Placebo Effects: Neurological Mechanisms Inducing Physiological, Organic, and Belief Responses—A Prospective Analysis
Abstract
:1. Introduction
2. Understanding Placebo Effects and Responses
Quantum Effects
3. Physiological Responses
4. Organic Responses
4.1. Homeopathy
4.2. Meditation
4.3. Simulator Therapies
5. Beliefs
5.1. Religion
5.2. Ideologies
5.3. Discrimination
6. Placebo Prospective Analysis
6.1. Clinical Applications
6.2. Clinica Efficacy Testing
6.2.1. Statistics
6.2.2. Ethics
7. Implications for Future Therapies
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beecher, H.K. The powerful placebo. J. Am. Med. Assoc. 1955, 159, 1602–1606. [Google Scholar] [CrossRef] [PubMed]
- Haygarth, J. Of the Imagination as a Cause and Cure of Disorders of the Body, Exemplified by Fictitious Tractors; Creative Media Partners, LLC.: Sacramento, CA, USA, 2023; Volume 5, pp. 133–145. [Google Scholar]
- Kam-Hansen, S.; Jakubowski, M.; Kelley, J.M.; Kirsch, I.; Hoaglin, D.C.; Kaptchuk, T.J.; Burstein, R. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci. Transl. Med. 2014, 6, 218ra215. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. 2019, 21, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Gupta, U.; Verma, M. Placebo in clinical trials. Perspect. Clin. Res. 2013, 4, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.G.; Colloca, L.; Kaptchuk, T.J. The placebo effect: Illness and interpersonal healing. Perspect. Biol. Med. 2009, 52, 518–539. [Google Scholar] [CrossRef]
- Lazar, S.W.; Kerr, C.E.; Wasserman, R.H.; Gray, J.R.; Greve, D.N.; Treadway, M.T.; McGarvey, M.; Quinn, B.T.; Dusek, J.A.; Benson, H.; et al. Meditation experience is associated with increased cortical thickness. Neuroreport 2005, 16, 1893–1897. [Google Scholar] [CrossRef]
- Chen, C.; Niehaus, J.K.; Dinc, F.; Huang, K.L.; Barnette, A.L.; Tassou, A.; Shuster, S.A.; Wang, L.; Lemire, A.; Menon, V.; et al. Neural circuit basis of placebo pain relief. Nature 2024, 632, 1092–1100. [Google Scholar] [CrossRef]
- Eippert, F.; Bingel, U.; Schoell, E.D.; Yacubian, J.; Klinger, R.; Lorenz, J.; Büchel, C. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 2009, 63, 533–543. [Google Scholar] [CrossRef]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef]
- Petrovic, P.; Kalso, E.; Petersson, K.M.; Ingvar, M. Placebo and opioid analgesia—Imaging a shared neuronal network. Science 2002, 295, 1737–1740. [Google Scholar] [CrossRef]
- Kaptchuk, T.J.; Friedlander, E.; Kelley, J.M.; Sanchez, M.N.; Kokkotou, E.; Singer, J.P.; Kowalczykowski, M.; Miller, F.G.; Kirsch, I.; Lembo, A.J. Placebos without deception: A randomized controlled trial in irritable bowel syndrome. PLoS ONE 2010, 5, e15591. [Google Scholar] [CrossRef] [PubMed]
- Fournier, J.C.; DeRubeis, R.J.; Hollon, S.D.; Dimidjian, S.; Amsterdam, J.D.; Shelton, R.C.; Fawcett, J. Antidepressant drug effects and depression severity: A patient-level meta-analysis. JAMA 2010, 303, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, C.P.; Doraiswamy, P.M.; Fisher, M.P. A New Spin on Neural Processing: Quantum Cognition. Front. Hum. Neurosci. 2016, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Lambert, N.; Chen, Y.-N.; Cheng, Y.-C.; Li, C.-M.; Chen, G.-Y.; Nori, F. Quantum biology. Nat. Phys. 2013, 9, 10–18. [Google Scholar] [CrossRef]
