Determinants of Government Expenditures with Health Insurance Beneficiaries in the Brazilian Health System
Abstract
:1. Introduction
- The utilization of healthcare within the SUS by health insurance beneficiaries was concentrated in high complexity procedures beyond emergency care, thus corresponding to substantial government expenditure;
- Healthcare utilization patterns by health insurance beneficiaries within the SUS throughout the period from 2003 to 2019 may be represented in clusters to support initiatives toward changes in discounts granted for health insurance beneficiaries to increase the tax revenue to finance public policies of health.
2. Materials and Methods
2.1. Datasets
2.2. Variables
- Demographic and health characteristics of the patients: Sex, age, and health condition (based on the International Classification of Diseases, 10th. Revision, ICD-10);
- Healthcare utilization: Type of procedure, inpatient days, and public expenditure (disbursement per procedure or per patient per day, depending on the type of administrative record);
- Healthcare facility characteristics: Administrative level of the healthcare facility (according to the National Registry of Healthcare Facilities, Cadastro Nacional de Estabelecimentos de Saúde, CNES) and state.
2.3. Statistical Analyses
3. Results
- Cluster 1 (26.0% of registries, mean public expenditure = 686.51 dollars PPP in 2019): adult individuals 50–54 years old and elderly individuals ≥80 years old using medium complexity procedures related to infectious and parasitic diseases (ICD-10 Chapter 1), mental, behavioral, and neurodevelopmental disorders (ICD-10 Chapter 5), and diseases of the circulatory system (ICD-10 Chapter 9);
- Cluster 2 (25.1% of registries, mean public expenditure = 533.78 dollars PPP in 2019): children 10–14 years old and adult individuals 20–44 years old using medium complexity procedures related to diseases of the digestive system (ICD-10 Chapter 11), injury, poisoning, and consequences of external causes (ICD-10 Chapter 19), and factors influencing health status and linked to contact with health services (ICD-10 Chapter 21);
- Cluster 3 (26.1% of registries, mean public expenditure = 1876.23 dollars PPP in 2019): adult individuals 45–74 years old, usually female patients using high complexity procedures related to neoplasms (ICD-10 Chapter 2), diseases of the ear and mastoid process (ICD-10 Chapter 8), and genitourinary system (ICD-10 Chapter 14);
- Cluster 4 (8.2% of registries, mean public expenditure = 1317.99 dollars PPP in 2019): children less than 9 years old admitted for the treatment of diseases of the respiratory system (ICD-10 Chapter 8), predominantly beneficiaries of health insurance without hospitalization coverage;
- Cluster 5 (14.1% of registries, mean public expenditure = 288.56 dollars PPP in 2019): adolescents and adult individuals 15–39 years old, generally female patients using medium complexity procedures related to pregnancy, childbirth, and the puerperium (ICD-10 Chapter 15).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almeida, G.; Sarti, F.M.; Ferreira, F.F.; Diaz, M.D.M.; Campino, A.C.C. Analysis of the evolution and determinants of income-related inequalities in the Brazilian health system, 1998–2008. Rev. Panam. Salud Publica 2013, 33, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Britnell, M. In Search of the Perfect Health System; Palgrave Macmillan: London, UK, 2015; 247p. [Google Scholar]
- Santos, I.S.; Ugá, M.A.D.; Porto, S.M. The public-private mix in the Brazilian Health System: Financing, delivery and utilization of health services. Ciênc. Saúde Coletiva 2008, 13, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.S.; Benevides, R.P.S. The Impacts of the New Fiscal Regimen on the Funding of the Brazilian Unified Health System and the Operationalization of the Right to Health in Brazil [Os impactos do novo regime fiscal para o financiamento do Sistema Único de Saúde e para a efetivação do direito à saúde no Brasil]; Technical Note 28; IPEA: Brasília/Rio de Janeiro, Brazil, 2016. Available online: https://repositorio.ipea.gov.br/handle/11058/7270 (accessed on 5 October 2024).
