Tonic Cold Pain Temporal Summation and Translesional Cold Pressor Test-Induced Pronociception in Spinal Cord Injury: Association with Spontaneous and Below-Level Neuropathic Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects with SCI
2.2. Experimental Sessions
2.2.1. Pain Assessment
2.2.2. Test Stimulus (TS): Pressure Pain Threshold (PPT)
2.2.3. Conditioning Stimulus (CS): Cold Pressor Test
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. CPM Effect
3.2.1. CPT: Hand Immersion
3.2.2. CPT: Foot Immersion
3.2.3. Translesional CPT-Induced Pronociception Above and Below the SCI
3.2.4. CPT-Evoked Neuropathic Features
4. Discussion
4.1. TSP and Pronociception Induced by TCS
4.2. Neuropathic Features Evoked by TCS
4.3. Influence of Sex on CPM Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, B.; Anderson, D.B.; Chen, L.; Feng, S.; Zhou, H. Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e075049. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.; Fullen, B.M.; Stokes, D.; Lennon, O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur. J. Pain 2017, 21, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Gruener, H.; Zeilig, G.; Gaidukov, E.; Rachamim-Katz, O.; Ringler, E.; Blumen, N.; Engel-Haber, E.; Defrin, R. Biomarkers for predicting central neuropathic pain occurrence and severity after spinal cord injury: Results of a long-term longitudinal study. Pain 2020, 161, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Defrin, R.; Gruener, H.; Gaidukov, E.; Bondi, M.; Rachamim-Katz, O.; Ringler, E.; Blumen, N.; Zeilig, G. From acute to long-term alterations in pain processing and modulation after spinal cord injury: Mechanisms related to chronification of central neuropathic pain. Pain 2022, 163, e94–e105. [Google Scholar] [CrossRef] [PubMed]
- Widerstrom-Noga, E.; Biering-Sorensen, F.; Bryce, T.N.; Cardenas, D.D.; Finnerup, N.B.; Jensen, M.P.; Richards, J.S.; Rosner, J.; Taylor, J. The international spinal cord injury pain basic data set (version 3.0). Spinal Cord 2023, 61, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Wollaars, M.M.; Post, M.W.; van Asbeck, F.W.; Brand, N. Spinal cord injury pain: The influence of psychologic factors and impact on quality of life. Clin. J. Pain 2007, 23, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B. Pain in patients with spinal cord injury. Pain 2013, 154 (Suppl. 1), S71–S76. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Sorensen, L.; Biering-Sorensen, F.; Johannesen, I.L.; Jensen, T.S. Segmental hypersensitivity and spinothalamic function in spinal cord injury pain. Exp. Neurol. 2007, 207, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Zeilig, G.; Enosh, S.; Rubin-Asher, D.; Lehr, B.; Defrin, R. The nature and course of sensory changes following spinal cord injury: Predictive properties and implications on the mechanism of central pain. Brain 2012, 135, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Pedersen, L.H.; Terkelsen, A.J.; Johannesen, I.L.; Jensen, T.S. Reaction to topical capsaicin in spinal cord injury patients with and without central pain. Exp. Neurol. 2007, 205, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Wasner, G.; Lee, B.B.; Engel, S.; McLachlan, E. Residual spinothalamic tract pathways predict development of central pain after spinal cord injury. Brain 2008, 131, 2387–2400. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.; Levi, R.; Waller, M.; Westling, G.; Lindgren, L.; Eriksson, J. Preserved somatosensory conduction in complete spinal cord injury: Discomplete SCI. Clin. Neurophysiol. 2020, 131, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Lütolf, R.; Rosner, J.; Curt, A.; Hubli, M. Identifying Discomplete Spinal Lesions: New Evidence from Pain-Autonomic Interaction in Spinal Cord Injury. J. Neurotrauma 2021, 38, 3456–3466. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Almeida, Y.; Felix, E.R.; Martinez-Arizala, A.; Widerstrom-Noga, E.G. Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury. J. Neurotrauma 2012, 29, 2706–2715. [Google Scholar] [CrossRef] [PubMed]