- Scheiblich, H.; Eikens, F.; Wischhof, L.; Opitz, S.; Jüngling, K.; Cserép, C.; Schmidt, S.V.; Lambertz, J.; Bellande, T.; Pósfai, B.; et al. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024, 112, 3106–3125.e8. [Google Scholar] [CrossRef]
- Frömer, R.; Nassar, M.R.; Ehinger, B.V.; Shenhav, A. Common neural choice signals can emerge artefactually amid multiple distinct value signals. Nat. Hum. Behav. 2024, 8, 2194–2208. [Google Scholar] [CrossRef]
- Wager, T.D.; Atlas, L.Y. The neuroscience of placebo effects: Connecting context, learning and health. Nat. Rev. Neurosci. 2015, 16, 403–418. [Google Scholar] [CrossRef]
- Hameroff, S.; Penrose, R. Consciousness in the universe: A review of the ‘Orch OR’ theory. Phys. Life Rev. 2014, 11, 39–78. [Google Scholar] [CrossRef]
- Fisher, M.P.A. Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys. 2015, 362, 593–602. [Google Scholar] [CrossRef]
- Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E 2000, 61, 4194. [Google Scholar] [CrossRef]
- Oken, B.S. Placebo effects: Clinical aspects and neurobiology. Brain 2008, 131, 2812–2823. [Google Scholar] [CrossRef] [PubMed]
- Kaptchuk, T.J.; Goldman, P.; Stone, D.A.; Stason, W.B. Do medical devices have enhanced placebo effects? J. Clin. Epidemiol. 2000, 53, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Liberman, R. An analysis of the placebo phenomenon. J. Chronic Dis. 1962, 15, 761–783. [Google Scholar] [CrossRef] [PubMed]
- Chaput de Saintonge, D.M.; Herxheimer, A. Harnessing placebo effects in health care. Lancet 1994, 344, 995–998. [Google Scholar] [CrossRef]
- Kaptchuk, T.J. Powerful placebo: The dark side of the randomised controlled trial. Lancet 1998, 351, 1722–1725. [Google Scholar] [CrossRef]
- Roberts, A.H.; Kewman, D.G.; Mercier, L.; Hovell, M. The power of nonspecific effects in healing: Implications for psychosocial and biological treatments. Clin. Psychol. Rev. 1993, 13, 375–391. [Google Scholar] [CrossRef]
- Vickers, A.J. Bibliometric analysis of randomized trials in complementary medicine. Complement. Ther. Med. 1998, 6, 185–189. [Google Scholar] [CrossRef]
- Taub, H.A.; Mitchell, J.N.; Stuber, F.E.; Eisenberg, L.; Beard, M.C.; McCormack, R.K. Analgesia for operative dentistry: A comparison of acupuncture and placebo. Oral. Surg. Oral. Med. Oral. Pathol. 1979, 48, 205–210. [Google Scholar] [CrossRef]
- Hashish, I.; Ho Kee, H.; Harvey, W.; Feinmann, C.; Harris, M. Reduction of postoperative pain and swelling by ultrasound treatment: A placebo effect. Pain 1988, 33, 303–311. [Google Scholar] [CrossRef]
- Koes, B.W.; Scholten, R.J.P.M.; Mens, J.M.A.; Bouter, L.M. Efficacy of epidural steroid injections for low-back pain and sciatica: A systematic review of randomized clinical trials. Pain 1995, 63, 279–288. [Google Scholar] [CrossRef]
- Johnson, A.G. Surgery as a placebo. Lancet 1994, 344, 1140–1142. [Google Scholar] [CrossRef] [PubMed]
- Ortega, Á.; Salazar, J.; Galban, N.; Rojas, M.; Ariza, D.; Chávez-Castillo, M.; Nava, M.; Riaño-Garzón, M.E.; Díaz-Camargo, E.A.; Medina-Ortiz, O.; et al. Psycho-Neuro-Endocrine-Immunological Basis of the Placebo Effect: Potential Applications beyond Pain Therapy. Int. J. Mol. Sci. 2022, 23, 4196. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Rütgen, M.; Riva, F.; Lamm, C. Another’s pain in my brain: No evidence that placebo analgesia affects the sensory-discriminative component in empathy for pain. Neuroimage 2021, 224, 117397. [Google Scholar] [CrossRef] [PubMed]