- Soares, A. Health system financing paradigm in the state of São Paulo: A regional analysis. Rev. Saúde Pública 2019, 53, 59. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, M.; Cyrillo, D.C.; Biasoto Junior, G. Economic analysis of the Brazilian public and private health infrastructure. Econ. Soc. 2010, 19, 589–611. [Google Scholar] [CrossRef]
- Ocké-Reis, C.O.; Gama, F.N.D. Radiography of the Tax Expenditures on Health, 2003–2013 [Radiografia do gasto tributário em saúde, 2003–2013]; Technical Note 19; IPEA: Brasília/Rio de Janeiro, Brazil, 2016. Available online: https://repositorio.ipea.gov.br/bitstream/11058/6528/1/Nota_n19_radiografia_gasto_tributario_saude_2003_2013.pdf (accessed on 5 October 2024).
- Silva, J.L.M. Reimbursements to the SUS: Historical Trends and Causes of Low Effectiveness in Charging [Ressarcimento ao SUS: Tendência histórica e causas da baixa efetividade na cobrança]; B.Sc. Monograph (Public Health)—University of Brasília; UnB: Ceilândia, Brazil, 2013; Available online: https://bdm.unb.br/handle/10483/7725 (accessed on 5 October 2024).
- Bahia, L. Private health plans: Light and shadow in the 1990s health sector debate. Ciênc Saúde Coletiva 2001, 6, 329–339. [Google Scholar] [CrossRef]
- Brasil. Law 9.656, June 03, 1998. Available online: https://www2.camara.leg.br/legin/fed/lei/1998/lei-9656-3-junho-1998-353439-publicacaooriginal-1-pl.html (accessed on 5 October 2024).
- Martins, C.B.; Leite, F.; Novais, M. Main Issues of the Reimbursement to the SUS [Principais pontos do ressarcimento ao SUS]; Instituto de Estudos de Saúde Suplementar (IESS): São Paulo, Brazil, 2010; Available online: https://www.iess.org.br/sites/default/files/2021-04/TD39.pdf (accessed on 16 October 2024).
- Machado, J.R.O. Denial of Health Insurance Coverage: Analysis of Complaints of Beneficiaries to the National Agency of Supplementary Health [Negativas de cobertura pelas operadoras de planos de saúde: Análise das denúncias de beneficiários encaminhadas à Agência Nacional de Saúde Suplementar (ANS)]; Dissertação (Mestrado em Saúde Pública)—Fundação Oswaldo Cruz; FIOCRUZ: Rio de Janeiro, Brazil, 2011; Available online: https://www.arca.fiocruz.br/handle/icict/24396 (accessed on 16 October 2024).
- Araújo, Â.A.D.S.; Silva, J.R.S. Trend analysis of the claim rate and the impact on the reduction of the number of private healthcare providers in Brazil. Cien Saude Colet. 2018, 23, 2763–2770. [Google Scholar] [CrossRef] [PubMed]
- Tonetto, P.B. Profile of Beneficiaries Who Filed Complaints at the National Supplementary Health Agency in the Period from 2016 to 2020 [Perfil dos beneficiários que realizaram reclamações na Agência Nacional de Saúde suplementar no período de 2016 a 2020]; Monograph (Specialization in Health Management)—Federal University of Rio Grande do Sul; UFRGS: Porto Alegre, Brazil, 2021; Available online: https://lume.ufrgs.br/handle/10183/239095 (accessed on 16 October 2024).
- Costa, J.C.S. Economic-Financial Impacts of Reimbursements to the SUS from Health Insurance Companies [Os impactos econômico-financeiros do ressarcimento ao SUS para as operadoras de planos de saúde], 1st ed.; ANS Prize for Monographs on Supplementary Health; ANS: Brasília, Brazil, 2017. Available online: https://repositorio.enap.gov.br/handle/1/3594 (accessed on 5 October 2024).
- Scatena, M.A.N. Reimbursements to the SUS: Analysis of Utilization of the Brazilian Unified Health System According to the Period of Health Insurance Contract [O ressarcimento ao SUS: Análise do perfil de utilização do Sistema Único de Saúde segundo período da contratação dos planos]; M.Sc. Thesis (Public Health)—National School of Public Health; FIOCRUZ: Rio de Janeiro, Brazil, 2004; Available online: https://www.arca.fiocruz.br/handle/icict/4745 (accessed on 5 October 2024).
- Aguiar, J.; Souza, L.E. SUS refund: An analysis of the profile of utilization of the Unified Health System by carriers of private health insurance. Divulgação em Saúde para Debate 2018, 58, 86–100. [Google Scholar]
- Brazilian Institute for Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). National Price Consumer Index; IBGE: Rio de Janeiro, Brazil, 2021. Available online: https://www.ibge.gov.br/estatisticas/economicas/precos-e-custos/9256-indice-nacional-de-precos-ao-consumidor-amplo.html?=&t=series-historicas (accessed on 5 October 2024).
