) | 10–20 | 13.92 (3.00) |
2 Minute Walk Test (m) | 121.77–212.32 | 167.02 (23.10) | 137.63–212.32 | 170.44 (19.00) |
Mini-BESTest (total score) | 17–27 | 23.38 (3.40) | 17–28 | 23.38 (3.60) |
Anticipatory | 3–6 | 4.62 (0.90) | 3–6 | 4.85 (0.80) |
Reactive postural control | 3–6 | 4.85 (1.10) | 3–6 | 4.62 (1.30) |
Sensory orientation | 4–6 | 5.69 (0.60) | 5–6 | 5.77 (0.40) |
Dynamic gait | 4–10 | 8.23 (1.80) | 4–10 | 8.15 (1.80) |
ICC | 95% CI (Lower–Upper) | SEM | SDD (%) | |
---|---|---|---|---|
Sit-to-Stand Test (frequency) | 1.0 | 0.98–1.00 | 0.19 | 0.52 |
2 Minute Walk Test (m) | 0.83 | 0.54–0.95 | 8.71 | 14.30 |
Mini-BESTest (total score) | 0.96 | 0.87–0.99 | 0.70 | 8.30 |
Anticipatory | 0.62 | 0.14–0.87 | 0.51 | 29.90 |
Reactive postural control | 0.93 | 0.79–0.98 | 0.31 | 18.20 |
Sensory orientation | 0.87 | 0.63–0.96 | 0.19 | 9.20 |
Dynamic gait | 0.96 | 0.88–0.99 | 0.35 | 11.80 |
Baseline | 3-Months | p-Value | |||
---|---|---|---|---|---|
Outcomes | Min–Max | Mean (SD) | Min–Max | Mean (SD) | |
IPAQ-7 score | 1257–5931 | 3009.33 (2546.94) | 3139–9492 | 5434.33 (3524.13) | 0.03 * |
FES-I | 24–30 | 27 (3) | 23–28 | 25.33 (2.50) | 0.02 * |
HGS—Right (mean) | 22.40–36.60 | 30.54 (7.30) | 22.4–33.03 | 28.17 (5.40) | 0.09 |
HGS—Left (mean) | 19.07–34.87 | 28.06 (8.10) | 19.23–33.63 | 26.91 (7.20) | 0.13 |
Sit-to-Stand Test (reps) | 11–12 | 11.33 (0.58) | 13–15 | 14 (1) | 0.03 * |
2 Minute Walk Test (m) | 121.80–164.80 | 137.36 (23.80) | 125.10–152.50 | 142.15 (14.91) | 0.38 |
Mini-BESTest (total) | 19–23 | 21.33 (2.080) | 21–25 | 23 (2) | 0.10 |
Anticipatory | 4–6 | 5 (1) | 5–6 | 5.67 (0.58) | 0.09 |
Reactive postural control | 3–4 | 3.67 (0.58) | 3–4 | 3.33 (0.58) | 0.21 |
Sensory orientation | 4–6 | 5.33 (1.16) | 4–6 | 5.33 (1.16) | 0.53 |
Dynamic gait | 7–8 | 7.33 (0.58) | 8–9 | 8.67 (0.58) | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billis, E.; Nastou, E.; Lampropoulou, S.; Tsekoura, M.; Dimakopoulou, E.; Mastoras, N.; Fragiadaki, I.-M.; Siopis, E.; Michalopoulos, N.; Sakka, P.; et al. Physical Activity Component of the Greek Interventional Geriatric Study to Prevent Cognitive Impairment and Disability (GINGER): Protocol Development and Feasibility Study. Healthcare 2024, 12, 2282. https://doi.org/10.3390/healthcare12222282
Billis E, Nastou E, Lampropoulou S, Tsekoura M, Dimakopoulou E, Mastoras N, Fragiadaki I-M, Siopis E, Michalopoulos N, Sakka P, et al. Physical Activity Component of the Greek Interventional Geriatric Study to Prevent Cognitive Impairment and Disability (GINGER): Protocol Development and Feasibility Study. Healthcare. 2024; 12(22):2282. https://doi.org/10.3390/healthcare12222282
Chicago/Turabian StyleBillis, Evdokia, Eftychia Nastou, Sofia Lampropoulou, Maria Tsekoura, Eleni Dimakopoulou, Nikolaos Mastoras, Ioanna-Maria Fragiadaki, Eleftherios Siopis, Nikolaos Michalopoulos, Paraskevi Sakka, and et al. 2024. "Physical Activity Component of the Greek Interventional Geriatric Study to Prevent Cognitive Impairment and Disability (GINGER): Protocol Development and Feasibility Study" Healthcare 12, no. 22: 2282. https://doi.org/10.3390/healthcare12222282
APA StyleBillis, E., Nastou, E., Lampropoulou, S., Tsekoura, M., Dimakopoulou, E., Mastoras, N., Fragiadaki, I. -M., Siopis, E., Michalopoulos, N., Sakka, P., Koula, M., Basta, M., & Alexopoulos, P. (2024). Physical Activity Component of the Greek Interventional Geriatric Study to Prevent Cognitive Impairment and Disability (GINGER): Protocol Development and Feasibility Study. Healthcare, 12(22), 2282. https://doi.org/10.3390/healthcare12222282