- Singer, T.; Seymour, B.; O’Doherty, J.; Kaube, H.; Dolan, R.J.; Frith, C.D. Empathy for pain involves the affective but not sensory components of pain. Science 2004, 303, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Keysers, C.; Gazzola, V. Expanding the mirror: Vicarious activity for actions, emotions, and sensations. Curr. Opin. Neurobiol. 2009, 19, 666–671. [Google Scholar] [CrossRef]
- Greenberg, S.J. On the history of New York Medical College. N. Y. Med. Q. 1986, 6, 116–119. [Google Scholar]
- Shang, A.; Huwiler-Müntener, K.; Nartey, L.; Jüni, P.; Dörig, S.; Sterne, J.A.; Pewsner, D.; Egger, M. Are the clinical effects of homoeopathy placebo effects? Comparative study of placebo-controlled trials of homoeopathy and allopathy. Lancet 2005, 366, 726–732. [Google Scholar] [CrossRef]
- Cucherat, M.; Haugh, M.C.; Gooch, M.; Boissel, J.P. Evidence of clinical efficacy of homeopathy. A meta-analysis of clinical trials. HMRAG. Homeopathic Medicines Research Advisory Group. Eur. J. Clin. Pharmacol. 2000, 56, 27–33. [Google Scholar] [CrossRef]
- House of Commons. Science and Technology Committee—Fourth Report. Evidence Check 2: Homeopathy. Available online: https://publications.parliament.uk/pa/cm200910/cmselect/cmsctech/45/4502.htm (accessed on 10 September 2024).
- Cramer, H.; Lauche, R.; Haller, H.; Dobos, G. A systematic review and meta-analysis of yoga for low back pain. Clin. J. Pain. 2013, 29, 450–460. [Google Scholar] [CrossRef]
- India National Commission for Homoeopathy. Available online: https://www.nch.org.in (accessed on 10 September 2024).
- Varanasi, R.; Srivastava, A.; Kumar Rt, S.; Bala, R. Practice, prescription habits, experience and perception of Indian homeopathic practitioners in treatment of diabetes mellitus: An online observational study. J. Ayurveda Integr. Med. 2023, 14, 100787. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.H.; Grim, C.E.; Rainforth, M.V.; Kotchen, T.; Nidich, S.I.; Gaylord-King, C.; Salerno, J.W.; Kotchen, J.M.; Alexander, C.N. Stress reduction in the secondary prevention of cardiovascular disease: Randomized, controlled trial of transcendental meditation and health education in Blacks. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Piske, M.; Thomson, T.; Krebs, E.; Hongdilokkul, N.; Bruneau, J.; Greenland, S.; Gustafson, P.; Karim, M.E.; McCandless, L.C.; Maclure, M.; et al. Comparative effectiveness of buprenorphine-naloxone versus methadone for treatment of opioid use disorder: A population-based observational study protocol in British Columbia, Canada. BMJ Open 2020, 10, e036102. [Google Scholar] [CrossRef] [PubMed]
- Maria Carmen, B.-G.; Sandra, M.-R.; Marta, R.-A. Present and Future Pharmacological Treatments for Opioid Addiction. In Opioids; Pilar Almela, R., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Noble, F.; Marie, N. Management of Opioid Addiction With Opioid Substitution Treatments: Beyond Methadone and Buprenorphine. Front. Psychiatry 2019, 9, 742. [Google Scholar] [CrossRef] [PubMed]
- Tannenholz, L.; Jimenez, J.C.; Kheirbek, M.A. Local and regional heterogeneity underlying hippocampal modulation of cognition and mood. Front. Behav. Neurosci. 2014, 8, 147. [Google Scholar] [CrossRef]
- van Prooijen, J.W.; van Vugt, M. Conspiracy Theories: Evolved Functions and Psychological Mechanisms. Perspect. Psychol. Sci. 2018, 13, 770–788. [Google Scholar] [CrossRef]