- Wahlgren, C.; Levi, R.; Amezcua, S.; Thorell, O.; Thordstein, M. Prevalence of discomplete sensorimotor spinal cord injury as evidenced by neurophysiological methods: A cross-sectional study. J. Rehabil. Med. 2021, 53, jrm00156. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Baastrup, C. Spinal cord injury pain: Mechanisms and management. Curr. Pain. Headache Rep. 2012, 16, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijevic, M.R. Residual motor functions in spinal cord injury. Adv. Neurol. 1988, 47, 138–155. [Google Scholar] [PubMed]
- Gruener, H.; Zeilig, G.; Laufer, Y.; Blumen, N.; Defrin, R. Differential pain modulation properties in central neuropathic pain after spinal cord injury. Pain 2016, 157, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Ren, K. Wind-up and the NMDA receptor: From animal studies to humans. Pain 1994, 59, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Lütolf, R.; De Schoenmacker, I.; Rosner, J.; Sirucek, L.; Schweinhardt, P.; Curt, A.; Hubli, M. Anti- and Pro-Nociceptive mechanisms in neuropathic pain after human spinal cord injury. Eur. J. Pain 2022, 26, 2176–2187. [Google Scholar] [CrossRef] [PubMed]
- Albu, S.; Gomez-Soriano, J.; Avila-Martin, G.; Taylor, J. Deficient conditioned pain modulation after spinal cord injury correlates with clinical spontaneous pain measures. Pain 2015, 156, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Scheuren, P.S.; Gagne, M.; Jutzeler, C.R.; Rosner, J.; Mercier, C.; Kramer, J.L.K. Tracking Changes in Neuropathic Pain After Acute Spinal Cord Injury. Front. Neurol. 2019, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.N.; Rice, D.A.; McNair, P.J. Conditioned pain modulation in populations with chronic pain: A systematic review and meta-analysis. J. Pain 2012, 13, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Marcuzzi, A.; Chakiath, R.J.; Siddall, P.J.; Kellow, J.E.; Hush, J.M.; Jones, M.P.; Costa, D.S.J.; Wrigley, P.J. Conditioned Pain Modulation (CPM) is Reduced in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of CPM and the Role of Psychological Factors. J. Clin. Gastroenterol. 2019, 53, 399–408. [Google Scholar] [CrossRef] [PubMed]
- McPhee, M.E.; Vaegter, H.B.; Graven-Nielsen, T. Alterations in pronociceptive and antinociceptive mechanisms in patients with low back pain: A systematic review with meta-analysis. Pain 2020, 161, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, M.H.; Dussor, G.O.; Porreca, F. Central modulation of pain. J. Clin. Investig. 2010, 120, 3779–3787. [Google Scholar] [CrossRef]
- Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 2014, 8, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Avila-Martin, G.; Galan-Arriero, I.; Gomez-Soriano, J.; Taylor, J. Treatment of rat spinal cord injury with the neurotrophic factor albumin-oleic acid: Translational application for paralysis, spasticity and pain. PLoS ONE 2011, 6, e26107. [Google Scholar] [CrossRef] [PubMed]
- Suardiaz, M.; Galan-Arriero, I.; Avila-Martin, G.; Estivill-Torrus, G.; de Fonseca, F.R.; Chun, J.; Gomez-Soriano, J.; Bravo-Esteban, E.; Taylor, J. Spinal cord compression injury in lysophosphatidic acid 1 receptor-null mice promotes maladaptive pronociceptive descending control. Eur. J. Pain 2016, 20, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Nir, R.R.; Yarnitsky, D. Conditioned pain modulation. Curr. Opin. Support. Palliat. Care 2015, 9, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Yarnitsky, D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): Its relevance for acute and chronic pain states. Curr. Opin. Anaesthesiol. 2010, 23, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Yarnitsky, D.; Bouhassira, D.; Drewes, A.M.; Fillingim, R.B.; Granot, M.; Hansson, P.; Landau, R.; Marchand, S.; Matre, D.; Nilsen, K.B.; et al. Recommendations on practice of conditioned pain modulation (CPM) testing. Eur. J. Pain 2015, 19, 805–806. [Google Scholar] [CrossRef] [PubMed]