- World Bank. World Development Indicators—PPP Conversion Factor; World Bank: Washington, DC, USA; Available online: https://databank.worldbank.org/reports.aspx?source=world-development-indicators (accessed on 5 October 2024).
- Brazilian Institute for Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). National Health Survey 2019: Information on Households, Access, and Utilization of Healthcare; IBGE: Rio de Janeiro, Brazil, 2020. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101748.pdf (accessed on 5 October 2024).
- National Agency of Supplementary Health (Agência Nacional de Saúde Suplementar, ANS). Guide for Reimbursement to the SUS—Objections and Appeals; ANS: Brasília, Brazil, 2019. Available online: https://www.gov.br/ans/pt-br/arquivos/assuntos/espaco-da-operadora-de-plano-de-saude/compromissos-e-interacoes-com-a-ans/envio-de-informacoes/copy_of_guia_ressarcimento_ao_SUS_2019_versao_2a_semgov.pdf (accessed on 5 October 2024).
- Rocha, S.L.R. Reimbursement to the Brazilian Unified Health System Between Principles, Purposes, and Procedures [Ressarcimento ao Sistema Único de Saúde: Entre princípios, propósitos e procedimentos]; Monograph (Public Policy Management)—University of Brasília; UnB: Brasília, Brazil, 2018; Available online: https://bdm.unb.br/handle/10483/20948 (accessed on 5 October 2024).
- Fernandes, R.B.T. The System for Management of Reimbursement to the SUS: Analysis of Performance in the Period 2011–2014 [O sistema de gestão do ressarcimento ao SUS: Análise de seu desempenho no período 2011–2014]; Master Thesis (Public Management)—Brazilian School of Public and Business Management; FGV: Rio de Janeiro, Brazil, 2015; Available online: https://repositorio.fgv.br/items/d0f71927-a0ad-49c4-a262-61adeea479d2 (accessed on 5 October 2024).
- Diaz, M.D.M.; Haber, N.; Mladovsky, P.; Pitchforth, E.; Saleh, W.F.; Sarti, F.M. Private health insurance in Brazil, Egypt and India. In International Experience with Private Health Insurance: History, Politics, Performance; Thomson, S., Sagan, A., Mossialos, E., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 65–98. [Google Scholar]
- Souza, L.E.P.F.; Paim, J.S.; Teixeira, C.F.; Bahia, L.; Guimarães, R.; Almeida-Filho, N.; Machado, C.V.; Campos, G.W.; Azevedo-e-Silva, G. The current challenges of the fight for a universal right to health in Brazil. Ciênc Saúde Coletiva 2019, 24, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.D.; Carvalho, M.S.; Coeli, C.M. The Brazilian Unified National Health System: 30 years of strides and challenges. Cad. Saúde Pública 2018, 34, e00117118. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Carnut, L.; Guerra, L.D.S. Primary Health Care federal funding in the Unified Health System: Old and new dilemmas. Saúde Debate 2018, 42, 224–243. [Google Scholar] [CrossRef]