- van Elk, M.; Aleman, A. Brain mechanisms in religion and spirituality: An integrative predictive processing framework. Neurosci. Biobehav. Rev. 2017, 73, 359–378. [Google Scholar] [CrossRef]
- Peciña, M.; Zubieta, J.-K. Molecular Mechanisms of Placebo Responses in Humans. Mol. Psychiatry 2014, 20, 416–423. [Google Scholar] [CrossRef]
- Scheffer, M.; Borsboom, D.; Nieuwenhuis, S.; Westley, F. Belief traps: Tackling the inertia of harmful beliefs. Proc. Natl. Acad. Sci. USA 2022, 119, e2203149119. [Google Scholar] [CrossRef]
- Kapogiannis, D.; Barbey, A.K.; Su, M.; Zamboni, G.; Krueger, F.; Grafman, J. Cognitive and neural foundations of religious belief. Proc. Natl. Acad. Sci. USA 2009, 106, 4876–4881. [Google Scholar] [CrossRef]
- Kaplan, J.T.; Gimbel, S.I.; Harris, S. Neural correlates of maintaining one’s political beliefs in the face of counterevidence. Sci. Rep. 2016, 6, 39589. [Google Scholar] [CrossRef] [PubMed]
- Wiech, K.; Farias, M.; Kahane, G.; Shackel, N.; Tiede, W.; Tracey, I. An fMRI study measuring analgesia enhanced by religion as a belief system. PAIN 2008, 139, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Geoffrey, A. Flagellation. Encyclopedia Britannica. Available online: https://www.britannica.com/topic/flagellation (accessed on 2 August 2024).
- Timmann, D.; Drepper, J.; Frings, M.; Maschke, M.; Richter, S.; Gerwig, M.; Kolb, F.P. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 2010, 46, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Asp, E.; Ramchandran, K.; Tranel, D. Authoritarianism, religious fundamentalism, and the human prefrontal cortex. Neuropsychology 2012, 26, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Jost, J.T.; Baldassarri, D.S.; Druckman, J.N. Cognitive–motivational mechanisms of political polarization in social-communicative contexts. Nat. Rev. Psychol. 2022, 1, 560–576. [Google Scholar] [CrossRef]
- Nickerson, R.S. Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. Rev. Gen. Psychol. 1998, 2, 175–220. [Google Scholar] [CrossRef]
- Amodio, D.M.; Jost, J.T.; Master, S.L.; Yee, C.M. Neurocognitive correlates of liberalism and conservatism. Nat. Neurosci. 2007, 10, 1246–1247. [Google Scholar] [CrossRef]
- Izuma, K.; Matsumoto, M.; Murayama, K.; Samejima, K.; Sadato, N.; Matsumoto, K. Neural correlates of cognitive dissonance and choice-induced preference change. Proc. Natl. Acad. Sci. USA 2010, 107, 22014–22019. [Google Scholar] [CrossRef]
- Bellavite, P.; Conforti, A.; Piasere, V.; Ortolani, R. Immunology and homeopathy. 1. Historical background. Evid. Based Complement. Altern. Med. 2005, 2, 441–452. [Google Scholar] [CrossRef]
- United Nations. Universal Declaration of Human Rights. Available online: https://www.un.org/en/about-us/universal-declaration-of-human-rights (accessed on 10 September 2024).
- United States Congress House. A Bill to Establish a Biotechnology Science Coordinating Committee to Address Scientific Problems Caused by Genetically-Engineered Organisms and a Biotechnology Science Research Program to Support Research and Regulation of the Biotechnology Sciences; to Regulate the Release of Genetically-Engineered Organisms into the Environment and the Use of Such Organisms in Manufacturing and Agricultural Activities, and for Other Purposes; United States Congress House: Washington, DC, USA, 1986; 39p.