- Huynh, V.; Lütolf, R.; Rosner, J.; Luechinger, R.; Curt, A.; Kollias, S.; Michels, L.; Hubli, M. Intrinsic brain connectivity alterations despite intact pain inhibition in subjects with neuropathic pain after spinal cord injury: A pilot study. Sci. Rep. 2023, 13, 11943. [Google Scholar] [CrossRef] [PubMed]
- Cadden, S.W.; Villanueva, L.; Chitour, D.; Le Bars, D. Depression of activities of dorsal horn convergent neurones by propriospinal mechanisms triggered by noxious inputs; comparison with diffuse noxious inhibitory controls (DNIC). Brain Res. 1983, 275, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gagne, M.; Cote, I.; Boulet, M.; Jutzeler, C.R.; Kramer, J.L.K.; Mercier, C. Conditioned Pain Modulation Decreases Over Time in Patients With Neuropathic Pain Following a Spinal Cord Injury. Neurorehabil Neural Repair. 2020, 34, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Johannesen, I.L.; Fuglsang-Frederiksen, A.; Bach, F.W.; Jensen, T.S. Sensory function in spinal cord injury patients with and without central pain. Brain 2003, 126, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Norrbrink, C.; Trok, K.; Piehl, F.; Johannesen, I.L.; Sorensen, J.C.; Jensen, T.S.; Werhagen, L. Phenotypes and predictors of pain following traumatic spinal cord injury: A prospective study. J. Pain 2014, 15, 40–48. [Google Scholar] [CrossRef] [PubMed]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.; Biering-Sorensen, F.; Burns, S.P.; Graves, D.E.; Guest, J.; Jones, L.; Read, M.S.; Rodriguez, G.M.; Schuld, C.; Tansey-Md, K.E.; et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bryce, T.N.; Biering-Sorensen, F.; Finnerup, N.B.; Cardenas, D.D.; Defrin, R.; Lundeberg, T.; Norrbrink, C.; Richards, J.S.; Siddall, P.; Stripling, T.; et al. International spinal cord injury pain classification: Part I. Background and description. Spinal Cord 2012, 50, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.D.; Jensen, T.S.; Campbell, J.N.; Cruccu, G.; Dostrovsky, J.O.; Griffin, J.W.; Hansson, P.; Hughes, R.; Nurmikko, T.; Serra, J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2008, 70, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain 2016, 157, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Snider, B.A.; Eren, F.; Reeves, R.K.; Rupp, R.; Kirshblum, S.C. The International Standards for Neurological Classification of Spinal Cord Injury: Classification Accuracy and Challenges. Top. Spinal Cord. Inj. Rehabil. 2023, 29, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Biering-Sorensen, F.; DeVivo, M.J.; Charlifue, S.; Chen, Y.; New, P.W.; Noonan, V.; Post, M.W.M.; Vogel, L. International Spinal Cord Injury Core Data Set (version 2.0)-including standardization of reporting. Spinal Cord 2017, 55, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Widerstrom-Noga, E.; Biering-Sorensen, F.; Bryce, T.N.; Cardenas, D.D.; Finnerup, N.B.; Jensen, M.P.; Richards, J.S.; Siddall, P.J. The International Spinal Cord Injury Pain Basic Data Set (version 2.0). Spinal Cord 2014, 52, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Hallstrom, H.; Norrbrink, C. Screening tools for neuropathic pain: Can they be of use in individuals with spinal cord injury? Pain 2011, 152, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.; Galvez, R.; Huelbes, S.; Insausti, J.; Bouhassira, D.; Diaz, S.; Rejas, J. Validity and reliability of the Spanish version of the DN4 (Douleur Neuropathique 4 questions) questionnaire for differential diagnosis of pain syndromes associated to a neuropathic or somatic component. Health Qual. Life Outcomes 2007, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Vanderweeen, L.; Oostendorp, R.A.; Vaes, P.; Duquet, W. Pressure algometry in manual therapy. Man. Ther. 1996, 1, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, M.; Klicov, L.; Vuklis, D.; Neblett, R.; Knezevic, A. Test-retest reliability of pressure pain threshold and heat pain threshold as test stimuli for evaluation of conditioned pain modulation. Neurophysiol. Clin. 2021, 51, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Rolke, R.; Baron, R.; Maier, C.; Tolle, T.R.; Treede, D.R.