Variable | N | μ | SD | Min | Max | Source |
---|---|---|---|---|---|---|
Sex | 4,330,566 | 0.57 | 0.49 | 0 | 1 | ANS |
Age bracket | 4,330,566 | 8.45 | 4.62 | 0 | 17 | ANS |
Public expenditure per day | 4,330,567 | 763.42 | 2389.2 | 0 | 124,818.60 | ANS |
ICD-10 chapter | 4,330,475 | 10.58 | 5.97 | 1 | 21 | ANS |
Complexity level of procedures | 4,330,475 | 0.28 | 0.45 | 0 | 1 | DATASUS |
Type of administrative record | 4,330,567 | 0.78 | 0.41 | 0 | 1 | ANS |
Administrative level of facility | 4,207,102 | 3.15 | 1.02 | 1 | 4 | ANS |
State | 4,321,029 | 34.09 | 7.56 | 11 | 53 | ANS |
Year | 4,330,567 | 2012.23 | 4.46 | 2003 | 2019 | ANS |
Year | Procedures | Public Expenditure ($ PPP in 2019) | |||
---|---|---|---|---|---|
Value per Capita per Day | Total Value | ||||
μ | SE | μ | SE | ||
2003 | 148,913 | 507.15 | 2.77 | 239 | 1.33 |
2004 | 165,747 | 462.14 | 2.59 | 243 | 1.31 |
2005 | 155,520 | 451.53 | 2.29 | 218 | 1.26 |
2006 | 158,982 | 458.68 | 2.48 | 239 | 1.35 |
2007 | 172,220 | 453.05 | 2.52 | 277 | 1.57 |
2008 | 169,229 | 399.26 | 3.11 | 238 | 1.76 |
2009 | 192,291 | 432.35 | 3.22 | 299 | 1.98 |
2010 | 243,355 | 425.18 | 2.93 | 372 | 2.26 |
2011 | 197,569 | 446.83 | 3.60 | 330 | 2.30 |
2012 | 393,259 | 973.36 | 4.65 | 688 | 3.08 |
2013 | 405,452 | 1033.66 | 5.29 | 734 | 3.50 |
2014 | 470,903 | 950.28 | 3.42 | 696 | 2.53 |
2015 | 321,572 | 922.93 | 4.86 | 485 | 2.19 |
2016 | 302,907 | 932.65 | 5.07 | 440 | 2.06 |
2017 | 285,039 | 941.36 | 5.38 | 412 | 2.01 |
2018 | 276,970 | 926.83 | 5.42 | 383 | 1.90 |
2019 | 270,639 | 874.29 | 5.23 | 347 | 1.69 |
Year | Sex | Age Bracket | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | <10 Years Old | 10–14 Years Old | 15–39 Years Old | 40–74 Years Old | ≥75 Years Old | ||||||||
% | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | |
2003 | 41.8 | 41.5; 42 | 58.2 | 58; 58.5 | 13.3 | 13.1; 13.5 | 2.4 | 2.3; 2.5 | 44.4 | 44.1; 44.6 | 34.6 | 34.4; 34.9 | 5.3 | 5.2; 5.4 |
2004 | 42.4 | 42.1; 42.6 | 57.6 | 57.4; 57.9 | 12.5 | 12.4; 12.7 | 2.3 | 2.2; 2.4 | 44.3 | 44.1; 44.5 | 35.1 | 34.8; 35.3 | 5.8 | 5.7; 5.9 |
2005 | 42.2 | 42.0; 42.5 | 57.8 | 57.5; 58.0 | 13.0 | 12.8; 13.2 | 2.5 | 2.4; 2.6 | 43.2 | 43; 43.4 | 35.9 | 35.7; 36.1 | 5.4 | 5.3; 5.5 |
2006 | 44.5 | 44.2; 44.7 | 55.5 | 55.3; 55.8 | 13.9 | 13.7; 14.1 | 2.6 | 2.5; 2.7 | 43.7 | 43.5; 43.9 | 34.6 | 34.4; 34.8 | 5.2 | 5.1; 5.3 |