- Tai, M.D.S.; Gamiz-Arco, G.; Martinez, A. Dopamine synthesis and transport: Current and novel therapeutics for parkinsonisms. Biochem. Soc. Trans. 2024, 52, 1275–1291. [Google Scholar] [CrossRef]
- Siegel, J.S.; Subramanian, S.; Perry, D.; Kay, B.P.; Gordon, E.M.; Laumann, T.O.; Reneau, T.R.; Metcalf, N.V.; Chacko, R.V.; Gratton, C.; et al. Psilocybin desynchronizes the human brain. Nature 2024, 632, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Faresjö, R.; Lindberg, H.; Ståhl, S.; Löfblom, J.; Syvänen, S.; Sehlin, D. Transferrin Receptor Binding BBB-Shuttle Facilitates Brain Delivery of Anti-Aβ-Affibodies. Pharm. Res. 2022, 39, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Kakinen, A.; Jiang, Y.; Davis, T.P.; Teesalu, T.; Saarma, M. Brain Targeting Nanomedicines: Pitfalls and Promise. Int. J. Nanomed. 2024, 19, 4857–4875. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Regional Health—Europe. Psychedelic-assisted psychotherapy: Hope and dilemma. Lancet Reg. Health Eur. 2023, 32, 100727. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, V.; Manzo, N.; Guerra, A.; Landi, A.; Baro, V.; Määttä, S.; Weis, L.; Porcaro, C.; Corbetta, M.; Antonini, A.; et al. Combining Transcranial Magnetic Stimulation and Deep Brain Stimulation: Current Knowledge, Relevance and Future Perspectives. Brain Sci. 2023, 13, 349. [Google Scholar] [CrossRef]
- Tosti, B.; Corrado, S.; Mancone, S.; Di Libero, T.; Rodio, A.; Andrade, A.; Diotaiuti, P. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: A narrative review. Front. Neurosci. 2024, 18, 1358481. [Google Scholar] [CrossRef]
- Triana-Del Rio, R.; Ranade, S.; Guardado, J.; LeDoux, J.; Klann, E.; Shrestha, P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front. Mol. Neurosci. 2022, 15, 1002846. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, D.; Aguilar-Valles, A.; Preller, K.H.; Heifets, B.D.; Hibicke, M.; Mitchell, J.; Gobbi, G. Hallucinogens in Mental Health: Preclinical and Clinical Studies on LSD, Psilocybin, MDMA, and Ketamine. J. Neurosci. 2021, 41, 891–900. [Google Scholar] [CrossRef]
- Pearce, M.J.; Koenig, H.G.; Robins, C.J.; Nelson, B.; Shaw, S.F.; Cohen, H.J.; King, M.B. Religiously integrated cognitive behavioral therapy: A new method of treatment for major depression in patients with chronic medical illness. Psychotherapy 2015, 52, 56–66. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef]
- FDA. Real-World Data: Assessing Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and Biological Products. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/real-world-data-assessing-electronic-health-records-and-medical-claims-data-support-regulatory (accessed on 10 September 2024).
- Eapen, Z.J.; Lauer, M.S.; Temple, R.J. The imperative of overcoming barriers to the conduct of large, simple trials. JAMA 2014, 311, 1397–1398. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- Millum, J.; Grady, C. The ethics of placebo-controlled trials: Methodological justifications. Contemp. Clin. Trials 2013, 36, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S. Scientific Rationale for Waiving Clinical Efficacy Testing of Biosimilars. Drug Des. Devel Ther. 2022, 16, 2803–2815. [Google Scholar] [CrossRef]
- Niazi, S.K. Support for Removing Pharmacodynamic and Clinical Efficacy Testing of Biosimilars: A Critical Analysis. Clin. Pharmacol. Drug Dev. 2023, 12, 1134–1141. [Google Scholar] [CrossRef]
- Koog, Y.H.; We, S.R.; Min, B.I. Three-armed trials including placebo and no-treatment groups may be subject to publication bias: Systematic review. PLoS ONE 2011, 6, e20679. [Google Scholar] [CrossRef]
- Stridh, A.; Pontén, M.; Arver, S.; Kirsch, I.; Abé, C.; Jensen, K.B. Placebo Responses Among Men With Erectile Dysfunction Enrolled in Phosphodiesterase 5 Inhibitor Trials: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e201423. [Google Scholar] [CrossRef]
- Howick, J.; Friedemann, C.; Tsakok, M.; Watson, R.; Tsakok, T.; Thomas, J.; Perera, R.; Fleming, S.; Heneghan, C. Are treatments more effective than placebos? A systematic review and meta-analysis. PLoS ONE 2013, 8, e62599. [Google Scholar] [CrossRef]
- FDA. Conducting Clinical Trials With Decentralized Elements Guidance for Industry, Investigators, and Other Interested Parties. Available online: https://www.fda.gov/media/167696/download (accessed on 10 September 2024).