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Botefur, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.N.; Heales, L.; Rice, D.A.; Rome, K.; McNair, P.J. Reliability of the conditioned pain modulation paradigm to assess endogenous inhibitory pain pathways. Pain Res. Manag. 2012, 17, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Nuwailati, R.; Curatolo, M.; LeResche, L.; Ramsay, D.S.; Spiekerman, C.; Drangsholt, M. Reliability of the conditioned pain modulation paradigm across three anatomical sites. Scand. J. Pain 2020, 20, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.L.; Kemp, H.I.; Ridout, D.; Yarnitsky, D.; Rice, A.S.C. Reliability of conditioned pain modulation: A systematic review. Pain 2016, 157, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Granot, M.; Weissman-Fogel, I.; Crispel, Y.; Pud, D.; Granovsky, Y.; Sprecher, E.; Yarnitsky, D. Determinants of endogenous analgesia magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: Do conditioning stimulus painfulness, gender and personality variables matter? Pain 2008, 136, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Turner, J.A.; Romano, J.M.; Fisher, L.D. Comparative reliability and validity of chronic pain intensity measures. Pain 1999, 83, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Sirucek, L.; Jutzeler, C.R.; Rosner, J.; Schweinhardt, P.; Curt, A.; Kramer, J.L.K.; Hubli, M. The Effect of Conditioned Pain Modulation on Tonic Heat Pain Assessed Using Participant-Controlled Temperature. Pain Med. 2020, 21, 2839–2849. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.M.; McMahon, S.B.; Bannister, K. The impact of paradigm and stringent analysis parameters on measuring a net conditioned pain modulation effect: A test, retest, control study. Eur. J. Pain 2021, 25, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Granot, M.; Granovsky, Y.; Sprecher, E.; Nir, R.R.; Yarnitsky, D. Contact heat-evoked temporal summation: Tonic versus repetitive-phasic stimulation. Pain 2006, 122, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, A.; Kovacevic, M.; Klicov, L.; Pantic, M.; Vasin, J.; Spasojevic, T. Conditioned pain modulation assessment using contact heat as conditioning stimulus and two different test stimuli. Med. Pregl. 2019, 72, 66–71. [Google Scholar] [CrossRef]
- Firouzian, S.; Osborne, N.R.; Cheng, J.C.; Kim, J.A.; Bosma, R.L.; Hemington, K.S.; Rogachov, A.; Davis, K.D. Individual variability and sex differences in conditioned pain modulation and the impact of resilience, and conditioning stimulus pain unpleasantness and salience. Pain 2020, 161, 1847–1860. [Google Scholar] [CrossRef] [PubMed]
- Konopka, K.H.; Harbers, M.; Houghton, A.; Kortekaas, R.; van Vliet, A.; Timmerman, W.; den Boer, J.A.; Struys, M.M.; van Wijhe, M. Somatosensory profiles but not numbers of somatosensory abnormalities of neuropathic pain patients correspond with neuropathic pain grading. PLoS ONE 2012, 7, e43526. [Google Scholar] [CrossRef] [PubMed]