2007 | 43.1 | 42.8; 43.3 | 56.9 | 56.7; 57.2 | 15.8 | 15.7; 16.0 | 2.7 | 2.6; 2.8 | 44.4 | 44.1; 44.6 | 32.4 | 32.2; 32.6 | 4.7 | 4.6; 4.8 |
2008 | 42.3 | 42.1; 42.6 | 57.7 | 57.4; 57.9 | 16.2 | 16.1; 16.4 | 2.8 | 2.7; 2.9 | 45.3 | 45.1; 45.6 | 31.0 | 30.8; 31.2 | 4.6 | 4.5; 4.7 |
2009 | 42.5 | 42.3; 42.7 | 57.5 | 57.3; 57.7 | 15.6 | 15.5; 15.8 | 2.9 | 2.9; 3.0 | 45.6 | 45.3; 45.8 | 30.9 | 30.7; 31.1 | 5.0 | 4.9; 5.1 |
2010 | 42.6 | 42.4; 42.8 | 57.4 | 57.2; 57.6 | 16.3 | 16.2; 16.4 | 3.0 | 3.0; 3.1 | 45.3 | 45.1; 45.5 | 30.3 | 30.1; 30.4 | 5.1 | 5.0; 5.2 |
2011 | 43.5 | 43.3; 43.7 | 56.5 | 56.3; 56.7 | 13.4 | 13.3; 13.6 | 3.2 | 3.1; 3.2 | 43.7 | 43.5; 43.9 | 33.6 | 33.4; 33.8 | 6.1 | 6.0; 6.2 |
2012 | 42.1 | 41.9; 42.2 | 57.9 | 57.8; 58.1 | 11.4 | 11.3; 11.5 | 2.5 | 2.4; 2.5 | 38.1 | 38.0; 38.3 | 39.6 | 39.4; 39.7 | 8.3 | 8.3; 8.4 |
2013 | 41.3 | 41.1; 41.4 | 58.7 | 58.6; 58.9 | 11.6 | 11.5; 11.7 | 2.5 | 2.4; 2.5 | 38.1 | 38.0; 38.3 | 39.3 | 39.1; 39.4 | 8.5 | 8.4; 8.6 |
2014 | 41.9 | 41.8; 42.1 | 58.1 | 57.9; 58.2 | 9.6 | 9.5; 9.7 | 2.4 | 2.3; 2.4 | 32.3 | 32.2; 32.4 | 44.6 | 44.5; 44.8 | 11.1 | 11; 11.2 |
2015 | 42.9 | 42.7; 43.1 | 57.1 | 56.9; 57.3 | 11.1 | 11.0; 11.2 | 2.5 | 2.4; 2.5 | 34.9 | 34.7; 35.0 | 40.9 | 40.7; 41.1 | 10.7 | 10.6; 10.8 |
2016 | 43.0 | 42.8; 43.1 | 57.0 | 56.9; 57.2 | 11.3 | 11.1; 11.4 | 2.5 | 2.4; 2.5 | 34.1 | 33.9; 34.3 | 42.2 | 42.0; 42.4 | 10.0 | 9.9; 10.1 |
2017 | 43.1 | 42.9; 43.3 | 56.9 | 56.7; 57.1 | 11.1 | 10.9; 11.2 | 2.5 | 2.5; 2.6 | 33.4 | 33.2; 33.5 | 42.8 | 42.6; 43.0 | 10.2 | 10.1; 10.4 |
2018 | 43.4 | 43.2; 43.6 | 56.6 | 56.4; 56.8 | 11.3 | 11.2; 11.5 | 2.6 | 2.5; 2.6 | 32.8 | 32.6; 33 | 43.0 | 42.8; 43.2 | 10.3 | 10.2; 10.4 |
2019 | 43.3 | 43.1; 43.5 | 56.7 | 56.5; 56.9 | 11.5 | 11.3; 11.6 | 2.6 | 2.5; 2.6 | 32.6 | 32.4; 32.8 | 43.2 | 43.1; 43.4 | 10.1 | 10.0; 10.3 |
Year | Complexity Level | Administrative Level of Healthcare Facility | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low and Medium | High | Federal | State | Municipal | Private | |||||||
% | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | % | 95%CI | |
2003 | 81.2 | 81; 81.4 | 18.8 | 18.6; 19.0 | 6.1 | 6.0; 6.3 | 18.3 | 18.1; 18.5 | 11.4 | 11.2; 11.6 | 64.1 | 63.9; 64.4 |
2004 | 81.4 | 81.3; 81.6 | 18.6 | 18.4; 18.7 | 6.4 | 6.2; 6.5 | 25.5 | 25.3; 25.7 | 16.1 | 15.9; 16.3 | 52.0 | 51.7; 52.3 |
2005 | 80.8 | 80.6; 81.0 | 19.2 | 19.0; 19.4 | 5.1 | 5.0; 5.3 | 24.1 | 23.8; 24.3 | 9.3 | 9.2; 9.5 | 61.5 | 61.2; 61.7 |
2006 | 81.1 | 80.9; 81.3 | 18.9 | 18.7; 19.1 | 5.9 | 5.8; 6.0 | 25.6 | 25.4; 25.8 | 14.2 | 14.1; 14.4 | 54.3 | 54.0; 54.5 |