- FDA. Good Clinical Practice. Available online: https://www.fda.gov/science-research/clinical-trials-and-human-subject-protection/regulations-good-clinical-practice-and-clinical-trials (accessed on 10 September 2024).
- FDA. Clinical Trials and Human Subject Protection. Available online: https://www.fda.gov/science-research/science-and-research-special-topics/clinical-trials-and-human-subject-protection (accessed on 10 September 2024).
- FDA. FDA Issues Draft Guidance on Conducting Multiregional Clinical Trials in Oncology. Available online: https://www.fda.gov/news-events/press-announcements/fda-issues-draft-guidance-conducting-multiregional-clinical-trials-oncology (accessed on 10 September 2024).
- FDA. Conducting Clinical Trials With Decentralized Elements. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/conducting-clinical-trials-decentralized-elements (accessed on 10 September 2024).
- Enck, P.; Benedetti, F.; Schedlowski, M. New insights into the placebo and nocebo responses. Neuron 2008, 59, 195–206. [Google Scholar] [CrossRef]
- Amanzio, M.; Palermo, S. Pain Anticipation and Nocebo-Related Responses: A Descriptive Mini-Review of Functional Neuroimaging Studies in Normal Subjects and Precious Hints on Pain Processing in the Context of Neurodegenerative Disorders. Front. Pharmacol. 2019, 10, 969. [Google Scholar] [CrossRef]
- Barsky, A.J.; Saintfort, R.; Rogers, M.P.; Borus, J.F. Nonspecific medication side effects and the nocebo phenomenon. JAMA 2002, 287, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, I. Placebo Effect in the Treatment of Depression and Anxiety. Front. Psychiatry 2019, 10, 407. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Miller, F.G. Role of expectations in health. Curr. Opin. Psychiatry 2011, 24, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Matarèse, B.F.E.; Rusin, A.; Seymour, C.; Mothersill, C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int. J. Mol. Sci. 2023, 24, 16464. [Google Scholar] [CrossRef]
- Chvetzoff, G.l.; Tannock, I.F. Placebo Effects in Oncology. JNCI J. Natl. Cancer Inst. 2003, 95, 19–29. [Google Scholar] [CrossRef]
- Fleming, G.; Scholes, G.; Cheng, Y.-C. Quantum effects in biology. Procedia Chem. 2011, 3, 38–57. [Google Scholar] [CrossRef]
Efficacy of Drug | Efficacy of Placebo | Statistics | Resolution |
---|---|---|---|
+++, ++, + | +++, ++, + | Non-significant | Reject. Only homeopathy has addressed this; no agency will approve such drugs. |
0 | 0 | Non-significant | Rejected. |
+++ | ++ | Significant | Approved based on difference as a response. |
+ | ++ | Significant | Rejected based on additional effects of the drug. |
+++, ++, + | Placebo arm removed | Significant | A much smaller study size reduced unnecessary exposure to humans. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niazi, S.K. Placebo Effects: Neurological Mechanisms Inducing Physiological, Organic, and Belief Responses—A Prospective Analysis. Healthcare 2024, 12, 2314. https://doi.org/10.3390/healthcare12222314
Niazi SK. Placebo Effects: Neurological Mechanisms Inducing Physiological, Organic, and Belief Responses—A Prospective Analysis. Healthcare. 2024; 12(22):2314. https://doi.org/10.3390/healthcare12222314
Chicago/Turabian StyleNiazi, Sarfaraz K. 2024. "Placebo Effects: Neurological Mechanisms Inducing Physiological, Organic, and Belief Responses—A Prospective Analysis" Healthcare 12, no. 22: 2314. https://doi.org/10.3390/healthcare12222314
APA StyleNiazi, S. K. (2024). Placebo Effects: Neurological Mechanisms Inducing Physiological, Organic, and Belief Responses—A Prospective Analysis. Healthcare, 12(22), 2314. https://doi.org/10.3390/healthcare12222314