- Defrin, R.; Ohry, A.; Blumen, N.; Urca, G. Characterization of chronic pain and somatosensory function in spinal cord injury subjects. Pain 2001, 89, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Eide, P.K.; Jorum, E.; Stenehjem, A.E. Somatosensory findings in patients with spinal cord injury and central dysaesthesia pain. J. Neurol. Neurosurg. Psychiatry 1996, 60, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.L.; Minhas, N.K.; Jutzeler, C.R.; Erskine, E.L.; Liu, L.J.; Ramer, M.S. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J. Neurosci. Res. 2017, 95, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Siddall, P.J.; McClelland, J.M.; Rutkowski, S.B.; Cousins, M.J. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Johannesen, I.L.; Bach, F.W.; Jensen, T.S. Sensory function above lesion level in spinal cord injury patients with and without pain. Somatosens. Mot. Res. 2003, 20, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Siddall, P.J.; Taylor, D.A.; McClelland, J.M.; Rutkowski, S.B.; Cousins, M.J. Pain report and the relationship of pain to physical factors in the first 6 months following spinal cord injury. Pain 1999, 81, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Saita, K.; Sumitani, M.; Koyama, Y.; Sugita, S.; Matsubayashi, Y.; Ogata, T.; Ohtsu, H.; Chikuda, H.; Investigators, O. Neuropathic pain development and maintenance and its association with motor recovery after cervical spinal cord injury. J. Spinal Cord. Med. 2024, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Pidal-Miranda, M.; Samartin-Veiga, N.; Carrillo-de-la-Pena, M.T. Conditioned pain modulation as a biomarker of chronic pain: A systematic review of its concurrent validity. Pain 2019, 160, 2679–2690. [Google Scholar] [CrossRef] [PubMed]
- Goubert, D.; Danneels, L.; Cagnie, B.; Van Oosterwijck, J.; Kolba, K.; Noyez, H.; Meeus, M. Effect of Pain Induction or Pain Reduction on Conditioned Pain Modulation in Adults: A Systematic Review. Pain Pract. 2015, 15, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.R.; Stohler, C.S.; Nichols, T.E.; Bueller, J.A.; Koeppe, R.A.; Zubieta, J.K. Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J. Neurosci. 2006, 26, 5777–5785. [Google Scholar] [CrossRef] [PubMed]
- Rezaii, T.; Hirschberg, A.L.; Carlstrom, K.; Ernberg, M. The influence of menstrual phases on pain modulation in healthy women. J. Pain 2012, 13, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Tousignant-Laflamme, Y.; Marchand, S. Excitatory and inhibitory pain mechanisms during the menstrual cycle in healthy women. Pain 2009, 146, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Hermans, L.; Van Oosterwijck, J.; Goubert, D.; Goudman, L.; Crombez, G.; Calders, P.; Meeus, M. Inventory of Personal Factors Influencing Conditioned Pain Modulation in Healthy People: A Systematic Literature Review. Pain Pract. 2016, 16, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Neelapala, Y.V.R.; Bhagat, M.; Frey-Law, L. Conditioned Pain Modulation in Chronic Low Back Pain: A Systematic Review of Literature. Clin. J. Pain 2020, 36, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Rainville, P.; Feine, J.S.; Bushnell, M.C.; Duncan, G.H. A psychophysical comparison of sensory and affective responses to four modalities of experimental pain. Somatosens. Mot. Res. 1992, 9, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Vierck, C. Mechanisms of Below-Level Pain Following Spinal Cord Injury (SCI). J. Pain 2020, 21, 262–280. [Google Scholar] [CrossRef] [PubMed]
- Krupa, P.; Siddiqui, A.M.; Grahn, P.J.; Islam, R.; Chen, B.K.; Madigan, N.N.; Windebank, A.J.; Lavrov, I.A. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist 2022, 28, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Granovsky, Y.; Yarnitsky, D. Personalized pain medicine: The clinical value of psychophysical assessment of pain modulation profile. Rambam Maimonides Med. J. 2013, 4, e0024. [Google Scholar] [CrossRef] [PubMed]
Subject Number | Gender | Age (Years) | AIS (A–D) | SCI Neurological Level | Etiology * | Time Since Injury (Months) # |
---|---|---|---|---|---|---|
#1 | M | 38 | A | T4 | T | 1 |
#2 | M | 18 | A | C5 | T | 1.5 |
#3 | M | 33 | A | T8 | T | 2.5 |
#4 | F | 59 | A | T4 | NT | 2.5 |
#5 | M | 59 | A | T3 | T | 3 |
#6 | M | 67 | A | T6 | NT | 4 |
#7 | M | 35 | A | T4 | T | 6 |
#8 | M | 76 | A | T11 | NT | 12 |
#9 | M | 51 | A | T10 | T | 252 |
#10 | M | 66 | A | T7 | T | 348 |
#11 | M | 51 | A | T5 | T | 384 |