2007 | 81.9 | 81.7; 82.1 | 18.1 | 17.9; 18.3 | 6.6 | 6.5; 6.7 | 27.8 | 27.6; 28.0 | 16.0 | 15.8; 16.2 | 49.6 | 49.4; 49.8 |
2008 | 88.3 | 88.1; 88.4 | 11.7 | 11.6; 11.9 | 6.1 | 6.0; 6.2 | 26.7 | 26.5; 26.9 | 16.5 | 16.4; 16.7 | 50.6 | 50.4; 50.9 |
2009 | 86.9 | 86.7; 87.0 | 13.1 | 13.0; 13.3 | 6.6 | 6.5; 6.7 | 27.7 | 27.5; 27.9 | 17.0 | 16.8; 17.1 | 48.7 | 48.5; 48.9 |
2010 | 86.6 | 86.4; 86.7 | 13.4 | 13.3; 13.6 | 6.4 | 6.3; 6.5 | 29.0 | 28.8; 29.1 | 17.7 | 17.5; 17.8 | 47.0 | 46.8; 47.2 |
2011 | 84.3 | 84.1; 84.4 | 15.7 | 15.6; 15.9 | 6.8 | 6.7; 7.0 | 31.0 | 30.8; 31.2 | 17.6 | 17.4; 17.8 | 44.5 | 44.3; 44.7 |
2012 | 69.4 | 69.3; 69.6 | 30.6 | 30.4; 30.7 | 6.7 | 6.6; 6.7 | 24.5 | 24.4; 24.7 | 16.4 | 16.3; 16.5 | 52.4 | 52.3; 52.6 |
2013 | 68.4 | 68.3; 68.6 | 31.6 | 31.4; 31.7 | 7.2 | 7.1; 7.3 | 24.9 | 24.8; 25.0 | 14.5 | 14.4; 14.6 | 53.3 | 53.2; 53.5 |
2014 | 61.9 | 61.8; 62.0 | 38.1 | 38.0; 38.2 | 6.1 | 6.0; 6.2 | 23.2 | 23.1; 23.3 | 11.9 | 11.8; 12.0 | 58.8 | 58.7; 59.0 |
2015 | 68.6 | 68.4; 68.7 | 31.4 | 31.3; 31.6 | 7.0 | 6.9; 7.1 | 24.8 | 24.6; 24.9 | 14.3 | 14.2; 14.5 | 53.9 | 53.7; 54.1 |
2016 | 65.0 | 64.8; 65.2 | 35.0 | 34.8; 35.2 | 7.2 | 7.2; 7.3 | 24.7 | 24.6; 24.9 | 14.0 | 13.9; 14.1 | 54.0 | 53.8; 54.2 |
2017 | 64.6 | 64.4; 64.8 | 35.4 | 35.2; 35.6 | 7.4 | 7.3; 7.5 | 24.6 | 24.5; 24.8 | 13.7 | 13.6; 13.8 | 54.2 | 54.1; 54.4 |
2018 | 64.2 | 64.0; 64.4 | 35.8 | 35.6; 36.0 | 7.5 | 7.4; 7.6 | 23.9 | 23.8; 24.1 | 13.9 | 13.8; 14.1 | 54.7 | 54.5; 54.9 |
2019 | 63.7 | 63.5; 63.9 | 36.3 | 36.1; 36.5 | 7.5 | 7.4; 7.6 | 23.9 | 23.8; 24.1 | 14.3 | 14.2; 14.5 | 54.3 | 54.1; 54.5 |
Variable | β | SE | Sig. | 95%CI | |
---|---|---|---|---|---|
Sex | (fem = 1) | −0.07 | 0.00 | *** | −0.07; −0.07 |
Age bracket | |||||
<1 year | (yes = 1) | −0.26 | 0.00 | *** | −0.27; −0.25 |
1–4 years | (yes = 1) | −0.17 | 0.00 | *** | −0.17; −0.16 |
5–9 years | (yes = 1) | −0.13 | 0.00 | *** | −0.14; −0.12 |
10–14 years | (yes = 1) | −0.16 | 0.00 | *** | −0.17; −0.16 |
15–19 years | (yes = 1) | −0.12 | 0.00 | *** | −0.12; −0.11 |
20–24 years | (yes = 1) | −0.10 | 0.00 | *** | −0.10; −0.09 |
25–29 years | (yes = 1) | −0.08 | 0.00 | *** | −0.09; −0.07 |
30–34 years | (yes = 1) | −0.09 | 0.00 | *** | −0.09; −0.08 |
35–39 years | (yes = 1) | −0.10 | 0.00 | *** | −0.10; −0.09 |
40–44 years | (yes = 1) | −0.11 | 0.00 | *** | −0.11; −0.10 |
45–49 years | (yes = 1) | −0.11 | 0.00 | *** | −0.11; −0.10 |
50–54 years | (yes = 1) | −0.09 | 0.00 | *** | −0.09; −0.08 |
55–59 years | (yes = 1) | −0.06 | 0.00 | *** | −0.07; −0.06 |
60–64 years | (yes = 1) | 0.00 | 0.00 | 0.00; 0.01 | |
65–69 years | (yes = 1) | 0.02 | 0.00 | *** | 0.01; 0.02 |