#12 | M | 61 | A | T4 | T | 504 |
n = 12 | 11 M 1 F | 51.2 ± 16.9 | 12 A | 1 C 11 T | 9 T 3 NT | 126.7 ± 189.2 |
#13 | F | 26 | B | C8 | T | 3 |
#14 | M | 69 | B | C5 | T | 276 |
#15 | F | 41 | C | T11 | NT | 1 |
#16 | M | 48 | C | T12 | NT | 3.5 |
#17 | F | 84 | C | T11 | T | 20 |
#18 | M | 26 | C | T5 | T | 21 |
#19 | M | 53 | C | T10 | T | 276 |
#20 | M | 71 | C | T9 | T | 480 |
#21 | M | 69 | D | T6 | T | 2 |
#22 | M | 66 | D | T1 | NT | 2 |
#23 | M | 52 | D | T9 | NT | 2 |
#24 | F | 58 | D | T5 | NT | 420 |
n = 12 | 8 M 4 F | 55.3 ± 17.9 | 2 B 6 C 4 D | 2 C 10 T | 7 T 5 NT | 128.2 ± 181.9 |
n = 24 | 19 M 5 F | 53.2 ± 17.2 | 24 A–D | 3 C 21 T | 15 T 8 NT | 126.1 ± 182.3 |
Subject Number | Gender | Age (Years) | AIS (A–D) | SCI Neurological Level | Etiology * | Time Since Injury (Months) # | Pain Intensity (NRS: 0–10) | Area of Pain | DN4 |
---|---|---|---|---|---|---|---|---|---|
#25 | F | 48 | A | T5 | T | 1 | 7 | Below level | 4 |
#26 | M | 46 | A | T11 | T | 1.5 | 7 | At level | 4 |
#27 | M | 38 | A | T5 | NT | 2 | 6 | At level | 8 |
#28 | M | 26 | A | T4 | T | 4 | 10 | At/below level | 9 |
#29 | M | 58 | A | T1 | T | 5 | 5 | At/below level | 4 |
#30 | M | 47 | A | T4 | T | 5 | 6 | Below level | 5 |
#31 | M | 61 | A | T5 | T | 21 | 10 | At level | 5 |
#32 | M | 42 | A | C7 | T | 28.5 | 4 | At level | 4 |
#33 | F | 22 | A | T10 | T | 100 | 7.5 | At/below level | 7 |
#34 | M | 52 | A | T8 | T | 228 | 6 | Below level | 7 |
#35 | M | 46 | A | T5 | T | 360 | 6 | Below level | 4 |
#36 | M | 51 | A | T4 | T | 372 | 8 | Below level | 8 |
n = 12 | 10 M 2 F | 44.8 ± 11.6 | 12 A | 1 C 11 T | 11 T 1 NT | 94 ± 143.1 | 6.9 ± 1.8 | 7 AT 8 BELOW | 5.8 ± 1.9 |
#37 | M | 58 | B | C5 | T | 240 | 10 | Below level | 6 |
#38 | F | 70 | C | T10 | T | 2 | 2 | Below level | 4 |
#39 | F | 53 | C | T11 | NT | 2 | 7 | Below level | 5 |
#40 | M | 49 | C | T1 | T | 5.5 | 2 | Below level | 6 |
#41 | F | 54 | C | T6 | T | 7 | 7 | Below level | 5 |
#42 | F | 51 | C | T4 | T | 108 | 8 | Below level | 5 |
#43 | M | 48 | D | C5 | NT | 1 | 7.5 | Below level | 6 |
#44 | F | 54 | D | T10 | NT | 1.5 | 2.5 | Below level | 4 |
#45 | F | 40 | D | T8 | NT | 2.5 | 7 | Below level | 5 |
#46 | M | 53 | D | T4 | T | 96 | 7 | Below level | 9 |
#47 | F | 41 | D | T4 | NT | 228 | 6 | Below level | 5 |
#48 | M | 63 | D | T7 | NT | 756 | 7 | Below level | 6 |
n = 12 | 5 M 7 F | 52.8 ± 8.4 | 1 B 5 C 6 D | 2 C 10 T | 6 T 6 NT | 120.8 ± 218.9 | 6.1 ± 2.5 | 12 BELOW | 5.5 ± 1.3 |
n = 24 | 15 M 9 F | 48.8 ± 10.7 | 24 A–D | 3 C 21 T | 18 T 7 NT | 107.4 ± 181.4 | 6.5 ± 2.2 | 7 AT 20 BELOW | 5.6 ± 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos-León, M.; Demertzis, E.; Palazón-García, R.; Taylor, J. Tonic Cold Pain Temporal Summation and Translesional Cold Pressor Test-Induced Pronociception in Spinal Cord Injury: Association with Spontaneous and Below-Level Neuropathic Pain. Healthcare 2024, 12, 2300. https://doi.org/10.3390/healthcare12222300
Ríos-León M, Demertzis E, Palazón-García R, Taylor J. Tonic Cold Pain Temporal Summation and Translesional Cold Pressor Test-Induced Pronociception in Spinal Cord Injury: Association with Spontaneous and Below-Level Neuropathic Pain. Healthcare. 2024; 12(22):2300. https://doi.org/10.3390/healthcare12222300
Chicago/Turabian StyleRíos-León, Marta, Elena Demertzis, Ramiro Palazón-García, and Julian Taylor. 2024. "Tonic Cold Pain Temporal Summation and Translesional Cold Pressor Test-Induced Pronociception in Spinal Cord Injury: Association with Spontaneous and Below-Level Neuropathic Pain" Healthcare 12, no. 22: 2300. https://doi.org/10.3390/healthcare12222300
APA StyleRíos-León, M., Demertzis, E., Palazón-García, R., & Taylor, J. (2024). Tonic Cold Pain Temporal Summation and Translesional Cold Pressor Test-Induced Pronociception in Spinal Cord Injury: Association with Spontaneous and Below-Level Neuropathic Pain. Healthcare, 12(22), 2300. https://doi.org/10.3390/healthcare12222300