70–74 years | (yes = 1) | 0.02 | 0.00 | *** | 0.02; 0.03 |
75–79 years | (yes = 1) | 0.03 | 0.00 | *** | 0.02; 0.04 |
High complexity procedure | (yes = 1) | 1.37 | 0.00 | *** | 1.37; 1.38 |
Chapter ICD-10 | |||||
Chapter 2 | (yes = 1) | 0.56 | 0.00 | *** | 0.55; 0.56 |
Chapter 3 | (yes = 1) | −0.18 | 0.01 | *** | −0.20; −0.17 |
Chapter 4 | (yes = 1) | 0.12 | 0.00 | *** | 0.11; 0.13 |
Chapter 5 | (yes = 1) | −1.00 | 0.00 | *** | −1.00; −0.99 |
Chapter 6 | (yes = 1) | −0.04 | 0.00 | *** | −0.05; −0.04 |
Chapter 7 | (yes = 1) | 0.74 | 0.00 | *** | 0.74; 0.75 |
Chapter 8 | (yes = 1) | −0.22 | 0.00 | *** | −0.22; −0.21 |
Chapter 9 | (yes = 1) | 0.43 | 0.00 | *** | 0.42; 0.43 |
Chapter 10 | (yes = 1) | 0.38 | 0.00 | *** | 0.38; 0.39 |
Chapter 11 | (yes = 1) | 0.58 | 0.00 | *** | 0.57; 0.59 |
Chapter 12 | (yes = 1) | 0.17 | 0.00 | *** | 0.16; 0.17 |
Chapter 13 | (yes = 1) | 0.36 | 0.00 | *** | 0.35; 0.37 |
Chapter 14 | (yes = 1) | 0.89 | 0.00 | *** | 0.88; 0.89 |
Chapter 15 | (yes = 1) | 0.67 | 0.00 | *** | 0.67; 0.68 |
Chapter 16 | (yes = 1) | 0.49 | 0.01 | *** | 0.46; 0.51 |
Chapter 17 | (yes = 1) | 0.76 | 0.00 | *** | 0.75; 0.77 |
Chapter 18 | (yes = 1) | −0.06 | 0.00 | *** | −0.07; −0.05 |
Chapter 19 | (yes = 1) | 0.36 | 0.00 | *** | 0.35; 0.37 |
Chapter 20 | (yes = 1) | −0.01 | 0.02 | −0.04; 0.02 | |
Chapter 21 | (yes = 1) | 0.73 | 0.00 | *** | 0.73; 0.74 |
Administrative level | |||||
Federal | (yes = 1) | −0.21 | 0.00 | *** | −0.21; −0.20 |
Municipal | (yes = 1) | −0.13 | 0.00 | *** | −0.13; −0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, L.; de Lima, J.V.M.T.; Silvestrini, M.M.; Sarti, F.M. Determinants of Government Expenditures with Health Insurance Beneficiaries in the Brazilian Health System. Healthcare 2024, 12, 2335. https://doi.org/10.3390/healthcare12232335
Moreira L, de Lima JVMT, Silvestrini MM, Sarti FM. Determinants of Government Expenditures with Health Insurance Beneficiaries in the Brazilian Health System. Healthcare. 2024; 12(23):2335. https://doi.org/10.3390/healthcare12232335
Chicago/Turabian StyleMoreira, Leonardo, João Vitor Marques Teodoro de Lima, Murilo Mazzotti Silvestrini, and Flavia Mori Sarti. 2024. "Determinants of Government Expenditures with Health Insurance Beneficiaries in the Brazilian Health System" Healthcare 12, no. 23: 2335. https://doi.org/10.3390/healthcare12232335
APA StyleMoreira, L., de Lima, J. V. M. T., Silvestrini, M. M., & Sarti, F. M. (2024). Determinants of Government Expenditures with Health Insurance Beneficiaries in the Brazilian Health System. Healthcare, 12(23), 2335. https://doi.org/10.3390/healthcare12232335